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Learning Objectives

After completing this chapter, you should be able to:

list the dimensions and units of physical quantities.

identify the key fluid properties used in the analysis of fluid behavior.
calculate values for common fluid properties given appropriate information.
explain effects of fluid compressibility.

use the concepts of viscosity, vapor pressure. and surface tension.




A fluid is defined as:

“A substance that continually deforms (flows) under
an applied shear stress regardless of the magnitude
ne applied stress”.

1ses of matter and includes
nlastic



Distinction between a Solid and a Fluid

Solid

Definite Shape and definite
volume.

Does not flow easily.
Molecules are closer.

Attractive forces between the
molecules are large enough to
retain its shape.

ideal Elastic Solid deform
es back to

Fluid

Indefinite Shape and Indefinite
volume & it assumes the shape
of  the container which it
occupies.

Flow Easily.
Molecules are far apart.

Attractive forces between the
molecules are smaller.

Intermolecular cohesive forces
in a fluid are not great enough to
various elements of
luid will




Distinction between a Gas and Liquid

The molecules of a gas are
much farther apart than
those of a liquid.

Hence a gas Is very
compressible, and  when
all external pressure is
It tends to expand

A liquid 1s relatively
Incompressible.

If all pressure, except that
of its own vapor pressure,
IS removed, the cohesion
between molecules holds
them together, so that the
liquid does not expand
: el




Dimensions, Dimensional Homogeneity, and Units

FLUID CHARACTERISTICS CAN BE
DESCRIBED QUALITATIVELY IN TERMS OF
CERTAIN BASIC QUANTITIES SUCH AS

LENGTH, TIME, AND MASS. //



Fundamental units are the units which are not dependent with any
other units like length, mass, fime, electric current, thermodynamic
temperature, amount of substance, or luminous intensity in the
International System of Units, consisting respectively of the meter,
kilogram, second, ampere, kelvin, mole etc are called fundamental
units. Some examples are as follows :-

length is fundamental unit,meter is it's Sl unit, m is it's symbol
masss is fundamental unit,kilo gram is it's Sl unit, kg is it's symbol
time is fundamental unit,second is it's Sl unit, s is it's symbol

Is fundamental unit,ampere is it's Sl unit, Ais it's

K'is it's symbol




The 7/ Fundamental S| Units

Mass kilogram [kQ]
2 Length meter [m]
3 Time second [S]
4 Temperature Kelvin [K] ’
5 Amount of substance mole [mol] %
6 Electric current ampere [A]

/ Luminous intensity Candela [cd]




B Table 1.1

Dimensions Associated with Common Physical Quantities
L e L e ————

FLT MLT
System System

Acceleration oy Lr=* Power
Angle FOLT" MOLYT Pressure
Angtlar acceleration e / ol Specific heat
Angtlar velocity G

Specific weig
Area 12 Specific weight

Strain

Density FLT? 1 Stress

Energy : Surface tension
Force Temperaturz
Frequency
Heat

Time

Torque

Length Velocity

Mass J Viscosity (Cynamic)
Modu_us of elasticity ; Viscosity (kinematic)
Moment ol a furce

Volume

Moment of inerlia (area) Rt
or

Moment of inertia (mass)
Momentum Fr




GIVEN A liquid flows through an orifice located in the side of
a tank as shown in Fig. EL.l. A commonly used equation for
determining the volume rate of flow, @, through the orifice is

Q = 061 A\/2gh

where A is the area of the orifice, g is the acceleration of gravity.
and /i 1s the height of the liquid above the orifice.

FIND Investigate the dimensional homogeneity of this formula.

SOLUTION

The dimeasions of the various terms in the equation are Q =
volume/time = LT ', A = area = L%, g = acceleration of gravity =
LT * and h = height = L.

These terms. when substituted into the cquation. yicld the dimen-
sional form:

(LT = (0.61) (LA (V2)(LT ALy

(LT = [0.612)(L'T™")

It 1s clear from this result that the equation 15 dimensionally
homogenecus (both sides of the formula have the same dimen-
sions of L'7"), and the number 0.61 \/2 is dimensionless.

IT we were going to use this relationship repeatedly. we might
be tempted to simplify it by replacing g with its standard value of
32.2 ft /s* and rewriting the formula as

0 = 490 A/h (1)
A quick check of the dimensians reveals that

LT ' = (4.90)(L*%)

EXAMPLE 1.1 Restricted and General Homogeneous Equations

A

0 x
7 |

{a)
B Figure E1.1

and, therefore. the equation expressed as Eq. 1 can only be
dimensionally correct if the number 4.90 has the dimensions
of L'?T" . Whenever a number appearing in an equation or
formula has dimensions. it means that the specific value of the
number will depend on the system of units used. Thus, for the case
being considered with feet and seconds used as units, the num-
ber 4.90 has units of ft'/?/s. Equation 1 will only give the
correct value for Q (in ft’/s) when A is expressed in square
feet and % in feet. Thus. Eq. | is a restricted homogencous
equation, whereas the original equation is a general homoge-
neous equation that would be valid for any consistent system
of units.

COMMENT A quick check of the dimensions of the various
terms in an equation is a useful practice and will often be
helpful in eliminating errors—that is. as noted previously, all
physically meaningful equations must be dimensionally homo-
gencous. We have briefly alluded to units in this example, and
this important topic will be considerzd in more detail in the
next section.




