S
MENG353 - FLUID MECHANICS

SOURCE: FUNDAMENTALS OF FLUIDMECHANICS =
MUNSON, P HARTA GERHART and HOCHSTEI

o . R
< ; / / | " i 3 ,
@ S 4 )
sk ) ' j w (&4 = v /\-»
) A LUID KINEMATICS® il

FALL2017-18 ~ @ g

ASSOC.PROF.[S‘R.HASAN HACISEVKI ] )

EASTERN MEDITERRANEAN UNIVERSITY 9



Learning Objectives

After completing this chapter, you should be able to:

m discuss the differences between the Fulenian and Lagranman descniptions of
fhuud motion

m identify vanous flow charactenstics based on the velocity field.

B determine the streambine pattern and acceleration field given a velocity field.

m discuss the differences between a system and control vohune.
m apply the Revnolds transport theorem and the matenial derivative.



The Velocity Field

In general. fluids flow. That 1s. there 1s a net motion of molecules from one point in space to another
point as a function of time. As 1s discussed in Chapter 1. a typical portion of fluid contains so
many molecules that it becomes totally unrealistic (except in special cases) for us to attempt to
account for the motion of individual molecules. Rather. we employ the continuum hypothesis and
consider fluids to be made up of fluid particles that mteract with each other and with their
surroundings. Each particle contains numerous molecules. Thus. we can describe the flow of a flud
in terms of the motion of fluid particles rather than individual molecules. This motion can be
described in terms of the velocity and acceleration of the fluid particles.

Shown in the margin figure 1s one of the most important fluid variables. the velocity field,

V = u(x. v,z f); + v(x, v,z r)j + w(x, v, z, r)f{

Since the velocity 1s a vector. it has both a direction and a magnitude. The magnitude of V.,
denoted ¥ = |V| = (u* + v* + w?)"2 is the speed of the fluid. (It is very common in practical
situations to call ¥ velocity rather than speed. i.e.. “the velocity of the fluid is 12 m/s.”) As is
discussed in the next section. a change in velocity results in an acceleration. This acceleration may
be due to a change in speed and/or direction.




_EI{ AMPLE 4.1 RELMHOAVEIEN RGNS

GIVEN A velocity field is given by V = (Fp/€) ( — xi + 3])
where I'; and { are constants.

SoLuTION

FIND At what location in the flow field is the speed equal to
F3? Make a sketch of the velocity field for x = 0 by drawmng ar-
rows representing the flmd velocity at representative locations.

The x, y, and z components of the velocity are given by
u = —Fpx/f, v = Ipy/€, and w = 0 so that the fluid speed, V', 15

s a4 s .
V= + o+ W) = 2t 4y oy
The speedis I = I at any location on the circle of radius £ centered
at the onigin [ (x* + y*)? = €] asshowninFig E4la  (Ans)

The direction of the fhud velocity relative to the x axis 1s given
m terms of @ = arctan (v/u) as shown in Fig. E4.16. For this flow

Thus, along the x axis (y = () we see that tan 8 = 0, so that
8 = 0° or & = 180°. Similarly, along the y axis (x = 0) we ob-
tamtan # = *o sothat® = 90" or @ = 270° Also, fory = Owe
find V = (—F,x/€}i, while for x = 0 we have V = (Fy/L).

mdicating (1f F, > 0) that the flow 15 directed away from the on-
gin along the y axis and toward the ongin along the x axis as
shown m Fig. E4 1a.

By determining V and # for other locations m the x—y plane, the
velocity field can be sketched as shown m the figure. For example,
on the line y = x the velocity 1s at a 45° angle relatve to the x axas
(tanf = v/u = —y/x = —1). At the ongin x = y = 0 so that
V = 0. This point 15 a stagnation point. The farther from the ongm
the fhud 15, the faster it 15 flowing (as seen from Eq. 1) By careful
consideration of the velocity field it 15 possible to determime consid-
erable information about the flow.

COMMENT The velocity field given in this example approsxi-
mates the flow m the vicimty of the center of the sign shown
Fig. E4 1¢. When wind blows against the sign, some air flows

over the sign, some under 1t, producing a stagnation pomt as mdi-
cated.

N\




BFIGURE E4.1




4.1.1 Eulerian and Lagrangian Flow Descriptions

There are two general approaches in analyzing fluid mechanics problems (or problems in other
branches of the physical sciences. for that matter). The first method, called the Eulerian method,
uses the field concept introduced above. In this case. the fluid motion 1s given by completely
prescribing the necessary properties (pressure, density. velocity, etc.) as functions of space and time.
From this method we obtain information about the flow in terms of what happens at fixed points
in space as the fluid flows through those points.

The second method. called the Lagrangian method, involves following individual fluid
particles as they move about and determining how the fluid properties associated with these particles
change as a function of time. That is, the fluid particles are “tagged” or idenfified. and their

properties determined as they move.




4.1.2 One-, Two-, and Three-Dimensional Flows

Generally. a fluid flow 1s a rather complex three-dimensional. time-dependent phenomenon—
V=V(x.zi)= ui + 'Uf + wk. In many sifuations. however. it 1s possible to make simplifying
assumptions that allow a much easier understanding of the problem without sacrificing needed
accuracy. One of these simplifications involves approximating a real flow as a simpler one- or two-
dimensional flow.

