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Learmm_y Ob{ect:’ves

After completing this chapter, you should be able to:
m select an appropriate finite control volume to solve a fluid mechanics problem.

m apply conservation of mass and energy and Newton’s second law of motion to
the contents of a finite control volume to get important answers.

m know how velocity changes and energy transfers in fhud flows are related to
forces and torques.

m understand why designing for minimum loss of energy in fhud flows 1s so

mmportant.



5.1 Conservation of Mass—The Continuity Equation

5.1.1 Derivation of the Continuity Equation

A system 1s defined as a collection of unchanging contents, so the conservation of mass principle
for a system 1s simply stated as

time rate of change of the system mass = 0

DM,

Dt

where the system mass, M__, 1s more generally expressed as

M, = J pd¥ (5.2)
Sys

and the integration 1s over the volume of the system. In words, Eq. 5.2 states that the system mass
15 equal to the sum of all the density-volume element products for the contents of the system.

For a system and a fixed, nondeforming control volume that are coincident at an instant of
time, as illustrated in Fig. 5.1, the Reynolds transport theorem (Eq. 4.19) with B = mass and b = 1
allows us to state that

D )
—J de=f—J pd¥ + J pV - hdd (5.3)
5¥s ov os

Dt dt




System Control Volume

M FIGURE 5.1 System and control volume at three different
instances of time. (@) Svstem and control volume at time 7/ — &7 (&) Syvstem and

control volume at time r, coincident condition. (¢) Svstem and control volume at
fime [ + &f.

Control .

surface I/
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i time rate of change net rate of flow
tume rate of change
_ of the mass of the of mass through
of the mass of the = .
coincident svstem contents of the comn- the control
yst cident control volume  surface

In Eq. 5.3, we express the time rate of change of the system mass as the sum of two control vol-
ume quantities, the fime rate of change of the mass of the contents of the control volume,

i)
— a¥
ot J-_P

and the net rate of mass flow through the control surface,

J. pV - ndd

When a flow 1s steady, all field properties (1.e., properties at any specified point) including
density remain constant with time and the time rate of change of the mass of the contents of the
control volume 1s zero. That 1s,

d

— | pd¥ =0
a:J..P

the result 1s the net mass flowrate through the control surface, or

J PV s ivdd = D gy — D, My




The control volume expression for conservation of mass, which 1s commonly called the con-
finuity equation, for a fixed, nondeforming control volume 1s obtamned by combming Eqs. 5.1, 5.2,
and 5.3 to obtain

An often-used expression for mass flewrare, m, through a section of control surface having

area A 1s




5.1.2 Fixed, Nondeforming Control Volume

In many applications of flmd mechanics, an appropriate control volume to use 1s fixed and nonde-
forming. Several example problems that mnvolve the continuity equation for fixed, nondeforming
control volumes (Eq. 5.5) follow

_EXAMPLE . Conservation of Mass—Steady, Incompressible Flow

GIVEN Water flows steadily through a nozzle at the end of a  tions. the nozzle exit velocity must be at least 20 m/s as shown in
fire hose as illustrated in Fig. E5.1a. According to local regula- Fig. E5.15.

FIND Determine the minimum pumping capacity. Q. required
2oty
nm/s.

Section (1) {(pump discharge)
Section (2) (nozzle exit)

E Control volume

BFIGURE ES5.1b
B FIGURE ES5.1a




SoLuTION

The pumping capacity sought is the volume flowrate delivered by
the fire pump to the hose and nozzle. Since we desire knowledge
about the pump discharge flowrate and we have information
about the nozzle exit flowrate, we link these two flowrates with
the control volume designated with the dashed line m Fig E5 15
This control volume contains, at any instant, water that is within
the hose and nozzle from the pump discharge to the nozzle exit
plane.

Equation 5.5 1s applied to the contents of this control volume
to give

0 (flow 1is steady)

a .
?r/rpd;z+]pv-nda=o @

(24 s
The time rate of change of the mass of the contents of this control
volume is zero because the flow is steady. Because there is only
one mflow [the pump discharge. section (1)] and one outflow [the
nozzle exit, section (2)], Eq. (1) becomes
padsVs — prd V7 = 0
so that withm = pAV
my = my ()
Because the mass flowrate 1s equal to the product of fluid density, p,
and volume flowrate, O (see Eq. 5.6). we obtain from Eq. 2
P02 = Oy (3)
Liquad flow at low speeds. as in this example, may be considered
incompressible. Therefore
P2 = G
and from Eqs. 3 and 4

The pumping capacity is equal to the volume flowrate at the nozzle
exit. If. for simplicity, the velocity distnbution at the nozzle exit plane.
section (2), is considered uniform (one-dimensional), then from Eq. 5

0, =0 =Fady

b T 40 mm =
=V,—D3=(20m/s) — | ———
2, D2 = 5}4(1000mm-"m)

= 0.0251 m’/s (Ans)
COMMENT By repeating the calculations for various val-
ues of the nozzle exit diameter, D,, the results shown in Fig.
E5 lc are obtained. The flowrate 1s proportional to the exit area.
which varies as the diameter squared. Hence, if the diameter
were doubled, the flowrate would increase by a factor of four,
provided the exit velocity remained the same.

0.15

oy, mils

0.05
{40 mm, 0.0251 m3s)

0 20 40 60 80 100
Dy, mm

B FIGURE E5.ic




_E)(AMPLE =34 Conservation of Mass—Steady, Compressible Flow

GIVEN Air flows steadily between two sections in a long. Control volume Fipe
straight portion of 4-in. inside diameter pipe as indicated in

Fig. E5.2. The umiformly distributed temperature and pressure at _\F ____________
each section are given. The average air velocity (nonumform ve- i

locity distnibution) at section (2) 1s 1000 fi/5.

Section (1) De—Doeain Section (2)
FIND calculate the average air velocity at section (1). e
p; = 100 psia Py = 18.4 psia
T, = 540 °R T, = 453 °R
7, = 1000 fi's
SoLUTION BEFIGURE E5.2

The average fluid velocity at any section 1s that velocity which
vields the section mass flowrate when multiplied by the section
average fluid density and section area (Eq. 5.7). We relate the
flows at sections (1) and (2) with the control volume designated
with a dashed line 1n Fig. E5.2.

Equation 5.5 1s applied to the contents of this control volume  The time rate of change of the mass of the contents of this control
to obtain volume 15 zero because the flow 1s steady. The control surface

0 (flow 1s steady)

de+Jp1’-i’|dA=0

LS




mtegral involves mass flowrates at sections (1) and (2) so that from
Eq. 5.4 we get

s

or
-ri?l = ?;?2 (1)
and from Eqs. 1, 5.6, and 5.7 we obtain
PIAI?I = Pndz?z (2)
or since A; = A,
— P‘g—
Vi =—VF: 3
1=, 7 (3)

Aur at the pressures and temperatures involved 1n this example
problem behaves like an 1deal gas. The ideal gas equation of state

(Eq. 1.8)1s
(4)

Thus, combining Eqs. 3 and 4 we obtamn

_ T,V
7 = P2l Vs
s
(18.4 psia)(540 °R)(1000 ft/s)
- (100 psia)(453 °R)

= 219 ft5 (Amns)

COMMENT We leam from this example that the continuity
equation (Eq. 5.5) 1s valid for compressible as well as mcom-
pressible flows. Also. nonuniform velocity distributions can be
handled with the average velocity concept. Significant average ve-
locity changes can occur in pipe flow if the fluid 1s compressible.