SI Units

Quantity Basic Definition Standard SI Units Other Units Often Used
Length — meter (m) millimeter (mm); kilometer (km)
Time — second (s) hour (h); minute {min)
Mass (Quantity of a substance kilogram (kg) N+s*m

Force or weight Push or pull on an object newton (N) kg m/s
Pressure Force/area Nim? or pascal (Pa) kilopascals (kPa); bar
Energy Force times distance N+m or Joule (I) kg m*/s*

Power Energy/time N'm/s or J/s watt (W) kKW
Volume [L-f:ﬂgl:h)3 m’ liter (L)

Area (Length)? m’ mm’

Volume flow rate Volume/time mfs L/s; L/min: m*/h
Weight flow rate Weight/time N/s kN/s: kN/min
Mass flow rate Mass/time kgls kg/h

Specific weight Weight/volume N/m’ kg/m™s”

Density Mass/volume kg/m’ N-s*/m*




FPS Units

Quantity Basic Definition Standard U.S. Units Other Units Often Used

Length — feet (ft) mnches (n); miles (mi)
Time — second (s) hour (h); minute {mm)
Mass Quantity of a substance slugs Ibes™/fi

Force or weight Push or pull on an object pound (Ih) kip (1000 1b)
Pressure Force/area Ib/ft* or psf Ib/in® or psi; kip/in® or ksi
Energy Force times distance Ib+fi Ib+in

Power Energy/time Ib-ft/s horsepower (hp)
Volume (Length)? ft* gallon (gal)

Area (Length)? ft* in*

Volume flow rate Volume/time ft*/s or cfs gal/min (gpm); f/min (cfm)
Weight flow rate Weight/time Ib/s Ib/mun; [b/h

Mass flow rate Mass/time slugs/s slugs/min: slugs'h
Specific weight Weight/volume Ib/ft?

Density Mass/volume slugs/ft




1.3 ANALYSIS OF FLUID BEHAVIOR

The study of fluid mechanics involves the same fundamental laws you have encountered in physics
and other mechanics courses. These laws include Newton's laws of motion, conservation of mass,
and the first and second laws of thermodynamics. Thus, there are strong similarities between the
general approach to fluid mechanics and to rigid-body and deformable-body solid mechanics. This
is indeed helpful since many of the concepts and techniques of analysis used in fluid mechanics will
be ones you have encountered before in other courses.

The broad subject of fluid mechanics can be generally subdivided into fluid statics, in which
the fluid is at rest, and fiuid dynamics, in which the fluid is moving. In the following chapters we
will consider both of these areas in detail. Before we can proceed, however, it will be necessary to
define and discuss certain fluid properties that are intimately related to fluid behavior. It is obvious
that different fluids can have grossly different characteristics. For example, gases are lhight and
compressible. whereas liquids are heavy (by comparison) and relatively incompressible. A syrup
flows slowly from a container, but water flows rapidly when poured from the same container. To
quantify these differences, certain fluid properties are used. In the following several sections, prop-
erties that play an important role in the analysis of fluid behavior are considered.




1.4 MEASURES OF FLUID MASS AND WEIGHT

1.4.1 Density

The density of a fluid, designated by the Greek symbol p (rho), is defined as its mass per unit
volume. Density is typically used to characterize the mass of a fluid system. In the BG system, p
has units of slugs/ft’ and in SI the units are kg/m’,

The specific volume, v, is the volume per unit mass and is therefore the reciprocal of the
density—that is,

(1.5)

; :
@ 4°C p = 1000 kg/m”

0 20 40 60
Temperature, °C

Density, p kg/m™

B Figure 1.3 Density of water as a function of temperature,




1.4.2 Specific Weight

The specific weight of a fluid, designated by the Greek symbol y (gamma), is defined as its weight
per unit volume. Thus, specific weight is related to density through the equation

Yy = P8 (1.6)

1.4.3 Specific Gravity

The specific gravity of a fluid, designated as SG, is defined as the ratio of the density of the fluid
to the density of water at some specified temperature. Usually the specified temperature is taken as
4 °C (39.2 °F), and at this temperature the density of water is 1.94 slugs/ft’ or 1000 kg/m’. In
equation form, specific gravity is expressed as

8G = —L (1.7)

Ph0@4 ¢

P = (13.55)(1.94 slugs/ft*) = 26.3 slugs/1t’

Pue = (13.55)(1000 kg/m*) = 13.6 X 10" kg/m’




Ideal Gas Law

Gases are highly compressible in comparison to liquids, with changes in gas density directly related
to changes in pressure and temperature through the equation

or, in the more standard form,

Pressure in a fluid at rest is defined as the normal force per unit area exerted on a plane
surface (real or imaginary) immersed in a fluid and is created by the bombardment of the surface
with the fluid molecules. From the definition, pressure has the dimension of FL * and in BG units

is expressed as Ib/ft* (psf) or 1b/in.* (psi) and in SI units as N/m”’. In SI, 1 N/m? defined as a
pascal, abbreviated as Pa, and pressures are commonly specified in pascals. The pressure in the /

ideal gas law must be expressed as an absolute pressure, denoted (abs), which means that it is
measured relative to absolute zero pressure (a pressure that would only occur in a perfect vacuum).
Standard sea-level atmospheric pressure (by international agreement) is 14.696 psi (abs) or 101.33
kPa (abs). For most calculations these pressures can be rounded to 14.7 psi and 101 kPa, respec-
tively. In engineering it is common practice (0 measure pressure relative o the local atmospheric
pressure, and when measured in this fashion it is called gage pressure. Thus, the absolute pressure
can be obtained from the gage pressure by adding the value of the atmospheric pressure.