4.1.3 Steady and Unsteady Flows

In the previous discussion we have assumed sfeady floww—the velocity at a given point in space does
not vary with time, #V/df = 0. In reality. almost all flows are unsteady in some sense. That is. the
velocity does vary with time. It 1s not difficult to believe that wnsready flows are usually more difficult
to analyze (and to investigate experimentally) than are steady flows. Hence. considerable simplicity
often results if one can make the assumption of steady flow without compromising the usefulness of
the results. Among the various types of unsteady flows are nonperiodic flow. periodic flow. and truly
random flow. Whether or not unsteadiness of one or more of these types must be included m an
analysis 1s not always immediately obvious.




4.1.4 Streamlines, Streaklines, and Pathlines

Although fluid motion can be quite complicated. there are various concepts that can be used to
help in the visualization and analysis of flow fields. To this end we discuss the use of streamlines.

streaklines. and pathlines in flow analysis. The streamline is often used in analytical work while
the streakline and pathline are often used in experimental work.

A streamline 1s a line that 1s everywhere tangent to the velocity field. If the flow 1s steady.
nothing at a fixed point (including the velocity direction) changes with time. so the streamlines
are fixed lines in space. (See the photograph at the beginning of Chapter 6.) For unsteady flows
the streamlines may change shape with time. Streamlines are obtained analytically by integrating
the equations defining lines tangent to the velocity field. As illustrated in the margin figure. for
two-dimensional flows the slope of the streamline. dy/dx. must be equal to the tangent of the
angle that the velocity vector makes with the x axis or

(4.1)

For sieady flow,
streamiines, streak-
lines, and pathlines
are the same.




fKAMFLE 'Syl Streamlines for a Given Velocity Field

GIVEN Consider the two-dimensional steady flow discussed
in Example 4.1 V = (¥/€)(—d + 3j).

SoLuTiON

FIND Determine the streamlines for this flow:

Since
u = (—F/fix and v = (Fo/ )y Y]
it follows that streamlines are given by solution of the equation
d v (Y ¥

& u —(Vyllx x
m which vaniables can be separated and the equation integrated to

give
ESIE

Iny = —Inx + constant
Thus, along the streamline
where (15 a constant

(Ans)

By using different values of the constant C’, we can plot various
lines in the x—y plane—the streamlines. The streamlines forx = 0
are plotted in Fig. E4.2. A companison of this figure with Fig.
E4.1a illustrates the fact that streamlines are lines tangent to the
velocity field.

w=C

COMMENT Note that a flow is not completely specified by
the shape of the streamlines alone. For example. the streamlines
for the flow with 75/ = 10 have the same shape as those for the
flow with Iy/f = —10. However, the direction of the flow is op-
posite for these two cases. The armows in Fig. E4.2 representing the
flow direction are comect for F/f = 10 since. from Eq. 1,
u = —10xand v = 10y. That is, the flow is from nght to left. For
Fo/t = —10 the armows are reversed. The flow is from left to mght.

-

-

-2

il

B FIGURE E4.2




fXAMPLE LEEY Comparison of Streamlines,

GIVEN Water flowing from the oscillating slit shown in Fig.
E4 3a0 produces a velocity field given by V = wp sinfw(f —
¥/vg) i + g, where ty. ¥y and w are constants. Thus, the y com-
ponent of velocity remains constant (v = ) and the x component
of velocity at y = 0 comcides with the velocity of the oscillating
sprinkler head [u = uy sinfwf) at y = 0]

SoLuTION

Pathlines, and Streaklines

FIND (a) Determine the streamline that passes through the ori-
ginatt = 0;att = 7/2w. (b) Determine the pathline of the parti-
cle that was at the ongin at t = 0; at = /2. (c) Discuss the
shape of the streakline that passes through the ongin.

(a) Since u = wpsinfw(i — ¥/vy)] and v = wy 1t follows from
Eq. 4.1 that streamlines are given by the solution of

& v
d

unsinf el — ¥/vall

v
u

or

Uy v/ w ) COS [m(f - L)
Lo
where C is a constant. For the streamline at ¢ = 0 that passes

through the origin (x = y = 0), the value of C is obtained
from Eq. 1 as C = wyvg/w. Hence, the equation for this

streamline is
x=ﬂ[ms(ﬂ)— 1]
w vy

Similarly, for the streamline at f = 72w that passes through the
ongin, Eq. 1 gives T = 0. Thus, the equation for this streamline is

peslo(Z-5)| - 2e(5-2)
x=—co0s |w|l——-—]|| =—cos| —— —
) oo oy I 2wy

(3) (Ans)

=g+ C (0

(2} (Ans)

m which the vanables can be separated and the equation mte-
grated (for any given time ) to give

ofulefe- D]

This can be mtegrated to gwe the x component of the pathline as

X= —[Hu&iﬂ(@)]f i Cj (5)
Uy

where C, 13 a constant. For the particle that was at the origm
[x =y =0)attme f = 0, Eqs. 4 and 5 give ) = {5 = 0. Thus,
the pathline is

x=0 and y= wy (6) (Amsz)

Similarly, for the particle that was at the origin at ¢ = /2w, Egs.
4 and 3 give C} = —srvy 2w and Cy = —wuy/ 2w Thus, the path-
line for this particle is

I=ug(il—i) and }==ﬂg(f—%) (M

The pathline can be drawm by plotting the locus of x(f). ¥{f) values
for £ = 0 or by elimmating the parameter ¢ from Eq. 7 to give

(8) (Ans)




COMMENT These two streamlines, plotted in Fig. E4.3b, are
not the same becaunse the flow 1s unsteady. For example, at the on-
gin (x=y=0) the velocity is V=1,] at +=0 and
V =gl + vp] at t = 7/2w. Thus, the angle of the streamline
passing through the ongin changes with ime. Similarly, the shape
of the entire streamline 1s a function of ttme.