[ SENEINRR conservation of Mass—Two Fuids

GIVEN The inner workings of a dehumidifier are shown in  of the dehumidifier at a rate of 3.0 Ibm/hr. A simplified sketch of
Fig. E5.3a. Moist air (a muxture of dry air and water vapor) enters  the process 1s provided m Fig. E5.35.
the dehumidifier at the rate of 600 Ibm /hr. Liquid water drains out

FIND Determine the mass flowrate of the dry air and the water
vapor leaving the dehunudifier.

. . A
My w5 Cooling coil

Section (1) l Control volume

Mator

/
H"‘l‘z:j

r_é_l Fan | e—i-

~—\

Section (2)

fiy = : !
600 Ibmihr [
P :
o
|
Condensate
[water)

Section (3)

sy = 3.0 Ibmi/hr
B FIGURE E5.3a BFIGURE E5.3b




SoLuTION

The unknown mass flowrate at section (2) 1s linked with the known
flowrates at sections (1) and (3) with the control volume designated
with a dashed line in Fig. E5 3b. The contents of the control vol-
ume are the air and water vapor mixture and the condensate (lig-
uid water) in the dehumidifier at any mstant.

the control volume may be considered equal to zero on a time-
average basis. The application of Eqs. 5.4 and 5.5 to the control
volume contents results in

Jpﬁ"ﬁtfﬂ=—?ir1+ri?g+?h3=ﬂ
or

597 Ibm/hr

(Ans)

COMMENT Note that the continuity equation (Eq. 5.5) can
be used when there i1s more than one stream of fluid flowing
through the control volume.

Not included in the control volume are the fan and its motor,
and the condenser coils and refrigerant. Even though the flow in
the vicinity of the fan blade 1s unsteady. it 1s unsteady in a cych-
cal way. Thus. the flowrates at sections (1), (2). and (3) appear
steady and the time rate of change of the mass of the contents of

The answer 1s the same with a control volume which includes
the cooling coils to be within the control volume. The continuity
equation becomes

?i'.'l'g:ﬂ;?]_?i?3+m4_?;?5 (l:}

where M, is the mass flowrate of the cooling fluid flowing
into the control volume. and ms is the flowrate out of the
control volume through the cooling coil. Since the flow
through the coils 1s steady, 1t follows that ms = ms. Hence.
Eq. 1 gives the same answer as obtained with the original con-
trol volume.

NN




_EXAMPLE -8 Conservation of Mass—Nonuniform Velocity Profile

GIVEN Incompressible, laminar water flow develops in a
straight pipe having radius R as indicated in Fig. ES 4a. At section
(1), the velocity profile is uniform: the velocity 1s equal to a con-
stant value L7 and 1s parallel to the pipe axis everywhere. At sec-
tion (2), the velocity profile 1s axisymmetric and parabolic. with
zero velocity at the pipe wall and a maximum value of u,,., at the
centerline.

FIND
(a) How are I and u,.., related?

(b) How are the average velocity at section (2). V. and 2,
related?

Section (1) Control volume

Section (2)

— \éidz = 2ardr
"—_—‘_\_‘——\__\_
T «Z

Tl

iy = e

Fipe - H““—-——.
Uy = Uy Il -&)2]

B FIGURE E5.4a




SoLuTION

(a) An appropriate control volume is sketched (dashed lines) in
Fig. E5 4a. The application of Eq. 5.5 to the contents of this con-
trol volume wields

0 (flow 1s steady)

%pﬂ’F+JpF-ﬂdﬂ=ﬂ (1)

v 5

At the mnlet, section (1), the velocity 1s uniform with 77 = Uso
that

J pV - ndd = —p A, U (2)
(1)

At the outlet, section (2). the velocity 1s not uniform. How-
ever, the net flowrate through this section i1s the sum of flows
through numerous small washer-shaped areas of size dd, = 27 dr
as shown by the shaded area element 1 Fig. E5 45, On each of

dd,

dr

J BFIGURE ES5.4b

these infinitesimal areas the fluid velocity 1s denoted as u,.
Thus, in the limit of infinitesimal area elements, the summation
1s replaced by an integration and the outflow through section (2)
1s given by

R
j pV - ndd = pzj w27 dr (3)
2) 0

By combming Eqs. 1. 2, and 3 we get

R
pzj u2mr dr — pp ;U =10 (4)
0

Since the flow is considered incompressible, p; = p,. The para-
bolic velocity relationship for flow through section (2) 1s used 1n
Eq. 4 to yield

R »\2
ZWIJMJ [1 = (—) }r dr — A, U =10 (5)
- R

Integrating. we get from Eq. 5

r r

2 4 4R
Mgz | — — — | — #R°U =0
M(E 432)0




Uy = 2U (Ans)

(b) Since this flow i1s incompressible, we conclude from Eq.
5.7 that U 1s the average velocity at all sections of the control vol-
ume. Thus_ the average velocity at section (2). F>. is one-half the
maximum velocity, u,,... there or

= U

Fi= Ans
2 5 ( )

COMMENT The relationship between the maximum veloc-
ity at section (2) and the average velocity 1s a function of the
“shape™ of the velocity profile. For the parabolic profile as-
sumed in this example, the average velocity, 24y,./2. 15 the actual
“average” of the maximum velocity at section (2). u; = lg.,.
and the minimum velocity at that section, u, = 0. However, as
shown in Fig. E5 4c, if the velocity profile 1s a different shape
(non-parabolic), the average velocity is not necessanily one half
of the maximum velocity.

Y,

[ —
Fe Fz 3= Hmaf'l
(non-parabolic)

B FIGURE E5.4c




(EXAWPLE 5. 5

GIVEN A bathtub is being filled with water from a faucet. The
rate of flow from the faucet 1s steady at 9 gal/'min. The tub volume
15 approximated by a rectangular space as indicated in Fig. ES 5a.

FIND Estimate the time rate of change of the depth of water in
the tub, dk/dt, 1 inches per minute at any instant.

SoLuTION

We use the fixed. nondeforming control volume outlined with a
dashed line 1n Fig. ES 5a. This control volume includes in it. at
any instant, the water accumulated 1n the tub, some of the water
flowing from the faucet into the tub, and some air. Application of
Eqs. 5.4 and 5.5 to these contents of the control volume results 1n

a d

ot J Pair @5 + E J“.M Poroter T urager

wolume volume

— Mygrer + Mo = 0 (1)
Recall that the mass, dm, of fluud contained i a small volume
d¥ 1s dm = p d¥. Hence, the two integrals in Eq. 1 represent the
total amount of air and water in the control volume, and the sum
of the first two ferms 1s the time rate of change of mass within

the control volume.