Y




GIVEN Th: compressed air tank shown in Fig. E1.3a2 has a
volume of (.82 117, The temperature 1s 70 “F and the atmospheric
pressure 15 147 psi (abs).

FIND Whenthe tank 15 filled with airata zage pressure of 50 psi,
determine the density of the air and the weight of air in the tank.

SOLUTION

The air density can be obtained from the ideal gas law (Eq. 1.8)

= p
G R
(50Ih/in® + 147 1h/in (144 in2 /11%)
(1716 1t - Ib/slug « “R)[(T0 + 460)°R]
= 0.0102 slugs/It* (Ans)

LG

Note that both the pressure an¢ temperature were changed o
absclute values,

The werght. W, of the air is equal o

W = pg X (volume) [ Figure E13a  (Phetograph courtesy of Jenny
(0.0102 slug /7 (322 fr/55)(0.84 ') Products, Incd
0.276 slug - fifs®

so that since | 1b = | slug - ft /s°

W= 0276 1b (Ans)

CCMMEN™

By repeating the calculations for various values

e {50 pd, 0.276 1) of Lie pressue. p. the results shown in Big, EL3b are oblained.
02 Not that dovbling the gage pressure does not double the amount

of ar i the tank. but coubling the absoluie pressure does. Thus,

0.1 I a scuba diving tank at a gage pressure of 1) psi does not conlain

twice the amount of ar as when the gage reads 50 psi.

B Agure E13b




Viscosity

I Figure 1.4  (a) Defarmation of material
placed between two parallel plates. (b) Forces
acting on upper plate.

‘ I Figure 1.5 Behavior of a fluid placed between two
L Fixed plate  parallel plates.

The fluid between the twe plates moves with velocity
u = u(y) that would be found to vary linearly, u = Uy/b, as illustrated in Fig. 1.5. Thus, a velocity
gradient, du/dy, is developed in the fluid between the plates. In this particular case the velocity
gradient is a constant since du/dy = U /b, but in more complex flow situations, such as that shown
by the photogreph in the margin, this is not truc. The experimental observation that the fluid “sticks™
to the solid boundaries is a very important one in fluid mechanics and is asually referred to as the
no-stip condition. All fluids, both liquids and gases, satisfy this condition for typical flows.




U

1= uey)

¢ = C 0N surface ===

N —

Solid body

In a small time increment, 8¢, en imaginary vertical line AB in the fluid would rotate through
an angle, 6f3, so that

i da
off = tandf = b

Since da = U &, it follows that
U ot
58 =
p b

We note that in this case, §f is a function not only of the force P {which governs U) but zlso of
time. Thus, it is not reasonable to attempt to relate the shearing stress, 7, to §f as is done for
solids. Rather, we consider the rate at which 6f is changing and define the rate of shearing
strain, y, as

b i B
E— «)‘LT) Ot

which in this instance is equal to

_ U _du

X b dy



A continuation of this experiment would reveal that as the shearing stress, 7. is increased by
increasing P (recall that = = P/A), the rate of shearing strain is increased in direct proportion—
that is,

TXY

dv

T %
dy
This result indicates that for common fluids such as water, oil, gasoline, and air tae shearing stress
and rate of shearing strain (velocity gradient) can be related with a relationship of the form
aue
T=u— (1.9)
ay
where the constant of proportionality is dasignated by the Greek symbol g (mu) anc is called the
absolute viscosity, dynamic viscosity, or simply the viscosity of the fluid. In accordance with
Eq. 1.9, plots of 7 versus du/dy should be linear with the slope equal to the viscosity as illustrated
in Fig. 1.6. The actual value of the viscosity depends on the particular fluid, and for a particular
fluid the viscosity is also highly dependent on temperature as illustrated in Fig. 1.6 with the two
curves for water. Fluids for which the shearing stress is linearly related to the rate of shearing strain
(also referred to as the rate of angular deformation) are designated as Newtonian fluids after Isaac
Newton (1642-1727). Fortunately, most common fluids, both liquids and gases, are Newtonizn.




Shearing stress, ¢

Crude oil (60 °F)

Water (60 °F)

Water (100 °F)

Alr (€0 °F)

Rate o shearing sirain, %1;‘—'

I Figure 1.6 Linear variation
of shearing stress with rate of shearing
strain for common [luids.
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The effect of temperature on viscosity can be closely approximaled using twp empirical
formulas. For gases the Sutheriand equation can be expressed as

CT3/2
& g

(1.10}

where C and § are empirical constants, and 7' is absolute temperature. Thus, if the viscosity is
known at two temperatures, C and § can be determined. Or, if more than two viscosities are known,
the data can be correlated with Eq. 1.10 by using some type of curve-fitting scheme.

For liquids an empirical equation that has been used is

u = DT (1.11)

where D and B are constants and 7 is absolute temperature. This equation is often referred to as
Andrade’s equation. As was the case for gases, the viscosity must he known at least for two
temperatures so the two constants can be determined. A more detailed discussion of the effect of
temperature on fluids can be found in Ref. 1.