(b) The pathline of a particle (the location of the particle as a
function of time) can be obtained from the velocity field and
the defimtion of the velocity. Since u = dridt and v = dy/dt

we obtain
dx . LAY dy
E=un5m[m(r—a)_ amd E=tlu

The y equation can be integrated (since ¥y = constant) to give the
y coordmate of the pathline as

y=1yt+ G 4
where C; 15 a constant. With this known y = () dependence, the
x equation for the pathline becomes

ax . 'Ln‘ﬂll+{‘1 | . C]_m
E=H,}5].'Il [ f—T _=—I.![,5]II. _[|

COMMENT The pathlines given by Eqs. 6§ and 8, shown in
Fig. E4 3¢, are straight lines from the onigin (rays). The pathlines
and streamlines do not coincide because the flow is unsteady.
{(c) The streakline through the ongin at ttme ¢ = 015 the locus of
particles at f = 0 that presiously (t << 0) passed through the on-
gin The general shape of the streaklines can be seen as follows.
Each particle that flows through the ongin fravels i a straight line
(pathlimes are rays from the ongin) the slope of which lies between
*+ wy/uy as shown m Fig. E4.34. Particles passing through the on-
gin at different times are located on different rays from the orign
and at different distances from the ongin. The net result is that a
stream of dye confinually mjected at the ongm (a streakline) would
have the shape shown m Fig. E4.3d. Because of the unsteadiness,
the streakline will vary with time, although it will always have the
oscillating, simuous character shown

COMMENT Simular streaklines are given by the stream of
water from a garden hose nozzle that escillates back and forth m
a direction normal to the axis of the nozzle.

In this example neither the streamlmes. pathlines, nor streaklines
comecide. If the flow were steady, all of these hnes would be the
same.




Streamlines
through crigin

Oscillating
sprinkler head

B FIGURE E4.3(a), (b)
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at time r
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HFIGURE E4.3(c) (d)




4.2 The Acceleration Field

The acceleration of a particle 1s the time rate of change of its velocity. For unsteady flows
the velocity at a given point in space (occupied by different particles) may vary with time, giving
rise to a portion of the fluid acceleration. In addition. a fluid particle may experience an acceleration
because its velocity changes as it flows from one point to another in space. For example. water
flowing through a garden hose nozzle under steady conditions (constant number of gallons per
minute from the hose) will experience an acceleration as it changes from its relatively low velocity
in the hose to its relatively high velocity at the tip of the nozzle.




4.2.1 The Material Derivative

Consider a fluid particle moving along its pathline as is shown in Fig. 4.4. In general. the particle’s
velocity. denoted V, for particle 4. 1s a function of its location and the time. That 1s.

Particle path

V= V(g 1) = V[x,(2). v4(2), za(2). 7]

Particle 4 at
time

Iy

BFIGURE 4.4

Velocity and position of particle 4
at time .




where x;, = x,(7). vy = v, (7). and z, = z, (#) define the location of the moving particle. By
definition. the acceleration of a particle 1s the time rate of change of its velocity. Since the velocity
may be a function of both position and time. its value may change because of the change in time

as well as a change in the particle’s position. Thus. we use the chain rule of differentiation to obtain
the acceleration of particle 4. denoted a,. as

d ‘,Td _ dV A I {T..'J“T‘_.i [fI‘__i n dV A f{"."{ i {T..'J“T‘_.i “]': A

a,r) = 4.2
]A(') dt ot ox dt dy dt dz  dt 4-2)

Using the fact that the particle velocity components are given by u, = dx /df. v, = dv /drt.
and w, = dz/dt. Eq. 4.2 becomes

R T
d‘ A
Ay =




Since the above is valid for any particle. we can drop the reference to particle 4 and obtain the
acceleration field from the velocity field as

dV
+ w ? {4.3]

This 1s a vector result whose scalar components can be written as

o it i i
a, =—+tuUu—+ UV —+w_—
ot ox Ay az

av av dav av
a=—t+tu_—+tv_—+tw_—
ot ax dy iz

iy chy o
a,=—+u—+v—+w—
ot ax dy 0z

where a,, a,, and a. are the x, ¥, and =z components of the acceleration.

The above result 1s often written in shorthand notation as




where the operator

D d i i d
()E (,)+u—,()+“u—()+w—,() (4.5)
Dt dt dx Ay az
15 termed the marerial derivative or substantial derivative. An often-used shorthand notation for
the material derivative operator is

D) _a)

Dt dt

V- 9)) 46

The dot product of the velocity vector. V. and the gradient operator, V( ) = a( )/oxi + a( )/
d‘l»i + a( )/oz k (a vector operator) provides a convenient notation for the spatial derivative terms
appearing in the Cartesian coordinate representation of the material derivative. Note that the notation
V + V represents the operator V - V( ) = wa( )/dx + va( )/dv + wa( )/oz.