Control volume

IN=s
s

B FIGURE E5.5a

d

E J“mh:n! mwamr (2)
vo

Pomter FF ey =

for water. The volume of water in the control volume is given by

[h(2 f)(5 ft)

+ (1.5 & — h)d4;] 3




Note that the time rate of change of air mass and water mass
are each not zero. Recognizing, however, that the air mass must
be conserved, we know that the time rate of change of the mass of
air in the control volume must be equal to the rate of air mass flow
out of the control volume. For simplicity, we disregard any water
evaporation that occurs. Thus. applying Eqs. 5.4 and 5.5 to the air

only and to the water only, we obtain
d .
af | P ¥y + Mgz = 0
volume

For AJ- < 10 fi* we can conclude that

O Quater

gt (10 fr)

or
9h (9 gal/min)(12 in /fr)
9t (7.48 gal/f)(10 )

= 1.44 in fmin (Ans)

COMMENT By repeating the calculations for the same
flowrate but with various water jet diameters, D;, the results
shown in Fig. E5 36 are obtained. With the flowrate held constant,
the value of dh/dt is nearly independent of the jet diameter for val-
ues of the diameter less than about 10 1n.

where 4, 1s the cross-sectional area of the water flowing from the
faucet into the tub. Combiming Eqs. 2 and 3, we obtain

- !:FI';T =
Pvater {lﬂ ft- — A_;'} E = Mvyrater

and, thus. since m = pQ.
ﬂ B Owarer
o (106F — 4)

{1 in., 1.44 in./min}

afdi, indmin

1] 10 20 30
Dy, in.

B FIGURE E5.5b
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The preceding example problems illustrate some important results of applying the conserva-
tion of mass principle to the contents of a fixed, nondeforming control volume. The dot product
V - ni1s “+7 for flow out of the control volume and “—" for flow into the control volume. Thus,
mass flowrate out of the control volume 1s “+" and mass flowrate in 1s “—_ When the flow 1s
steady, the time rate of change of the mass of the contents of the control volume

ol
— I. pd¥

dt
is zero and the net amount of mass flowrate, m, through the control surface is therefore also zero
D gy — D, My =0 (5.9)

If the steady flow 1s also incompressible, the net amount of volume flowrate, @, through the con-
trol surface 1s also zero:

> Ow— 2,0.=0 (5.10)




An unsteady, but cyclical flow can be considered steady on a fime-average basis. When the flow
1s unsteady, the instantaneous fime rate of change of the mass of the contents of the control vol-
ume 1s not necessarily zero and can be an important variable. When the value of

il
— | pd¥
aK

1s “+ .7 the mass of the contents of the control volume is increasing. When 1t 1s “— " the mass of
the contents of the control volume 1s decreasing.

When the flow 1s uniformly distributed over the opening mn the control surface (one-dimensional
flow),
= pAV
where F 1s the uniform value of the velocity component normal to the section area 4. When the
veloeity 15 nonuniformly distributed over the opeming in the control surface,
m = pAV (5.11)
where 7 is the average value of the component of velocity normal to the section area 4 as defined

by Eq. 5.7.
For steady flow mvolving only one stream of a specific fluid flowing through the control vol-

ume at sections (1) and (2),

m = pd17y = pudsVa (5.12)
and for incompressible flow,

O = AV, = AV, (5.13)




3.1.3 Moving, Nondeforming Control Volume

It 1s sometimes necessary to use a nondeforming control volume attached to a moving reference
frame. Examples include control volumes contamning a gas turbine engimne on an aircraft in flight,
the exhaust stack of a ship at sea, and the gasoline tank of an automobile passing by

As discussed m Section 4.4.6, when a moving control volume 1s used, the flmd velocity rela-
tive to the moving control volume (relative velocity) 1s an mmportant flow field variable. The relative
velocity, W, 1s the fluid velocity seen by an observer moving with the control volume. The control
volume velocity, V. 1s the velocity of the control volume as seen from a fixed coordinate system.
The absolute velocity, V, 1s the flmd velocity seen by a stationary observer in a fixed coordinate sys-
tem. These velocities are related to each other by the vector equation

V=W+V, (5.14)

as illustrated by the figure i the margin This 1s the same as Eq. 4.22, introduced earlier.
For a system and a moving, nondeforming control volume that are coincident at an instant
of time, the Reynolds transport theorem (Eq. 4.23) for a moving control volume leads to

5¥s

Dt at

DM i, I-

pd¥ + [ pW - it dd (5.15)

45




_EXAMPLE -M:3 Conservation of Mas

GIVEN An airplane moves forward at a speed of 971 km/hr as

a Moving Control Volume

1050 km/hr. The engine exhaust area is 0.558 m”. and the exhaust
shown in Fig. E5.6a. The frontal intake area of the jet engine is  gas density is 0.515 kg/m°.
0.80 m” and the entering air density is 0.736 kg/m*. A stationary
observer determines that relative to the earth, the jet engine
exhaust gases move away from the engine with a speed of kg/hr

s—Compressible Flow with

¥ ptane =
plane .
971 km/hr ;H

e | T g ¥ = 1050 kb
—L l n

W=\ — W, = 1050 + 971 =
971 km/hr & 2021 kmi'hr

Section (2)
Section (1)
(B)

FIND Estimate the mass flowrate of fuel into the engine in
- /

B FIGURE E5.6




SoLuTION

The control volume, which moves with the airplane (see Fig.
E5.6b). surrounds the engine and its contents and includes all flu-
1ds involved at an instant. The application of Eq. 5.16 to these
contents of the control volume yields

0 (flow relative to moving control
volume 1s considered steady on a
time-average basis)

_pa’F+ Jp\i"-ﬂa’a:D (1)

Assuming one-dimensional flow, we evaluate the surface integral
in Eq. 1 and get

—Mge — prAT + pads 3 =0
in

?}f’_fual = p2doWy — prd, W (2)
n

We consider the intake velocity, I, relative to the moving con-
trol volume, as being equal in magnitude to the speed of the air-
plane, 971 km/hr. The exhaust velocity, ;. also needs to be
measured relative to the moving control volume. Since a fixed

observer noted that the exhaust gases were moving away from the
engine at a speed of 1050 km,/hr, the speed of the exhaust gases
relative to the moving control volume, W5, 1s determined as fol-
lows by using Eq. 5.14

Vz =S Hfz + VP[E.I:I.E

or
Wy = Vy — Viygme = 1050 km/hr — (—971 km/hr)
= 2021 km/hr
and 1s shown in Fig. E5.65.
From Eq. 2,
Mge = (0.515 kg/m*)(0.558 m?)(2021 km/hr)(1000 m/km)

— (0.736 kg/m*)(0.80 m*)(971 km/hr)(1000 m/km)
= (580.800 — 571.700) kg/hr

mm = 9100 kg/hr (Ans)

COMMENT Note that the fuel flowrate was obtained as the
difference of two large, nearly equal numbers. Precise values of 7

and W, are needed to obtain a modestly accurate value of ﬁrm.




GIVEN Water enters a rotating lawn sprinkler through its base
at the steady rate of 1000 ml's as sketched in Fig. E5.7. The exit
area of each of the two nozzles is 30 mm”.

FIND Determine the average speed of the water leaving the
nozzle, relative to the nozzle, 1f

(a) the rotary sprinkler head 1s stationary,
(b) the sprinkler head rotates at 600 rpm. and

(c) the sprinkler head accelerates from 0 to 600 rpm.

BFIGURE E5.7

XAMPLE 5.7 BRUECaELT G i EEE Tt CIE LTI I L T 1 4 Y

, = 30 mm®

= 1000 ml's



SoLuTION

(a) We specify a control volume that contains the water in the
rotary sprinkler head at any instant. This control volume is non-
deforming. but it moves (rotates) with the sprinkler head.