EXAMPLE 1.4

GIVEN A dimensonless combination of variables that is
nportant 11 the study of viscous ow through pipes is called the
Reynolds mwamber, Re, defined as pVD /i where, 4s indicaed in
Fig. EL4. p 1s the [lnd densaty, V the mean [lud velocty. D the
pipe diameter, and p the fluid viscosity. A Newlonian fluid
Baving a viscosity of 0.38 N+ «/m” and a specilic gravity of 0.91
Flows throwgh a 25-mm-diamecr pipe with a velocity of 2.6 m/s.

FIND Ixtermine he value of the Reynolds number using
(£) SI unitsand (b} EG units

SOLUTION

(a) The fluid densiy 1s calculated from the specific gravity as
# = 3G puopsec = 091 (1000 kg/m') = 910 kg/m'
and from the definition of the Reynolds number
pVD (910 kg/m* 2.6 m/s)25 mm)(10 * m/mm)

% 0.38 N+ s/m’
= 156 (kg - mpsT) /N

Re

However, since 1 N = 1 kg - m/s” it follows that the Reynolds
number is wnitless—hat is.

Re = 150 JAns)

The value of any dinensionless quantity does not depend on the
system of units used if all vanables that make up the quantity are
expressed in a consistent set of units. To check this, we will
calculate the Reynolds number using BG. units.

(b) We first conver: all the SI values of the varables appearing
e the Revrolds number to BG values. Thus,

P o= (910ke/m*)(1.940 X [0 ") = 1.77 slugs /tt’

V= (26m/3)(3.23]1) = 853 ft/s

D= {(0025m)(3.281) = 820 x 10 *fi

u={03&N-3/m H2.082 X 107%) =794 X 1077 1b - S/f°

Viscosity and Dimensionless Quantities

B FigureElL4

and the vidue of the Reynolds number is
% (1,77 stugs/f5)(8.53 fi/s)(8.20 X 107 fi)
c= : =

794 % 10 b - s/

= 156 (sug + fifs") /b = 156 (Ans)

since 11b = 1 slug « fi/s”.

COMMENTS Thae values from part (a) and part (b) are the
same, as expected, Dimensionless quantities play an important
ole in fuid mechenics. and the significance of the Reynolds
number as well a8 other important dimensionless combinations
will be discussed ir detail in Chapter 7, Tt should be noted that
n the Reynolds number it is actually the ralio p/p that is
important. and this is the property that is defined as the Kine-
matic viscosity.




V1.7 Warer

wioso  balloon

Compressibility of Fluids

1.7.1 Bulk Modulus

An important question to answer when considering the kehavior of a particular fluid is how easily
can e volume (and thus the density) of a given mass of the fluid be changed when there is a change
in pressure? That is, how compressible is the fluid? A property that is commonly used to chamcterize
compressibility is the bulk modulus, E,, defined as
dp

dvjv
where dp is the differential change in pressure needed to create a differential change in volume, @V,
of a volume ¥. This is illustrated by the higure in the marzin. The negative sign is included since an
increase in pressure will cause a decrezse in volume. Since a decrease in volume of a given mass,
m = pV, will result in an increase in density, Ec. 1.12 czn also be expressed as

dp

E, = (1.12)

(L13)

E,=
dp/p

The >ulk modulus (also referred to as the bulk modulus of elasticiiy) has dimensions of pressure,
FL . In BG units, values for E, are usually given as I:/in.* (psi) and in SI units as N/m’ (Pa).
Large values for the bulk modulus indicate tha: the fluid is relatively incompressible—that is, it
takes a large pressure change o create a small change n volume. As expected, values of E, for
common liquids are large (se¢ Tables 1.5 and 1.6). For examplz, at auvospheric pressure and a
temperature of 60 “F 12 would require a pressure of 3120 psi 1o compress a unit volume of water 1%.
This result is representative of the compressibility of liquids. Since such large pressares are required
to effect a change in volume, we conclude that liquids car be considered as incompressible for most
practical engineering applications. As liquids are comprzssed the bulk modulus increases, but the
bulk modulus near atmospheric pressure is usualy the one of interest. The use of bulk modulus as
a property deseribing compressibility 15 most prevalent when dealing with liguids, although the
bulk modulus can alsc be determined for gases,




1.7.2 Compression and Expansion of Gases

When gases are compresed (or expanded). the relitionshop between pressure and density depends
o the nature of the process, I the compression or expansior takes place under constant @mperature
conditions (fsothermal process), then from LEg. 18

v
= conslant (L14)
p/
If the compression or expansion is frictinnless and no heat 1s exchanged with the surroundings
(isentropic process), then

4
= costant (L15)
P
where } is the ratio of the specific heat at constant pressure, ¢, to the specific heat at constant
volume, ¢, (Le., & = c'j,/:',,__). The two specific heats are related to the gas canstant, K, through the
equation 8 = ¢, — ¢, As was the case forthe idea! gas law, the pressure in both Egs. 1.14 and 1,13
must be expressed as an absolute pressure.




EXAMPLE 1.6 Isentropic Compression of a Gas

GIVEN A cubic foot of air at an absolute pressurz of 14.7 psi
is compressed isertropically to ; ft* by the tire pump shown in
Fig. E1.6a.

FIND What is the final pressure?