EXAWPLE 4.2

GIVEN An incompressible, inviscid fluid flows steadily past a
ball of radius R, as shown in Fig. E4 4a. According to a more ad-
vanced analysis of the flow. the fluid velocity along streamline
A-B is given by

Y 7

3 A
V= ulx)i = Vg(l + RF)%

where ¥} is the upstream velocity far ahead of the sphere.

FIND Determine the acceleration experienced by fluid parti-
cles as they flow along this streamline.

SoLuTiON

Along streamline 4—B there is only one component of velocity

(v = w = 0) so that from Eq. 4.3 _0.2
A aV it i~ -0.4
a=—— +r¢_—=(_—+u_—)i
df ox dt dx

(B)
BFIGURE Ea4.4




Since the flow is steady the velocity at a given point in space does |

not change with time. Thus. du/dt = 0. With the given velocity dis-
tribution along the streamline. the acceleration becomes

B ‘ RY . .
a, = u i = F”ﬂ(l + ) -'];,[R“[—S_r'“t}]

X

ix

(Ans)

COMMENTS Along streamline 4-B(—ococ =x = —R and
vy = 0) the acceleration has only an x component and it 1s negative
(a deceleration). Thus, the flmid slows down from its upstream

velocity of V = Voi at x = —oo to its stagnation point velocity of
V = 0atx = —R, the “nose” of the ball. The variation of a, along
streamline A-B 1s shown in Fig. E4.4b. It is the same result as 1s
obtained in Example 3.1 by using the streamwise component of
the acceleration, a, = ¥ d¥jds. The maximum deceleration occurs
at x = —1.205R and has a value of a, ,,, = —0.610 V3/R. Note
that this maximum deceleration increases with inereasmg velocity
and decreasing size. As indicated in the following table, typical val-
ues of this deceleration can be quite large. For example. the
cmax = —4.08 X 10* ft/s? value for a pitched baseball is a decel-
cration approximately 1500 times that of gravity.

7]




4.2.2 Unsteady Effects

As 1s seen from Eq. 4.5. the material derivative formula contains two types of terms—those
involving the time derivative [d( )/7] and those involving spatial derivatives [a( )/dx. a( )/,
and d( )/dz]. The time derivative portions are denoted as the local derivative. They represent
effects of the unsteadiness of the flow. If the parameter involved 1s the acceleration. that portion
given by dV/ot i1s termed the local acceleration. For steady flow the time derivative is zero
throughout the flow field [d( )/df = 0], and the local effect vanishes. Physically, there is no change
in flow parameters at a fixed point in space if the flow is steady. There may be a change of those
parameters for a fluid particle as it moves about. however.




4.2.3 Convective Effects

The portion of the material derivative (Eq. 4.5) represented by the spatial derivatives is termed
the comvective derivative. It represents the fact that a flow property associated with a flud
particle may vary because of the motion of the particle from one point in space where the
parameter has one value to another point in space where its value i1s different. For example.
the water velocity at the inlet of the garden hose nozzle shown in the figure in the margin 1s
different (both in direction and speed) than it is at the exit. This contribution to the time rate
of change of the parameter for the particle can occur whether the flow 1s steady or unsteady.

B FIGURE 4.5 Uniform, unsteady

flow in a constant diameter pipe.
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B FIGURE 4.6 Steady-state
operation of a water heater. (Photo courtesy
of American Water Heater Company.)




It 1s due to the convection. or motion. of the particle through space in which there 1s a gradient
[V()=a( )/oxi+ a( )/ovj + a( )/dz K] in the parameter value. That portion of the acceleration
given by the term (V - V)V is termed the comvective acceleration.

As 1s 1llustrated in Fig. 4.6. the temperature of a water particle changes as it flows through
a water heater. The water entering the heater is always the same cold temperature and the water
leaving the heater 1s always the same hot temperature. The flow is steady. However. the temperature,

T. of each water particle increases as it passes through the heater—7T_,, = T,. Thus. DI/Dt # 0
because of the convective term in the total derivative of the temperature. That is, d7/dr = 0. but
u dT/ox # 0 (where x is directed along the streamline). since there is a nonzero temperature gradient
along the streamline. A fluid particle traveling along this nonconstant temperature path (0 7/dx # 0)
at a specified speed («) will have its temperature change with time at a rate of DI/Dt = u dT/dx
even though the flow is steady (07/dr = 0).




_E)(AM PLE 4.5 BLEGEECULLR I B R L4

GIVEN Consider the steady. two-dimensional flow field dis-
cussed in Example 4.2.

SoLuTION

Field

FIND Determine the acceleration field for this flow.

In general. the acceleration 1s given by

DV Y
a="—="—+ (V- V)V
or o T VYY)
JdV aV JdVv dV
= — 4+ u— v— + w— (1)
ot dx dy dz

where the velocity 1s given by V = (Fp/{ }{—x{ + yi) so that
u= —(Vp/t)x and v = (Vp/t)y. For steady [d( )/dr = 0]. two-
dimensional [w = 0 and d( )/0z = 0] flow, Eq. | becomes

ot ou \ » av v\,
=lu—+v— |1+ lu—+v—]]
ox dy ox ay

—_—

—_——a
Streamline

————F’—T’

BFIGURE E4.5




Hence. for this flow the acceleration is given by
_ {2\ (o) (Fo :
= [(R)e(2)+ (7)o
Vg p’ﬂ VEI T
(oo (Fo(?)]:

Vﬁx I*’f,.y
a, = : a, =

X T2 ¥ 2

or

(Ans)

COMMENTS The fluid experiences an acceleration in both
the x and y directions. Since the flow is steady. there is no local
acceleration—the fluid velocity at any given point is constant in
time. However, there is a convective acceleration due to the
change in velocity from one point on the particle’s pathline to an-
other. Recall that the velocity 1s a vector—it has both a magnitude
and a direction. In this flow both the fluid speed (magnitude) and
flow direction change with location (see Fig. E4.1a).