The application of Eq. 5.16 to the contents of this control volume
for situation (a). (b). or (c) of the problem results in the same ex-
pression, namely

0 flow 1s steady or the
control volume 1s filled with
an incompressible fluid

d -
erﬂ’F +Jp“-'-na’A=D
- S

v

2 Pout Aow Wow — Zpin Ain Wy = 0 (1)

The time rate of change of the mass of water in the control vol-
ume 15 zero because the flow is steady and the control volume 1s
filled with water.

Because there is only one mflow [at the base of the rotating
arm, section (1)] and two outflows [the two nozzles at the tips of
the arm, sections (2) and (3). each have the same area and fluid
velocity]. Eq. 1 becomes

padaWs + psdsW; — pd |, =0 (2)

Hence, for incompressible flow with p; = p, = p;. Eq. 2 becomes
AEH’Z + Aiﬁ’i - AIH’I =0
With Q = A]Wl, A: =S A]_._ and H’Tz = H73 it follows that

_ (1000 ml/s)(0.001 m*/liter)(10° mm®/m®)

(1000 ml/liter)(2)(30 mm?)
=16.7m/'s

(Ans)

(b). (¢) The value of W, 1s independent of the speed of rotation
of the sprinkler head and represents the average velocity of the
water exiting from each nozzle with respect to the nozzle for
cases (a). (b), and (c).

COMMENT The velocity of water discharging from each noz-

zle, when viewed from a stationary reference (1.e., V), will vary as

the rotation speed of the sprinkler head vanes since from Eq. 5.14.
Vg = Wz — U

where I” = wh 15 the speed of the nozzle and w and R are the an-
gular velocity and radius of the sprinkler head, respectively.




5.1.4 Deforming Control Volume

Occasionally, a deforming control volume can simplify the solution of a problem. A deforming
control volume involves changing volume size and control surface movement. Thus, the Reynolds
transport theorem for a moving control volume can be used for this case, and Eqgs. 4.23 and 5.1
lead to

M _ 3 d¥ + W-iidd=0 (5.17)
= — e I = -
Fils df | .. p o= P

The time rate of change term 1 Eq. 5.17,
il
— d¥
Ak

15 usually nonzero and must be carefully evaluated because the extent of the control volume varies
with time. The mass flowrate term m Eq. 5.17,

Jpw-f.da

5

Since the control volume is deforming, the control surface velocity 1s not necessarily uniform and
identical to the control volume velocity, V., as was true for moving, nondeforming control vol-
umes. For the deforming control volume,

V=W+V, (5.18)




N 1N .8 Conservation of Mass—Deforming Control Volume

GIVEN A syringe (Fig. E5.8) is used to inoculate a cow. The
plunger has a face area of 500 mm”. The liquid in the syringe is
to be injected steadily at a rate of 300 cm’/min. The leakage rate
past the plunger 1s 0.10 times the volume flowrate out of the
needle.

FIND wWith what speed should the plunger be advanced?

Plunger _ [ N B
motion A L, =
== 500 mm”® |

Control volume

B FIGURE E5.8

A\
Section (2)




SoLuTION

The control volume selected for solving this problem is the de-
forming one 1illustrated in Fig. E5.8. Section (1) of the control sur-
face moves with the plunger. The surface area of section (1), 4. 1s
considered equal to the circular area of the face of the plunger, 4,
although this is not strictly true, since leakage occurs. The differ-
ence 1s small, however. Thus,

4, =4, (1)

Liquid also leaves the needle through section (2). which involves
fixed area 4,. The application of Eq. 5.17 to the contents of this
control volume gives

d .
EL_PJ'F"‘M:J_"‘PQ]uk:o (2)

Even though @ypu and the flow through section area 4, are
steady, the time rate of change of the mass of liquid in the
shrinking control volume 1s not zero because the control volume
1s getting smaller To evaluate the first term of Eq. 2. we note
that

J_pfﬂ‘-’ = p(€4; + Foeette) 3)

where € is the changing length of the control volume (see Fig.
E5.8) and ¥ g 15 the volume of the needle. From Eq. 3. we
obtain

af

]
o _ﬂﬂ’V—ﬂfhE 4

Note that

o _
a7
where F, 1s the speed of the plunger sought 1n the problem state-
ment. Combimning Eqs. 2, 4, and 5 we obtain

(3)

—pA1V, + My + pOpy = 0 (6)
However, from Eq. 5.6, we see that
My = pQs (M

and Eq. 6 becomes

—pd, ¥V, + pOy + pCOien = 0 (8)
Solving Eq. 8 for ¥, yields
O+ Qs
Ve = y 9)
1

Since Qg = 010, Eq. 9 becomes

, _Q+010, 110
P Al ; Al

and

_ (1.1)(300 cm’/min) (1000 mm®
= (500 mm?) ( : )

cm
= 660 mm/min (Ans)




rEXAM NN Conservation of Mass—Deforming Control Volume

GIVEN Consider Example 5.5. FIND Solve the problem of Example 5.5 using a deforming con-
trol volume that mncludes only the water accumulating in the bathtub.

SoLuTION

For this deforming control volume, Eq. 5.17 leads to

where 4; and ¥} are the cross-sectional area and velocity of the
water flowing from the faucet mto the tube. Thus, from Eqs. 1, 2,

d :
—L de+J pW - fidd =0 (1) and 3 we obtain
Br ibiog s
volume ﬁ _ Vid; _ [ —
The first term of Eq. 1 can be evaluated as ot (10ft —4) (106 — 4)

or for 4; < 10 ft*

ah _ 9(gal/min)(12 in /ft)
at (748 gal/ft)(10 %)

2 par=Limensn

wolume

= 144 in /min (Ans)
dh
= p(1086)— (2)

COMMENT Note that these results using a deforming con-
trol volume are the same as that obtained in Example 5.5 with a

ah ) fixed control volume.

pr- fdd = —p(r«} + o )4 3)

The second term of Eq. 1 can be evaluated as




5.2 Newton’s Second Law—The Linear Momentum
and Moment-of-Momentum Equations

5.2.1 Derivation of the Linear Momentum Equation
Newton’s second law of motion for a system 1s

time rate of change of the = sum of external forces
linear momentum of the system  acting on the system

Simce momentum 1s mass tumes velocity, the momentum of a small particle of mass pd# 1s
Vpd¥# . Thus, the momentum of the entire system 15 [ Vpd# and Newton’s law becomes

D
— | Vpd¥ = D F,
Dt LE P i Tsys

Fl.'!ﬂlﬂtEl:l.IE- of the
comeldent control volume




Furthermore, for a system and the contents of a coincident control volume that 1s fixed and non-
deforming, the Reynolds transport theorem [Eq. 4.19 with b set equal to the velocity (1.e., momen-
tum per unit mass), and B_, being the system momentum] allows us to conclude that

D d
— | Vpd¥=—| Vpd¥F + | VpV - hdd 5.21
D), Ve =gy | vear s | v o1

tume rate of change time rate of change net rate of flow
of the linear

of the linear _ Fthe + of linear momentum
momentum of the o0 ° through the

tents of the
CORtents control surface
control volume

Coincident
¥ R{:untml volume

\{’

B FIGURE 5.2 External forces acting on svstem and
coincident control volume,




For a control volume that 1s fixed (and thus nertial) and nondeforming, Eqs. 5.19, 5.20, and 5.21
provide an appropriate mathematical statement of Newton’s second law of motion as

Vpd¥ + [ VPV s 1dd = D Foonenss of the
7 Jes contral volume

. 5.22 the linear momentum equation.