SOLUTION

For an isentropic compression

Pi g ‘r)/
kT ok
i 7y
where the subscripis ¢ and frefer to initial and final states, respec-
tively. Since we are interested in the final pressure, py, it follows

that
20\
P (P.) A B Figure E1.6a0




As the volume. V. is reduced by one-half. the density must dou- 400
ble. since the mass, m = p V. of the gas remains constant. Thus,
with k = 1.40 for air

P 71 VA @) AG 0 aed ek A SH
Py — (2)77(14.7 psi) 38.8 psi (abs) {Ans)

COMMENT By repeating the calculations for various values
of the ratio of the final volume to the initial volume. V,/V,. the

results shown in Fig. E1.65 are obtained. Note that even though G
air is often considered to be easily compressed (at least com- o0
pared to licuids), it takes considerable pressure to significantly
reduce a given volume of air as is done in an automobile engine 50
where the compression ratio is on the order of ¥ /V, = 1/§ =
0.125. 0

(0,5, 38.€ psi)

B Figure E1.6b




1.7.3 Speed of Sound

Another important consequence of the compressibility of fluids is that disturbances introduced at
some point in the fluic propagate at a finite velocity. For example, if a fluid is flowing in a pipe and
a valve at the cutlet is suddenly closed (thereby creating a localized disturbance), the effect of the
valve closure is not felt instantaneously upstream. It takes a finite time for the increased pressure
creatad by the valve closure to propagate to an upstream location. Similarly, a loudspeaker dia-
phragm causes a localized disturbance as it vibrates, and the small change in pressure created by
the motion of the diaphragm is propagated through the air with a finite velocity. The velocity at
which these small disturbances propagate is called the acoustic velocity or the speed of sound, c. It
will be shown in Chapter 11 that the speed of sound is related to changes in pressure and density of
the fluid medium through the equation

_ |
c= \/dp (1.18)

or in terms of the bulk modulus defined by Eq. 1.13

= /E" (1.19)
C "-\ P -

Since the disturbance is small, there is negligible heat transfer and the process is assumed to be
isentropic. Thus, the pressure—density relationship used in Eq. 1.18 is that for an isentropic process.
For gases undergoing an isentropic process, £, = kp (Eq. 1.17) so that

e
( \' P

and making use of the ideal gas law, it follows that

¢ = \KRT (1.20}

Thus, for ideal gases the speed of sound is proportional to the square root of the absolute tempera-
ture. For example, for air at 60 °F with £ = 1.40 and R = 1716 ft - Ib/slug - °R, it follows that
¢ = 1117 ft/s. The speed of sound in air at various temperatures can be found in Appendix B




EXAMPLE 1.7

GIVEN A jet aircraft flies at a speed of 550 mph at an altitude
of 35,000 ft, where the temperature is —66 °F and the specific
heat ratio is k = 1.4,

SOLUTION

Speed of Sound and Mach Number

FIND Determine the ratio of the speed of the aircraft. V, to that
of the speed of sound, ¢, at the specified altitude.

Fror Eq. 1.20 the speed of sound can be calculated as
¢ = VART
V(1.40) (1716 ft Ib/slug °R)(—66 + 460)°R
973 ft/s
Since the air speed is
(550 mi/hr)(5280 ft/mi) A
— = 807 ft/s
| 3600 s/ hri

the ratio is

vV 807 ft/s s
— == 0,829
¢ 973 ft/s

(Ans)

COMMENT Ttis ratio is called the Mach number, Ma. If
Ma < 1.0 the aircralt is flying at subsonic speeds, whereas for
Ma > 1.0 it is flying at supersonic speeds. The Mach number is
an important dimensionless parameter used in the study of the
flow of gases at high speeds and will be further discussed in
Chapters 7 and | 1.

By repeating the calculations for different temperatures, the
results shown in Fig. E1.7 are obtained. Because the speed of

{ 66°F, 0.829)

0.5
-100

B Figure E1.7

sound increases with increasing temperature, for a consiant
airplane speed. the Mach number decreases as the temperature
increases.




Licuid

A liguid boils

when the pressure
is reduced to the
Vapor pressure.

Vapor Pressure

It is a common observation that liquids such as water and gasoline will evaporate if they are simply
placed in a container open 1o the atmosphere. Evaporation takes place because some liquid mole-
cules at the surface have sufficient momentum to overcome the intermolecular cohesive forces and
escape into the atmosphere. If the container is closed with a small air space left above the surface,
and this space evacuated to form a vacuum, a pressure will develop in the space as a result of the
vapor thet is formed by the escaping molecules. When an equiliorium condition is reached so that
the number of molecules leaving the surface is equal to the number entering, the vapor is said 7o be
saturated and the pressure that the vapor exerts on the liquid surface is termed the vapor pressure,
P Similarly, if the end of a completely liquid-filled container is moved as shown in the figure in
the margin without letting any air into the container, the space between the liquid and the end
becomes filled with vapor at a pressure equal to the vapor pressure.

Since the development of a vapor pressure is closely associated with molecular activity, the
value of vapor pressure for a particular liquid depends on temperature. Values of vapor pressure for
water at various temperatures can be found in Appendix B (Tables B.1 and B.2), and the valuzs of
vapor pressure for several common liquids at room temperatures are given in Tables 1.5 and 1.6.