For this flow the magnitude of the acceleration is constant on
circles centered at the origin, as is seen from the fact that

7 Vﬂ ’ 7
al = (& + ay + ) = (7) (2 + )" @)

Also, the acceleration vector is oriented at an angle 6 from the x
axis, where
a y

x

tanfl = — =

ay

This is the same angle as that formed by a ray from the origin to
point (x, v). Thus, the acceleration 1s directed along rays from the
origin and has a magnitude proportional to the distance from the
origin. Typical acceleration vectors (from Eq. 2) and veloeity vee-
tors (from Example 4.1) are shown in Fig. E4.5 for the flow in the
first quadrant. Note that a and V are not parallel except along the
x and y axes (a fact that i1s responsible for the curved pathlines of
the flow). and that both the acceleration and velocity are zero at
the origin (x = y = 0). An infinitesimal fluid particle placed pre-
cisely at the origin will remain there, but its neighbors (no matter

how close they are to the origin) will drift away.




GIVEN A fluid flows steadily through a two-dimensional nozzle
of length € as shown in Fig. E4.6a. The nozzle shape is given by

y/E€=+05/1+ (x/{)]

and the pressure field is

p—po = —(pV5/2)[(x* + ")/ + 2x/¢]

where ¥}, and p, are the velocity and pressure at the origin.
x = y = 0. Note that the flmd speed increases as 1t flows through
the nozzle. For example. along the center line (y = 0). V' = Fat
x=0and V= 2Fatx = {.

FIND Determine, as a function of x and y. the time rate of
change of pressure felt by a fluid particle as it flows through the
nozzle.

SoLuTION

The time rate of change of pressure at any given, fixed point in
this steady flow 1s zero. However. the tume rate of change of pres-
sure felt by a particle flowing through the nozzle is given by the
material derivative of the pressure and is not zero. Thus,

Dp ap N dp dp ap

l"i}}
e — - H—+v—=u—+ v—
Dt ot ox dy x iy

)

where the x- and y-components of the pressure gradient can be
written as

| STXTINILN the Material Derivative

If viscous and gravitational effects are negligible, the velocity
field 1s approximately

u= VWl +x/€|. v=—Vyp/t (1)

BFIGURE E4.6a

N




dp 24 (x )
& _ o+ 3
ox ¢\t )

l"iy' ¢ 4

Therefore, by combining Eqs. (1). (2). (3). and (4) we obtain

Z=n(+ DG ) CAEAE)

aor

and

B FIGURE

COMMENT Lines of constant pressure within the nozzle are
mndicated in Fig. E4.6b, along with some representative stream-
lines of the flow. Note that as a fluid particle flows along its
streamline, it moves into arcas of lower and lower pressure.
Hence. even though the flow is steady. the time rate of change of
the pressure for any given particle is negative. This can be verified
from Eq. (5) which, when plotted in Fig. E4.6¢, shows that for any
point within the nozzle Dp/Dt << 0.

Dp/Dt
(pr¥e)

BFIGURE E4.6¢




4.2.4 Streamline Coordinates

In many flow situations it is convenient to use a coordinate system defined in terms of the streamlines
of the flow. An example for steady. two-dimensional flows 1s illustrated in Fig. 4.8. Such flows
can be described either in terms of the usual x. v Cartesian coordinate system (or some other system
such as the r, # polar coordinate system) or the streamline coordinate system. In the streamline
coordinate system the flow 1s described in terms of one coordinate along the streamlines. denoted
5. and the second coordinate normal to the streamlines. denoted ». Unit vectors in these two
directions are denoted by § and fi. as shown in the figure. Care is needed not to confuse the coordinate
distance s (a scalar) with the unit vector along the streamline direction, §.

V=7Vs

This allows simplifications in describing the fluid particle acceleration and in solving the equations
governing the flow.
For steady. two-dimensional flow we can determine the acceleration as




n=>0
Streamlines

BFIGURE 4.8
Streamline coordinate system
for two-dimensional flow.




({W av ds fJ'Vﬂ‘IH)A (a:v; 95 ds 08 dn)
a=|—+—+——FpB+V|—+—+—

dat  ds dt  dn dt dt  adsdt  ondt

This can be simplified by using the fact that for steady flow nothing changes with time at a given

point so that both dF7/dt and d8/0f are zero. Also. the velocity along the streamline is ¥ = ds/dt and
the particle remains on its streamline (n = constant) so that dn/dt = 0. Hence.

dvy . Js
. (V_)s + V(V_)
s oS

Hence. the acceleration for steady. two-dimensional flow can be written in terms of its streamwise
and normal components in the form

v, 4 &
+—n or a,=V— a, = R (4.7)

A

ds’

The first term. a, = ¥ d¥]ds. represents the convective acceleration along the streamline and the
second term. a, = V' ?/Ji. represents centrifugal acceleration (one type of convective acceleration)
normal to the fluid motion. These components can be noted in Fig. E4.5 by resolving the
acceleration vector into its components along and normal to the velocity vector. Note that the unit
vector i 1s directed from the streamline toward the center of curvature. These forms of the
acceleration were used in Chapter 3 and are probably familiar from previous dynamics or physics
considerations.