Flow in

iy

Control volume

FTII.III:I out

F_J_‘L‘g

;f *.“,.".
{ \ \ Fuan
L__{__i

FTI.Ih:I In




5.2.2 Application of the Linear Momentum Equation

The linear momentum equation for an inertial control volume is a vector equation (Eq. 5.22). In
engineering applications, components of this vector equation resolved along orthogonal coordi-
nates, for example, x, y, and z (rectangular coordinate system) or r, 8, and x (cylindrical coordinate
system), will normally be used. A simple example involving steady, incompressible flow is con-
sidered first.

XAMPLE 5.10 BELCETE LG CIAOT B ELT T S DT T e Ty

GIVEN As shown in Fig. E5.10a, a horizontal jet of water ex- FIND  Determine the anchoring force needed to hold the vane
its a nozzle with a uniform speed of I; = 10 fi/s, strikes a vane,  stationary if gravity and viscous effects are negligible.
and 1s turmed through an angle 6.




SOLUTION

We select a conimol volume that inclwdes the vane and a portion of
the water (see Figs. E5 108, ) and apply the linest momentum
equation to this Sxed control velums. The oaly portions of the
control surface across which fluid flows are section (1) (the en-
trance) and secton (2} (the ext). Hence, the r and 7 components
of Eq. 5.22 become

0 (flow is steady)
I|_,'.f

i [ i
— | FpdF + oV -hdd =
of L F ..th =

..,-ﬂ' (flow is steady)

a [ i
= fpd¥F + Lw;:-‘i"-id.:l= 2




BFIGURE E5.10

wypdoFy — wipd | F) = ZF, 2)

where V = i + wk and ¥F_ and ¥F, are the net x and z compo-
nents of force acting on the contents of the conmol volume. De-
pending on the particular flow situstion being considered and the
coordinate system chosen, the x and = components of velocity, o
and w, can be positive, negative, or zeso. In this example the flow is
in the positive directions at both the mlet and the owilet



With negligible gravity and viscous effects, and smce p, = p,.
the speed of the fluid remamns constant so that 77 = 75 = 10 ft/s
(see the Bernoulli equation, Eq. 3.7). Hence, at section (1),
uy; = V3, w; = 0, and at section (2), u, = Fycos 6, wy, = V) sin 6.

By using this information, Eqs. 1 and 2 can be written as

Vicos p AV — Vi p A1 = Fye (3)

s p AV — 0pdyVy = Fyp

Equations 3 and 4 can be simplified by using conservation of
mass. which states that for this incompressible flow 4,V =
A,V,. or 4, = 4, since ¥; = V,. Thus
Fi = —pA1V1 + pd1Ficos § = —pA1¥7 (1 — cos ) ()
and
Fy = pAVising (6)

With the given data we obtain

Fu = —(1.94 slugs/ft’)(0.06 f*)(10 ft/s)*(1 — cos )
= —11.64(1 — cos #) slugs - fi/s°
= —11.64(1 — cos#)1b (Ans)

F,. = (1.94 slugs/ft*)(0.06 ft*)(10 fi/s)’ sin 6
= 11.64 sin 6 1b (Ans)



_E)(AMPLE 5.11

GIVEN As shown in Fig. E5.11a. water flows through a noz-
zle attached to the end of a laboratory sink faucet with a flowrate
of 0.6 liters/s. The nozzle inlet and exit diameters are 16 and 5
mm, respectively, and the nozzle axis is vertical. The mass of the
nozzle 1s 0.1 kg The pressure at section (1) 1s 464 kPa.

SoLuTION

Linear Momentum—Weight, Pressure, and Change in Speed

FIND Determine the anchoring force required to hold the noz-
zle in place.

The anchoring force sought is the reaction force between the
faucet and nozzle threads. To evaluate this force we select a con-
trol volume that includes the entire nozzle and the water contamed
in the nozzle at an instant, as is indicated in Figs. E5. 11a and
E5. 115 All of the vertical forces acting on the contents of this con-
trol volume are identified in Fig. E5.115. The action of atmos-
pheric pressure cancels out m every direction and 1s not shown.
Gage pressure forces do not cancel out in the vertical direction and
are shown. Application of the vertical or z direction component of
Eq. 5.22 to the contents of this control volume leads to

(flow 15 steady)

wpV - hdd =F, — W, — p4,

wp d¥ + J

TV s

— Wy + Pty (1)

where w is the z direction component of fluid velocity. and the
various parameters are identified in the figure.

Note that the positive direction is considered “up™ for the
forces. We will use this same sign convention for the fluid veloc-
ity. w_in Eq. 1. In Eq. 1. the dot product, V - i1, 1s “+7 for flow
out of the control volume and “—" for flow into the control vol-
ume. For this particular example

V-hdd = *|w|dd @)

with the “+" used for flow out of the control volume and “—~
used for flow in. To evaluate the control surface integral 1n Eq. 1,
we need to assume a distnnbution for fluid velocity, w, and fluad
density, p. For simphicity, we assume that w 1s uniformly distrib-
uted or constant, with magmitudes of w; and w, over cross-
sectional areas 4; and 4,. Also, this flow 1s incompressible so the




Control volume

— Control volume —

— Section (1)

F,; = anchering force that holds

nozzle in place
Section (2} tpz.:iz W, = weight of nuzsle
W= weight of water contained in
the nozzle
Dy =5mm P1 = Eage pressure at section (1)
A7 = cross section area at
section (1)
Pz = Eage pressure at section (2)
W3 Az = cross section area at
section (2)
wy =z direction velocity at
control volume entrance
Yw, wa =z direction velocity at
\AAAAJ control volume exit

B FIGURE E5.11a

B FIGURE ES.11b




fluid density. p. 1s constant throughout. Proceeding further we ob-
tain for Eq. 1

(—my)(—wy) + my(—wy)
=Fy; — Wy — pydy — W, + pad, (3)

where m = pAV is the mass flowrate.

MNote that —w,; and —w, are used because both of these veloc-
ities are “down.” Also, —m, is used because it is associated with
flow into the control volume. Similarly. +m- is used because it is
associated with flow out of the control volume. Solving Eq. 3 for
the anchonng force, F,, we obtam

Fy=mwy, — mow;, + W, + pydy + W, — pad, 4)
From the conservation of mass equation, Eq. 5.12, we obtain

m;=my, =m

which when combined with Eq. 4 gives
Fy=m(wy —wy) + Wy + pdy + W, — pod, (6)

It 1s instructive to note how the anchoning force 1s affected
by the different actions involved. As expected, the nozzle
weight, W, the water weight., W} and gage pressure force at
section (1). p4;. all increase the anchoring force, while the
gage pressure force at section (2). pad,. acts to decrease the
anchoring force. The change in the vertical momentum
flowrate, m(w, — w,), will, in this instance, decrease the an-
choring force because this change 1s negative (w, > wy).

To complete this example we use quantities given in the
problem statement to quantify the terms on the right-hand side
of Eq. 6.

From Eq. 5.6,

m = pwid; = pQ
(999 kg/m’)(0.6 liter/s)(10 > m*/liter)
= 0.599 kg/s (7

e__¢9
4, 17(fo4}

(0.6 liter/s)(10 % m*/lter)

" (16 mm */4(1000% mm?/m?)