Boiling, which is the formation of vapor bubbles within a fluid mass, is initiated when the
absolute pressure in the fluid reaches the vapor pressure. As commonly observed in the kitchen,
water at standard atmospheric pressure will boil when the temperature reaches 212 “F (100 °C)—
that is, the vapor pressure of water at 212 °F is 14.7 psi (abs). However, if we attempt to boil
water at a higher elevation, say 30,000 ft above sea level (the approximate e'evation of
Mt. Everest), where the atmospheric pressure is 4.37 psi (abs), we find that boiling will start
when the temperature is about 157 “F. At this temperature the vapor pressure of water is 4.37

i (abs).




1.9 Surface Tension

V1.9 Floating At the interface between a liquid and a gas, or between two immiscible liquids, forces develop in
vibeo razoer blade the liquid surféce that cause the surface to behave as if it were a “skin” or “membrane™ stretched
over the fluid mass. Although such a skin is not actually present, this conceptual analogy allows us
to explain several commonly observed phenomena. For example, a steel needle or a razor blade will
float on water if placed gently on the surface because the tension developed in the hypothetical skin
supports it. Small droplets of mercury will form into spheres when placed on a smooth surface
because the cohesive forces in the surface of the mercury tend to hold all the molecules together in
a compact shape. Similarly, discrete bubbles will form in a liquid. (See the photograph at the begin-
ning af Chapter 1)

These various types of surface phenomena are due to the unbalanced cohesive forces acting
on the liquid molecules at the fluid surface. Molecules in the interior of the fluid mass are sur-
rounded by molecules that are attracted to each ather equally. However, mclecules along the surface
are subjected to a net force toward the interior. The apparent physical consequence of this unbal-
anced force along the surface is to create the hypothetical skin or membranc. A tensile force may

o B 107 be considered to be acting in the plane of the surface along any line in the surface. The intensity of
B the molecular attraction per unit length along any line in the surface is called the surface lension
§ a % and is designated by the Greek symbol & (sigma). For a given liquid the surface tension depends on
é temperature as well as the other fluid it 1s in contact with at the interface. The dimensions of surface
S < ' tenson are FL ' with BG units of 1b/ft and S1 umts of N/m. Values of surface tension tor some
;"; common liquids (in contact with air) are given in Appendix B (Tables B.l and B.2) for water al

0 50 100150200 various temperatures. As indicated by the figure in the margin, the value of the surface tension
Temperature, °F decreases as the temperature ircreases.




ApaR? I Figure 1.9 Forces acting on one-half of aliquid drop.

The pressure inside a drop of fluid can be calculated using the free-body diagram in Fig. 1.9.
If the spherical drop is cut in half (as shown), the force developed around the edge cue to surface
tension is 27Re. This force must be balanced by the pressure difference. Ap, between the internal
pressure, p;. and the external pressure, p,, acting over the circular area, zK*. Thus,

22Ro = Ap nR?

20
Ap=pi—p:=—7 (1.21)
R
It is apparent fram this result that the pressure inside the drop is greater than the pressure surround-
ing the drop. (Would the pressure on the inside of a bubble of water be the same as that on the inside
of a drop of water of the same diameter and at the same temperature?)




Among cammon phenomena associated with surface tension is the rise (or fall) of a liquid in
a capillary tube. If a small open tube is inserted into water, the water level in the tube will rise above
the water level outside the tube, as is illustrated in Fig. 1.10a. In this situation we have a liquid-gas-
solid interface. For the case illustrated there is an attraction (adhesion) between the wall of the tube
and liquid molecules which is strong enough to overcome the mutual attraction (cohesion) of the
molecules and pull them up the wall. Hence, the liquid is said to wet the solid surface.

The height, A, is governed by the value of the surface tension, o, the tube radius, R, the spe-
cific weight of the liquid, y, and the angle of contact, 0, between the fluid and tube. From the free-
body diagram of Fig. 1.10h we see that the verticzl force due to the surface tension is ecual to
2R cos 0 and the weight is yazR*h, and these two forces must balance for equilibrium. Thus,

yrR*h = 2xRe cos 0
so that the height is given by the relztionsaip

jo 2208 (1.22)
rR
The angle of contact is a function of both the liquid and the surface. For water in contact with clean
glass @ = 07, It is clear from Eq. 1.22 that the height is inversely proportional to the tube radius,
and therefore, as indicated by the figure in the margin, the rise of a4 liquid in a wbe as a result of
capillary action becomes increasingly pronounced as the tube radius is decreased.




surface 15 weak compared to the cohesion >etween mol-
ecules, lhc liquid will not wet the surface and the level in a tube placed in a nonwetting liquid will
actually be depressed, as shown in Fig. 1 10c. Mercury is a good example of a nonwetting liquid
when it is in contact with a glass tube. For nonwetting liquids the angle of contact is greater than
90°, and for mercury in contact with clean glass € = 1307,

@ Figure 1.10 Effect of capillary action in small
tubes. (a) Rise of column for a liquid that wets the
tube. (b) Free-body diagram for calculating column
height. (¢) Depression of column for a nonwetting
liquid.




EXAMPLE 1.8

GIVEN Pressures are sometimes determined by measuring the
height of 1 column of liquid in a vertical tube.

SOLUTION

Capillary Rise in a Tube

FIND What diameter of clean glass tubing is required so that
the rise of water at 20 °C in a tube due to capillary action (as
opposed to pressure in the tube) is less than A = 1.0 mm?