4.3 Control Volume and System Representations

1ere are various ways that these governing laws can be applied to a fluid. including the system
approach and the control volume approach. By detinition. a sysfemnr 1s a collection of matter of fixed
identity (always the same atoms or fluid particles), which may move. flow. and interact with its
surroundings. A confrol volume, on the other hand. 1s a volume in space geometric entity.
independent of mass) through which fluid may tlow.

A system 1s a specific. identihiable quantity of matter. It may consist ot atively large
amount of mass (such as all of the air in the earth’s atmosphere). or it may be an infinitesimal size
(such as a single fluid particle). In any case. the molecules making up the system are “tagged” in
some fashion (dyed red. either actually or only in your mind) so that they can be continually
identified as they move about. The system may interact with its surroundings by various means (by
the transfer of heat or the exertion of a pressure force, for example). It may continually change size

and shape. but it always contains the same mass.
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B FIGURE 4.10 Typical control volumes: (a) fixed control volume, (5) fixed or moving

control volume, (¢) deforming control volume.




4.4 The Reynolds Transport Theorem

We are sometimes interested in what happens to a particular part of the fluid as it moves about.
Other times we may be interested in what effect the fluid has on a particular object or volume in
space as fluid mteracts with it. Thus. we need to describe the laws governing fluid motion using
both system concepts (consider a given mass of the fluid) and control volume concepts (consider
a given volume). To do this we need an analytical tool to shift from one representation to the other.
The Reynolds transport theorem provides this tool.

All physical laws are stated in ferms of various physical parameters. Velocity. acceleration. mass.
temperature. and momentum are but a few of the more common parameters. Let B represent any of
these (or other) fluid parameters and b represent the amount of that parameter per unit mass. That is,

B =mb




The basic equations given in section, involving the time derivative of extensive
properties (mass, linear momentum, angular momentum, energy) are required
to analyse any fluid problem. In solid mechanics, we often use a system
representing a quantity of mass of fixed identity. The basic equations are
therefore directly applied to determine the time derivatives of extensive
properties. However, in fluid mechanics it is convenient to work with control
volume, representing a region in space considered for study. The basic
equations based on system approach can not directly applied to control volume
approach.

Fig.4,10 illustrates different types of control volume: fixed control volume,
control volume moving at a constant speed and deforming control volume. In
this section, it is aimed to derive a relationship between the time derivative of
system property and the rate of change of that property within a control volume.
Is expressed by the Reynolds Transport Theorem (RTT) which
stem and control volume approaches.



The parameter B is termed an exfensive property and the parameter b/ is termed an infensive
property. The value of B i1s directly proportional to the amount of the mass being considered.
whereas the value of b i1s independent of the amount of mass. The amount of an extensive property
that a system possesses at a given instant. B . can be determined by adding up the amount associated
with each fluid particle in the system. For infinitesimal fluid particles of size 6% and mass p 6 %,




this summation (in the limit of 6 # — 0) takes the form of an integration over all the particles in
the system and can be written as

B, = lim Eb,-(p,-SV,-) = [ pb d¥
sys

sF—0 7

The limits of integration cover the entire system—a (usually) moving volume. We have used the
fact that the amount of B in a fluid particle of mass p 6% 1s given in terms of b by 6B = bp 6 F.

Most of the laws governing fluid motion involve the time rate of change of an extensive property
of a fluid system—the rate at which the momentum of a system changes with time. the rate at which
the mass of a system changes with time. and so on. Thus. we often encounter terms such as

d( [ pb dV)
dB,,, -

= 4.8
dt dt (4.8)

To formulate the laws into a control volume approach. we must obtain an expression for the time
rate of change of an extensive property within a control volume. B.. not within a system. This can

be written as
d b d¥
dBﬂ’ _ ( [ﬁ' p )

dt dt




4.4.1 Derivation of the Reynolds Transport Theorem

A simple version of the Reynolds transport theorem relating system concepts to control volume
concepts can be obtained easily for the one-dimensional flow through a fixed control volume such
as the vanable area duct section shown m Fig. 4.11a. We consider the control volume to be that
stationary volume within the duct between sections (1) and (2) as indicated in Fig. 4.11b. The system
that we consider 1s that flmd occupying the control volume at some imitial time 7. A short time
later, at time ¢t + &1, the system has moved slightly to the right. The flmd particles that comncided
with section (2) of the control surface at time r have moved a distance 8{, = 5 ¢ to the right,
where ¥, 1s the velocity of the fluid as it passes section (2). Similarly, the fluid initially at section
(1) has moved a distance 6{; = F, 8t, where ¥ is the fluid velocity at section (1). We assume the
flmd flows across sections (1) and (2) i a direction normal to these surfaces and that 7} and ¥ are
constant across sections (1) and (2).

| I
— =& =T38
|
}rlq-l I
56, = V)3t~

|
|
|
|
5
1)

——

(

— —— Fixed control surface and system
boundary at time £

— —— System boundary at time £+ &1
B FIGURE 4.11 Control volume and system for flow through a variable area pipe.