Also from Eq. 5.6,
oo
S 4, w(Dy/4)

(0.6 liter/s)(10 > m¥/liter)
B (5 mm)74(1000° mm/m®)

W, =

= 298 m/s (8)

= 30.6 m/s )
The weight of the nozzle, ). can be obtained from the nozzle
mass, m,, with

W, = myg = (0.1 kg)(9.81 m/s?) = 0.981 N (10)

The weight of the water in the control volume. },, can be ob-
tained from the water density, p. and the volume of water. ¥5,. m




the truncated cone of height /. That is,
W, = p¥g

where

¥

17h(Di + D} + DiD)
(30 mm)
(1000 mm/m)
" [[lﬁ mm)* + (5 mm)* + (16 mm)(5 mm}]
(1000 mm*/m”)
=284 x 107 %m’

1
= —
12

J[P'l + Paim

Thus,

W, = (999 kg/m*)(2.84 X 107° m*)(9.81 m/s”)
= 0.0278 N (11)

The gage pressure at section (2). p,. 1s zero since, as discussed
Section 3.6.1, when a subsonic flow discharges to the atmosphere
as in the present situation, the discharge pressure is essentially at-
mospheric. The anchoring force, Fy. can now be determined from
Eqs. 6 through 11 with
F, = (0.599 kg/s)(2.98 m/s — 30.6 m/s) + 0.981 N
(16 mm)”

(1000* mm*/m?)

1 {2)
f[P'z + Paim)dz

.

+ (464 kPa)(1000 Pa/kPa) -

+ 0.0278N — 0

F,=—165N+ 0981 N + 933N + 00278 N
=T778N {Ans)

Since the anchorning force. F,. 1s positive, 1t acts upward in the =
direction. The nozzle would be pushed off the pipe if it were not
fastened securely.




_EXAMPLE 5.14 BELCETRY TG G

GIVEN Consider the flow of Example 5.4 to be vertically
upward.

SoLuTION

A control volume (see dashed lines in Fig. E5.14) that includes
only flmd from section (1) to section (2) is selected. The forces
acting on the fluid in this control volume are identified in Fig.
E5.14. The application of the axial component of Eq. 5.22 to the
fluid 1n this control volume results in

j wpV - hdd = pud; — R, — W — paty )
Cs

where R. 1s the resultant force of the wetted pipe wall on the
fluid. Further. for uniform flow at section (1), and because the
flow at section (2) 1s out of the control volume. Eq. 1 becomes

(+wy)(—my) + J (+wa)p(+wydd;) = pyd) — R,
4: (2)
W~ pa
The positive direction 1s considered up. The surface mtegral over
the cross-sectional area at section (2). 45, 1s evaluated by using
the parabolic velocity profile obtamned i Example 5.4,
wy = 2wi[1 — (r/R)]. as

R

w3 2ar dr

’ (2w [1 - Gﬂz r dr

[ it =s

K 0

= 2mwp

m—Weight, Pressure, Friction,
and Nonuniform Velocity Profile

FIND Develop an expression for the fluid pressure drop that
occurs between sections (1) and (2).

R
J WopWy dd, = 411,-:111%?
4

Combining Eqs. 2 and 3 we obtain
—wipmR® + 3wipmR® = pid; — R. — W — pady,  (4)

Solving Eq. 4 for the pressure drop from section (1) to section (2).
P — P.. we obtain
2
2 R
i R
3 4,

nl. i."‘
+ _—

n (Ans)

I o
COMMENT We see that the drop in pressure from section (1)
to section (2) occurs because of the following:

1. The change in momentum flow between the two sections
associated with going from a uniform velocity profile to
a parabolic velocity profile, pwi/3
. Pipe wall friction_ R,
. The weight of the water column, W', a hydrostatic pres-
sure effect.

If the velocity profiles had been identically parabolic at sections
(1) and (2). the momentum flowrate at each section would have




Note that although the average velocity 1s the same at section
(1) as it is at section (2) (V; = V> = w;). the momentum flux
across section (1) 1s not the same as 1t 1s across section (2). If 1t
were, the left-hand side of Eq. (4) would be zero. For this nonuni-
form flow the momentum flux can be written in terms of the av-
erage velocity, ¥, and the momentum coefficient. B. as

j wpV - i dd

P = pf’gzi

Hence the momentum flux can be written as

Section (2)
-

|
Lﬁ_ﬂf Control wolume

|
|
Y
J wpV - iidd = —BywipwR® + BwipwR® | R,
s I — T ey,
- _ : . o , l - f -3 ,
where B; = 1 (B = 1 forumform flow)and B, = 4/3(8 = 1lfor “lr;‘.,‘;%- ﬁwﬁectmn (1)
any nonuniform flow). S




All of the linear momentum examples considered thus far have involved stationary and non-
deforming control volumes which are thus mertial because there 1s no acceleration. A nondeform-
mg control volume translating in a straight line at constant speed 1s also mertial because there 1s
no acceleration. For a system and an imnertial, moving, nondeforming control volume that are both
coincident at an instant of time, the Reynolds transport theorem (Eq. 4.23) leads to

D il
— nd¥F = — od¥F +
Dt *Ls F i Jﬂ' P [

VpW - n d4
ot Jes

When we combine Eq. 5.23 with Eqs. 5.19 and 5.20, we get

il
o [ pd¥ + [ VpW it dAd = > Feontents of the
(i) -

Jes control volume

When the equation relating absolute, relative, and control volume velocities (Eq. 5.14) is used with
Eq. 5.24, the result 1s

) |
:Tr I- (W + V_)pd¥ + I-

(W+ V )pW fidd = D F e ot

Ie control vohime




For a constant control volume velocity, V., and steady flow 1n the control volume reference frame,

)
= J (W+ V. )pd¥E =0 (5.26)

Also, for this mertial, nondeforming control volume

J (W + V_)pW - rdd = J

3

WpW - fidd + 1-'4 pW -« it dA

s

For steady flow (on an instantaneous or time-average basis), Eq. 5.15 gives
J pW - fidd =0 (5.28)

Combiming Eqgs. 5.25, 526, 5.27, and 5.28, we conclude that the linear momentum equation for
an inertial, moving, nondeforming control volume that involves steady (mstantaneous or time-
average) flow 1s

J WpW - it dd = O Foontents o the
5 control volune




5.2.3 Derivation of the Moment-of-Momentum Equation®

In many engineering problems, the moment of a force with respect to an axis, namely, forque, 1s 1m-
portant. Newton’s second law of motion has already led to a useful relationship between forces and
linear momentum flow. The linear momentum equation can also be used to solve problems mvolving
torques. However, by forming the moment of the linear momentum and the resultant force associated
with each particle of fllud with respect to a point 1n an mertial coordinate system, we will develop a
momeni-of-momentum equation that relates forques and angular momentum flow for the contents of
a confrol volume When torques are important, the moment-of-momentum equation 1s often more con-
vement to use than the linear momentum equation.
Application of Newton’s second law of motion to a particle of flud yields

D
E (‘1"# E.FL'] = ana:ﬁt:le (5.3']]




D
r X —(Vp8¥) = 1 X 6Fppae (5.31)

where r 1s the position vector from the origin of the inertial coordinate system to the fluid parti-
cle (Fig. 5.3). We note that

D(Vp 8¥)

E[(-:»c‘ﬁf) EF]—EX‘V S +rx —m 5.32
Dt ! P Dt P ! Dt (5-32)

Thus, since
VXV=0

by combiming Eqs. 531, 532, 533, and 5.34, we obtain the expression

D
E[(r X V)pé¥F] =r X 6F .