From Eq. 1.22

_ 20cos 0
7R

so that

20 cos

vh
For water at 20 °C (from Table B.2). ¢ = 0.0728 N/m and
¥ = 9.780 KN /m’. Since 8 = 07 it follows that for A = 1.0 mm,
B 2(0.0728 N/m)(1)
(9789 X 10° N/m* ) (1. 0O mm)( 10 m/mm)
= 00149 m

and the minimum required tube diameter. D, is

D = 2R = 0.0298 m = 29.8 mm (Ans)

COMMENT By repeating the calculations for various values
of the capillary rise, h. the results shown in Fig. E1.8 are

obtained. Note that as the allowable capillary rise is decreased.
the diameter of the tube must be significantly increased. There is
always some capillarity elTect. but it can be minimized by using
a large enough diameter tube.

(1 mm, 29.8 mm)

B Figure E1.8




A Brief Look Back in History

Al the beginning cf the twentieth century, both the fields of heoretical hydrodynamics and
experimental hydraulics were highly developed, and attempts were being made to unify the two. In
1904 a classic paper was presented by a German professor, Ludwig Prandtl (1875-1953), who intro-
duced the concept of a “fluid boundary layer,” which laid the foundation for the unification of the
theoretical and experimental aspects of fluid mechanics. Prandtl’s idea was that ‘or flow next to a

Geoffrey Tayio- N
Theodor von Karman N
Ludwig Prandt!
Oshorne Reynolds I—
Ernst Mach IEG_—_———
George Stokes I
Jeém Poiseuille nE——
Lc;uis Navier IR
Leonhard Euler HE———
Danizl Bernou!ll I
Iszac Newlon I
Galileo Galile IEG—_—
Leonarde da Vinz) IS
1300 1400 1500 16C0 1700 1800 1900
Year

B Figure 1.1 Time line of some contributors to the science of fluid mechanics.
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| Table 1.9

Chronological Listing ef Some Contribulors to the Science of Fluid Mechanics Noted in the Text®

ARCHIMEDES (287 212 p.c.)
Estzblished clementary principles of huoyancy and
flotation,

SEXTUS JULIUS FRONTINUS (A0, 40-103)
Wrute treatise on Roman methods of water
distribution,

LEONARDO da VINCE(1452-1519)

Expressed elementary principle of continuity;
ubserved and sketched many basic llow phenomena:
sugeested designs for hydraulic machinery.
GALILEO GALILED (1564 1642)

Indirectly stimulated experimental hydraulics:
revised Aristotelian concept of vacuum.

EVANGELISTA TORRICELLI (1608 1647)
Related baromelric height to weight of atmosphere,
and form of liquid jet to wrajectory of free fall.

BLAISE PASCAL (1623-1662)
Finally clarified principles of barometer, hydraulic
press. and pressure transmissibility.

ISAAC NEW (1642-172T)

Explored vay ects of Auid resistance—
inertial, viscous, and wuve; discoverned
contraction,

HENRI de PITOT (1895-1771)
Constructed double-tube device 1o indicate water
velocity through differential head.

DANIEL BERNOULLT (1700 1782)
Experimented and wrote on many phases of fluid
motion, coming name “hydrodynam

manametry tecinigue and adapied primitive energy
principle to explain veloeity-head indication:
proposed jel propulsion,

LEONHARD EULER (1707-1783)

First explained role of pressure in fluid flow,
formulated hasic equations of moton and sc-called
Bernoulli theotem: introduced concept of cavitation
und principle of centrifugal machinery.

JEAN le ROND d'ALEMBERT (1717-1783)
Originated notion of velocity and acceleration
components, differential expression ol continuity,
and paradox of zero resistance to steady nonuniform
moticn.

ANTCINE CHEZY (1715-1798)

Formulated similarity parameter for predicting flow
charac eristics of one channel from measurements on
another,

GIOVANNI BATTISTA YENTURI (1746-1822)
Performed tests on varions forms of mouthpicces—
in parteular, conical contactions and expansions.
LOUIS MARTE HENRINAVIER (1785-1836)
Extenced equations of mation to include “melecular™
forces.

AUGUSTIN LOUIS de CAUCHY (1789-1457)
Contriduted w the general field of theoretical
hydrocynamics and ta the study of wave motion.
GOTTHILF HEINRICH LUDWIG HAGEN
{1797-1884)

Condwted onginal studies of resistance in and
transition between laminar and turbalent flow.

JEAN LOUIS POISEUILLE (1 799-1569)
Performed meticulous tests on resistance of fow
throug capillary tubes,

HENEI PHILIBERT GASPARD DARCY
(1803-1858)

Performed extersive tests on filiation and pipe
resistmice: imtisted open-channel studies carried out
by Bazin,

JULIUS WEISBACH (1806-1871)

Incorporated hydraulics i treatise on engineering
mechadics, based on original exper ments:
noteworthy for flow patiemns, nondimensional
coeflicients. weir, and resistance eqeintions,
WILLIAM FROUDE (I810-18749)

Develcped many towing-tank techniques, in
partictlar the conversion of wave and boundary
layer resistunce ‘rom model Lo protatype scalz.
ROBERT MANNING (1816-1897)

Proposad several formulas for open-channel resistance,
GEORGE GABRIEL STOKES (1819-1903)
Derivad analytically variaus flow relationships
ranging from wave mechanics to viscous resistance—
partictlarly that for the settling of spheres.

ERNSE MACH (1838-1910)

One of the pieneers in the field of sapersonic
aerodynamics.