If B 1s an extensive parameter of the system, then the value of it for the system at fime

f1s
B.y(1) = Bel1)
since the system and the flmd within the control volume coincide at this time. Its value at tume
t+ ér1s
B..(t + &8t) = B[t + &t) — Byt + 6t) + By(r + &t)
Thus, the change in the amount of B in the system in the time interval &7 divided by tlus time
interval 1s given by
8By,  Bul(t + 8t) — B(t) Bt + 8t) — Byt + &t) + Bylt + 8t) — B..(1)

ot ot ot

By using the fact that at the initial time ¢ we have B__(f) = B_(t). this ungainly expression may
be rearranged as follows.

6B... B.[(t+ &t) — B_(t) B{t+ 6f) Bylt+ &t
5 _ Bolt +00) = Bolr) Bt +6)  Bulr + 61 4.10)
ot ot ot ot




In the linut &7 — 0, the first term on the nght-hand side of Eq. 4.10 15 seen fo be the time
rate of change of the amount of B within the control volume

i) b d¥
B (t+8)—B_(f) B ( L p )
ligp =2~ 7 — = (4.11)
&t—0 ot ot df
The third term on the right-hand side of Eq. 4.10 represents the rate at which the extensive parameter
B flows from the control volume, across the control surface. As indicated by the fipure m the
margin, during the tuime interval from ¢ = 0 to t = &f the volume of flwd that flows across section
(2) 15 piven by 8¥ g = A,6(, = A4,(V,6t). Thus, the amount of B within region II, the outflow
region, 15 its amount per unit volume, pb, times the volume

By(t + 6t) = (p2by)(6¥0) = pabad V> bt

where b, and p, are the constant values of b and p across section (2). Thus, the rate at which this
property flows from the control volume, B, 1s given by

Byt + 1)

B .= lim
T a0 ot




Similarly, the inflow of B into the control volume across section (1) during the time mnterval
of corresponds to that m region I and 1s given by the amount per unit volume times the volume,

EFI = 1‘;{1 ﬁfl = AI[FI EI} HEIICE,
Bi(t + 8t) = (p1b))(8%) = p\byd, ¥ 6t
where b, and p, are the constant values of b and p across section (1). Thus, the rate of inflow of

the property B mnto the control volume, B, 1s given by

. Byt + ot
B. =1ij

w = Y = pyd, Vb, (4.13)

If we combme Eqs. 4.10, 411, 412, and 4.13 we see that the relationship between the time
rate of change of B for the system and that for the control volume 1s given by

Do _ B o (4.14)
Dt St e T '

DB 5¥S ﬂB

= —+ V,b, — Vb
Dr ot P2, V30, — prd Vi
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= pbV cos B 84

Outflow
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B FIGURE 4.14 Outflow across a tvpical portion of the control surface.
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control surface
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(a) (b)
B FIGURE 4.15 Inflow across a typical portion of the control surface.

By integrating over the entire outflow portion of the control surface, CS_,, we obtain

EMZ J d3m= J pb¥V cos 6 d4
S o
The quantity ¥ cos @ 1s the component of the velocity normal to the area element 64. From the

definition of the dot product, this can be written as ¥ cos # = V - . Hence, an alternate form of
the outflow rate 1s

B, = J pbV + i dd (4.16)
Sy

In a sumlar fashion, by considering the inflow portion of the control surface, CS;,, as shown
i Fig 415, we find that the inflow rate of B into the control volume 1s

B, = —J pbV cos B dd = —J pbV -+ fidd (4.17)

m
=




Therefore, the net flux (flowrate) of parameter B across the entire control surface 1s

pbV - i1 dA —(—J pbV - ﬁdA)

ot Cu

j
pbV - hdA

cs

where the mtegration 1s over the entire control surface.

BFIGURE 4.16
Possible velocity configurations
on portions of the conirol sur-
face: (o) inflow, (&) no flow
across the surface, (c) outflow.




By combining Eqs. 4.14 and 4.18 we obtain

'D'BS\"S E‘Bm.-
=Ty [pb‘i-"-ﬁi—i
Dt elt Jes

This can be written in a slightly different form by using B.. = [_ pb d¥ so that

5¥5

Dt it

P i <25

DB o
=—I. pbd¥ + I-pb‘i?-ﬁri-i

Equation 4.19 1s the general form of the Reynolds transport theorem for a fixed, nondeforming
control volume. Its interpretation and use are discussed in the following sections.




4.4.2 Physical Interpretation

The Reynolds transport theorem as given m Eq. 4.19 1s widely used in flmd mechanics (and other
areas as well). At first it appears to be a rather formidable mathematical expression—perhaps one
to be steered clear of if possible. However, a physical understanding of the concepts involved wall
show that 1t 1s a rather straightforward, relatively easy-to-use tool. Its purpose 1s to provide a link
between control volume ideas and system ideas.

The left side of Eq. 4.19 15 the time rate of change of an arbitrary extensive parameter of a
system. This may represent the rate of change of mass, momentum, energy, or angular momentum
of the system, depending on the choice of the parameter 5.