B FIGURE 5.3 Inertial coordinate system.




Equation 5.35 1s valid for every particle of a system. For a system (collection of flmd particles),
we need to use the sum of both sides of Eq. 5.35 to obtain

Ls%”r X V)pd¥]= D (r x F), (5.36)

where
D1 X §Fpma. = O, (T X F).. (5.37)
We note that

D ' | L xv
D J-m(r X V)pd¥ = J-m D [(r x V)pd¥] (5.38)

since the sequential order of differentiation and integration can be reversed without consequence. (Re-
call that the material derivative, D( )/Dt, denotes the time derivative following a given system: see
Section 4.2 1) Thus, from Eqs. 5.36 and 5.38 we get

D

o |, @xVpd¥ = Swxm,, (539

the time rate of change of the = sum of external torques
moment-of-momentum of the system  acting on the system




S(rxF),,= 3 xF), (5.40)

Further, for the system and the contents of the coincident control volume that 1s fixed and nonde-
forming, the Reynolds transport theorem (Eq. 4.19) leads to

D . d _ .
E I. [l‘ x "'T:]p d¥ = Ti‘ I. [:]' * "?:Ip d¥ + I. []' x "'T:]p\-r - ndA4 (5.41)

SN J €5

time rate of change  time rate of change  net rate of flow

of the moment-of-  of the moment-of-  of the moment-of-

momentum of the = momentum of the + momentum through

system contents of the the control surface
control volume

For a control volume that is fixed (and therefore inertial) and nondeforming, we combine Eqs. 5.39,
5.40, and 5.41 to obtain the moment-of-momentum equation:

%) _ .
- [ (r X V)pd¥ + I- (rx V)pV-ndd = E[l X F )contents of the

ot J control velume




5.2.4 Application of the Moment-of-Momentum Equation’
We simplify our use of Eq. 5.42 1n several ways:

1. We assume that flows considered are one-dimensional (umform distributions of average ve-
locity at any section).

™ =— Control volume
\

",
Control volume ~ v \'{— Section (2)

g
)
._ J Ty 3 Flow out

—_—

)
— 7 A— Bection (2)
L

Section (1)

E__r | —— 0
Control volume D\ Section (1)

Flow

B FIGURE 5.4 (a) Rotary water
sprinkler. (¥) Rotary water sprinkler, plane view.
{c) Rotary water sprinkler, side view. (e}




2. We confine ourselves to steady or steady-in-the-mean cyclical flows. Thus,
o . :
— (r x Vipd¥ =0
LA
at any instant of time for steady flows or on a fime-average basis for cyclical unsteady

flows.
3. We work only with the component of Eq. 5.42 resolved along the axis of rotation.

Change in moment
of fluid velocity

around an axis can
result in torque and
rotation around
that same axis.




V=W+TU (5.43)

where U 1s the velocity of the moving nozzle as measured relative fo the fixed control surface.
The cross product and the dot product involved 1n the moment-of-momentum flow term of

Eq. 5.42,

[ (r X V)pV - i dd

<5

[ I- (r x V)pv - ii.-:id] = (=1 Fgp)(+m)

axial

E {I‘ X F]mnienls of the
control volume_ | 33l




—ryVpm = Ty (5.46)

We interpret T, being a negative quantity from Eq. 5.46 to mean that the shaft torque actually
opposes the rotation of the sprinkler arms as shown i Fig. 5.4 The shaft torque, T, _; opposes
rotation in all turbme devices.

M FIGURE 5.5 Right-hand rule convention.




We could evaluate the shafi power, W, g, associated with shaft rorque, T,;_q, by forming the
product of T,.n and the rotational speed of the shaft, w. [We use the notation that
W = work, ( - ) = d( )/dt, and thus W = power._| Thus, from Eq. 546 we get

Wn = Tpaw = —15Fpm o (5.47)

Since ryw 15 the speed of each sprmkler nozzle, U, we can also state Eq. 5.47 in the form

Weag = — UsVipit (5.48)

Shaft work per unmit mass, w_s. 15 equal to ﬁ.’shaﬂ,/rh. Dividng Eq. 5.48 by the mass flowrate, m,
we obtain

Waas = —Us Vi (5.49)

Negative shaft work as in Eqs. 547, 548 and 549 1s work out of the control volume, that 15, work
done by the flmud on the rotor and thus its shaft.

The principles associated with this sprinkler example can be extended to handle most sim-
plified turbomachine flows. The fundamental technique 1s not difficult. However, the geometry of
some turbomachine flows 1s quite complicated.




[EXAWPLE 5.18

GIVEN Water enters a rotating lawn sprinkler through its base
at the steady rate of 1000 ml's as sketched in Fig. E5 18a. The exit
area of each of the two nozzles is 30 mm? and the flow leaving each
nozzle 1s 1 the tangential direction. The radms from the axis of ro-
tation to the centerline of each nozzle 15 200 mm.

FIND (a) Determine the resisting torque required to hold the
sprinkler head stationary.
(b) Determine the resisting torque associated with the sprinkler

rotating with a constant speed of 500 rev/mun.
) ) ] o ) O = 1000 mls
(¢) Determine the speed of the sprinkler if no resisting torque is

applied.

SoLuTION

To solve parts (a). (b). and (c) of this example we can use the
same fixed and nondeforming, disk-shaped control volume 1llus-
trated in Fig. 5.4. As indicated in Fig. E5.18a. the only axal
torque considered 1s the one resisting motion, Tz

(a) When the sprninkler head is held stationary as specified in part
(a) of this example problem, the velocities of the fluid entering and
leaving the control volume are shown i Fig. E5.18b. Equation
5.46 applies to the contents of this control volume. Thus,

Tonase = —F2Vpom (1)

Since the control volume 1s fixed and nondeforming and the flow
exiting from each nozzle 1s tangential,

ng = I’Q (2]

Equations 1 and 2 give B FIGURE E5.i8

Tirar = —r2Vam




In Example 5.7, we ascertained that 75, = 16.7 m/s. Thus, from
Eq. 3 with

_ (1000 mI/s)(10™> m*/liter)(999 ke/m’)

- (1000 m/liter)

m = Qp
= 0999 kg/s
we obtain

(200 mm)(16.7 m/s)(0.999 ke/s)[ 1 (N/kg)/(m/s?)]
Tansn =~ (1000 mm/m)

or

Tgug = —33N-m (Ans)

(b) When the sprinkler 1s rotating at a constant speed of 500
rpm_ the flow field in the control volume 15 unsteady but cyclical
Thus. the flow field 15 steady mn the mean. The velocities of the flow
entering and leaving the control volume are as indicated in Fig.
E5.18c. The absolute velocity of the fluid leaving each nozzle, 75,
1s from Eq. 543,

Vo=We — Us (4)

7, = 16.7m/s

as determined in Example 5.7. The speed of the nozzle. U, 15 ob-
tained from

Uz = raw (5)
Application of the axial component of the moment-of-momentum
equation (Eq. 5.46) leads again to Eq. 3. From Eqs. 4 and 5.
V; = 167 mls — ryw
(200 mm)(500 rev/min)(27 rad/rev)
(1000 mm/m)(60 s/min)