Chapter Summary and Study Guide

This introductory chapter discussed several fundamental aspects of fluid mechanics. Methods for
describing fluid characteristics both quantitatively and qualitatively are cons:dered. For a quantita-
tive description, units are required. The concept of dimensions is introduced in which basic dimen-
sions such as lergth, L, tme, T, and mass, M, are used o provide a description of various guantities
of interest. The use of cimensions is helpful in checking the generality of equations, as well as
serving as the basis for the powerful 0ol of dimensional analysis discussed in detail n Chapier 7.
Various important fluid preperties are defined, including fluid density, specific weight, spe-
cific gravity, viscosity, bulk modulus, speel of sourd, vapor pressure, and surface tens on, The ideal
gas law is introduced to relate pressure, temperature, and density in common gases, along with a
briel discussion of the compression and ecpansion of gases. The distinction between absolute and
gage pressure is introduced. This important idea is explored more fully in Chapier 2.
The following checklist provides a siudy guice for this chapter When your study of the entire
chapter and end-of-chapler exercises has Feen conpleted you should he able o
® write out meanirgs of the terms listed here in the margin and understand each of the related
concepts. These terms are particularly important and are set in ifalic, bold, and color type
in the text.
® determine the dimensions of common physical guantities.
= determine whetler an equation 15 a generd or restricied homogeneous equation.




carrectly use nnits and systems of units in your analyses and calcalations.

calculate the density, specific weight, orspecific gravity of a fluid from a kaowledge of any
two of the three.

calculate the density, pressure, or temperature of an idezl gas (with a given gas constant)
from a knowledge of any two cf the thme.

relate the pressure and density of a gas as it is compressed or expanded using Egs. 1.14
and 1.15.

= use the concept of viscosity to calculate the shezring stress in simple fluic flows.
a calculate the speed of sound in fluids using Eq. 1.19 for liquids and Eq. 1 20 for gases.

® determine whether bodling or cavitatior will eccur 1n a liquid using the concept of vapor
pressure.

use the concept of surface tension to solve simple problems involving liquid-gas or liquid-
solid-gas interlaces,




Some of the important eguations in this chapter are:

Specific weight y = pe

P

Specific gravity SG =
Proesc

Ideal gas law - pRT

Newtonian fluid shear stress

Bulk modulas dV/V

Speed of sound in an ideal gas = LWART

2ecos @

Capillary rise in a tube = ==
7R




Fluids Engineering

Reality

Fluids Engineering System Components | | Idealized

Problem Formulation




Analytical Fluid Dynamics

e The theory of mathematical physics
problem formulation

e (Control volume & differential analysis

act solutions only exist for simple
onditions

4



Analytical Fluid Dynamics

e Example: laminar pipe flow

imptions: Fully developed, Low Re=PYP 2000

olify momentum equation, * :
™ Schematic

— e

Friction factor:

Development of boundary-layer flow in pipe

Head loss:



Experimental Fluid Dynamics (EFD)

Definition:
Use of experimental methodolog?/ and procedures for solving fluids
engineering systems, including full and model scales, large and table
top facilities, measurement systems (instrumentation, data acquisition
and data reduction), uncertainty analysis, and dimensional analysis and

similarity.
D philosophy:

conducting experiments are governed by the ability of the
hieve the test objectives within allowable




Purpose

e Science & Technology: understand and investigate a
phenomenon/process, substantiate and validate a theory
(hypothesis)

e Research & Development: document a process/system,

nchmark data (standard procedures,
/

ments, equipment, and
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Computational Fluid Dynamics

e CFD is use of computational methods for
solving fluid engineering systems, including
modeling (mathematical & Physics) and
numerical methods (solvers, finite differences,
1 grid generations, etc.).

achnology since advent




Purpose

e The objective of CFD is to model the continuous fluids
with Partial Differential Equations (PDEs) and
discretize PDEs into an algebra problem, solve it,
validate it and achieve simulation based design
instead of “build & test”




Modeling

Mathematical physics problem formulation of fluid
engineering system

Governing equations: Navier-Stokes equations (momentum),
continuity equation, pressure Poisson equation, energy
equation, ideal gas law, combustions (chemical reaction
equation), multi-phase flows(e.g. Rayleigh equation), and

odels (RANS, LES, DES).
indrical and spherical coordinates



B MATHEMATICAL MODELING OF ENGINEERING PROBLEMS

Experimental vs. Analytical Analysis

The

(including the numerical
approach) has the
Jantage that it is fast and

hat we




INEERING  MATHEMATICAL MODELING OF
DHYSICAL PROBLEMS.

The descriptions of most scientific

problems involve equations that relate the Physical problem
changes in some key variables to each
other /o Identify 7
. * important
» In the limiting case of infinitesimal or . variables % ~~ Make
differential changes in variables, we obtain ~( reasonable d
. . D ———assumptions and |
| that provide precise " Apply Y | approximations
mathematical formulations for the physical [ relevant L
principles and laws by representing the \_physical laws

rates of change as
» Therefore, differential equations are used

to investigate a wide variety of problems in Al_ -
: : : ~ Apply
sciences and engineering. ¢ applicable 4 ol BaN
> |. so}jutlion Y ~—  boundary
' technique | and initial |
| | \E10)Y problem_s encounter_ed SOV \conditions /
in practice can be solved without resorting S

to differential equations and the Solution of the problem
complications associated with them.



Step 1: Problem Statement
Step 2: Schematic
lons and Approximations