Because the system 1s moving and the confrol volume 1s stationary, the time rate of change
of the amount of B within the control volume 1s not necessarly equal to that of the system. The first
term on the nght side of Eq. 4.19 represents the rate of change of B within the control volume as
the fluid flows through it. Recall that b 1s the amount of B per unit mass, so that pb d# 1s the amount
of B 1 a small volume d#. Thus, the time dervative of the integral of pb throughout the control

volume 1s the time rate of change of B within the control volume at a given time. /




The last term in Eq. 4.19 (an integral over the control surface) represents the net flowrate of
the parameter B across the entire control surface. As illustrated by the figure i the margin, over a
portion of the control surface this property is being carried out of the control volume (V + it = 0);
over other portions it is being carried into the control volume (V - @t << 0). Over the remainder of
the control surface there 1s no transport of B across the surface since &V - n = 0, because either
b =0,V =0, or V 1s parallel to the surface at those locations. The mass flowrate through area
element 864, given by pV - i 84, is positive for outflow (efflux) and negative for inflow (influx)
Each flud particle or flimd mass carries a certamn amount of B with 1t, as given by the product of
B per unit mass, b, and the mass. The rate at which this B 1s carried across the control surface 1s
given by the area mtegral term of Eq. 4.19. This net rate across the entire control surface may be
negative, zero, or positive depending on the particular situation mnvolved.

D( )/Dt = a( )/ot + V - V( ), in which the sum of the unsteady effect and the convective effect
gives the rate of change of a parameter for a flud particle. As 15 discussed in Section 4.2, the matenal
derivative operator may be applied to scalars (such as temperature) or vectors (such as velocity). This
15 also true for the Reynolds transport theorem. The particular parameters of interest, B and b, may
be scalars or vectors.

Thus, both the matenial derivative and the Reynolds fransport theorem equations represent
ways to transfer from the Lagrangian viewpoint (follow a particle or follow a system) to the Eulerian
viewpoint (observe the fluid at a given location in space or observe what happens in the fixed
control volume). The material derivative (Eq. 4.5) i1s essentially the infinitesimal (or derivative)
equivalent of the finite size (or integral) Reynolds transport theorem (Eq. 4.19).




4.4.4 Steady Effects
Consider a steady flow [d( )/dt = 0] so that Eq. 4.19 reduces to

DB, [

o pbV - f dA4 (4.20)

405

In such cases if there 1s to be a change in the amount of B associated with the system (nonzero
left-hand side), there must be a net difference in the rate that 5 flows into the control volume
compared with the rate that it flows out of the control volume. That 1s, the integral of pbV - 0 over
the inflow portions of the control surface would not be equal and opposite to that over the outflow

portions of the surface.




4.4.5 Unsteady Effects

Consider unsteady flow [d( )/dr # 0] so that all terms in Eq. 4.19 must be retained. When they
are viewed from a control volume standpomnt, the amount of parameter B within the system may
change because the amount of B within the fixed confrol volume may change with fime

Control volume
""1..‘__

B FIGURE 4.17 Steady flow
through a control volume.




B FIGURE 4.18 Unsteady

———— Control surface flow through a constant diameter pipe.

[the d( [ pb d¥)/0t term | and because there may be a net nonzero flow of that parameter across
the control surface (the [ pbV - idA term).

For the special unsteady situations in which the rate of inflow of parameter B 1s exactly
balanced by 1ts rate of outflow, it follows that [ pbV - nd4 = 0, and Eq. 4.19 reduces to

-2 [ pb d¥ 4.21)

I Jon:




4.4.6 Moving Control Volumes

For most problems in flmd mechanics, the control volume may be considered as a fixed volume
through which the flmd flows. There are, however, situations for which the analysis 1s simplified
if the confrol volume 1s allowed to move or deform. The most general situation would mvolve a
control volume that moves, accelerates, and deforms. As one might expect, the use of these control
volumes can become fairly complex.

. Moving vane

\ Nozzle Vev="o

a_ _ . Contral valume

moves with speed I,

B FIGURE 4.20 Example of a moving control volume,




The mamn difference between the fixed and the moving control volume cases 1s that it is the relative
velocity, W, that carries flmd across the moving control surface, whereas it 1s the absolure velocity,
V, that carries the fluid across the fixed control surface. The relative velocity 1s the flmd velocity

relative to the moving control volume—the flud velocity seen by an observer nding along on the
control volume.

The absolute velocity 1s the fluud velocity as seen by a stationary observer in a fixed coordinate
system.

The difference between the absolute and relative velocities i1s the velocity of the control
volume, V_. =V — W, or

V=W+V, (4.22)

Control volume and system

Particle 4 at t, at time #,

———— Control volume
at time t; > &

———— System at time #; > f;

Voy = Control volume velocity
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B FIGURE 4.21 Typical moving control volume and system.




I:' = Abzolute velocity of 4

7, = Velocity of
w, = ‘ul'elc":Itl_',' of B relative
A relative to control B FIGURE 4.22
to control volume Relationship between absolute and relative

volume Y
velocities.

Thus, the Reynolds fransport theorem for a control volume moving with constant velocity 15 given by

DB.,.

i)
= — bd¥ + b W - i dA
Dt ot ‘L, p ‘L P "

where the relative velocity 15 given by Eq. 4.22.




4.5 Chapter Summary and Study Guide

Equation for streamlines

Acceleration

Material derivative

Streamwise and normal components
of acceleration

Reynolds transport theorem (restricted form)

Reynolds transport theorem (general form)

Relative and absolute velocities
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