=16.7m/s —
or
V, =167Tm's — 105m/s = 62 m/s

Thus. using Eq. 3. with m = 0.999 kg/s (as calculated previ-
ously). we get

(200 mm)(6.2 m/s) 0.999 kg/s [1(N/kg)/(m/s”)]
Titue = - (1000 mm/m) /

N

or

Tagwg = 124N -m (Ans)




(c) When no resisting torque 1s applied to the rotating sprinkler
head. a maximum constant speed of rotation will occur as demon-
strated below. Application of Eqs. 3. 4. and 5 to the contents of the
control volume results in

Tipare = —12(W2 — rowm)m (6)
For no resisting torque, Eq. 6 yields

0 = —ry(Fy — ryw)m

Fa

i}

(7)

In Example 54, we learned that the relative velocity of the
fluad leaving each nozzle, 75, 1s the same regardless of the speed
of rotation of the sprinkler head, w. as long as the mass flowrate
of the fluid, m. remains constant. Thus, by using Eq. 7 we obtain

W,  (16.7m/s)(1000 mm/m)
ra (200 mm)

= 83.5 rad/s

o =

_ (83.5 rad/s)(60 s/min)

= 797 Ans
2 g rad/rev L ( )

For this condition (T}, = 0). the water both enters and leaves the
control volume with zero angular momentum.



When the momeni-of-momentum equation (Eq. 5.42) is applied to a more general, one-

dimensional flow through a rotating machine, we obtain

Tshnﬂ = (—rhin.)( trinvﬂin) T 'houl( troutvﬂoul) i

The shaft power, W, is related to shaft torque, T, by

Wshal’t = Than @

Thus, using Egs. 5.50 and 5.51 with a “+" sign for T, in Eq. 5.50, we obtain

Wshaﬁ = ( _'nm)( trlnwvﬁiu) + ’"nul( —:rom a)V()nul)

or since rw = U

Wshuﬁ - ( _';1 m)( = (jinvﬂin) 37 ’;Iunl( x Unul Vﬂuu(.)

(5.50)




From Eq. 5.53, we obtain

Wenatt — _( a.s (]m v(!m) g ( = (jnul V(qul) (5-54)

EXAMPLE 5.19

GIVEN An air fan has a bladed rotor of 12-in. outside  plade inlet, V. is radial. The blade discharge angle is 30° from
diameter and 10-in. inside diameter as illustrated in Fig.  the tangential direction. The rotor rotates at a constant speed
E5.19a. The height of each rotor blade is constant at I in. from 41 1725 rpm.

blade inlet to outlet. The flowrate is steady, on a time-average
basis, at 230 ft/min and the absolute velocity of the air at

FIND Estimate the power required to run the fan.

SOLUTION

We select a fixed and nondeforming control volume that includes  5.53 is appropriate. Application of Eq. 5.53 to the contents of the
the rotating blades and the fluid within the blade row at an  control volume in Fig. E5.19 gives
instant, as shown with a dashed line in Fig. E5.194. The flow

within this control volume is cyclical, but steady in the mean. The

only torque we consider is the driving shaft torque, 7. This W\mn = —my(= U,I,,/l)y + my( EU,V,) (1)
torque is provided by a motor. We assume that the entering and

leaving [lows are each represented by uniformly distributed From Eq. | we see that to calculate fan power, we need mass
velocities and flow properties. Since shaft power is sought, Eq.  flowrate, m, rotor exit blade velocity, U/,. and fluid tangential

0 (V, is radial)




: Section (1)
, \ Fixed control volume
1

shalt

|
1

*_“/

\\
Section (2)

D, =2r, =12 in.

D = 2/', =10 in.

control volume
hlﬂ

(a)

B Figure E5.19
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velocity at blade exit, Vy. The mass flowrate, m,
obtained from Eq. 5.6 as

is easily

! (2.38 X 10 *slug/ft*) (230 {t*/min)
m = pQ = , :
(60 s/min)
= 0.00912 slug/s (2)

Often, problems involving fans are solved using English Engi-
neering units. Since 1 slug = 32.174 Ibm, we could have used as
the density of air p,, = (2.38 X 10 'slug/ft')(32.174 lbm/slug)
= 0.0766 Ibm/ft".

Then

(0.0766 ITbm/ft*) (230 ft*/min)
m= - - — = ().294 Ibm/s
(60 s/min)

The rotor exit blade speed, U,, is
(6 in.)( 1725 rpm)(2x rad/rev)
l/n =l —- - EVERR WA x s =
S 7 (12 in/ft)(60 s/min)
= 90.3 ft/s (3)

To determine the fluid tangential speed at the fan rotor exit, Vi,
we use Eq. 5.43 to get

V,=W, + U, (4)

The vector addition of Eq. 4 is shown in the form o7 a “velocity
triangle™ in Fig. E5.19b. From Fig. E5.19b, we can see that

V”: == ljz = w: cOS 30' (5)

To solve Eq. 5 for V,, we need a value of W,, in addition to the
value of U, already determined (Eq. 3). To get W,, we recognize
that

“’3 sin 30° = Vrl (6)

where V,, is the radial component of either W, or V,. Also, using
Eq. 5.6, we obtain

m = pA,V,, (7)
or since
A, = 2 arh (8)
where £ is the blade height. Egs. 7 and 8 combine to form
m = p2ar;hV,, 9)
Taking Egs. 6 and 9 together we gel

m PQ

J.o o— _—

2 -- p2arsh sin 30°

10
p2aryh sin 30° ol

0

2mrsh sin 30°

Substituting known values into Eq. 10. we obtain
(230 ft/min) (12 in/ft)(12 in/ft)

(60 s/min)2x(6 in.)( 1 in.) sin 307
29.3 fi/s




By using this value of W, in Eq. 5 we get COMMENT Note that the “+" was used with the U,V,,
V., = U, — W, cos 30° product becuuse.Uz and V,, are in the same (!ireclion. This

& g C result, 0.097 hp, is the power that needs to be delivered through

= 90.3 fi/s — (29.3 {t/s)(0.866) = 64.9 [U/s the fan shaft for the given conditions. Ideally. all of this power

would go into the flowing air. However, because of fluid fric-
tion. only some of this power will produce useful effects (e.g..
(0.00912 slug/s )(90.3 ft/s)(64.9 ft/s) movement and pressure rise) on the air. How much useful effect
[1(slug -+ f/s*) /1b][SSO(ft - Ib)/(hp - 5)] depends on the efficiency of the energy transfer between the fan
blades and the [luid. Also. extra power would be needed from

the motor to overcome friction in shaft bearings and other

Equation 1 can now be used to obtain
Waan = mUsVyp =

with BG units.
With EE units A .
mechanical resistance.
(0.294 Ibm/s)(90.3 ft/s) (64.9 ft/s)

[32.174 (Ibm - ft) /(Ib/s*)][550 (ft - 1b)/(hp - 5)]

W shaft —

In either case

w'sh‘m = 0.097 hP {:\n.s)




5.3 First Law of Thermodynamics—The Energy Equation

5.3.1 Derivation of the Energy Equation

The first law of thermodynamics for a system is, in words,

Time rate of net time rate of net time rate of
increase of the _energy addition by | energy addition by
total stored energy  heat transfer into work transfer into
of the system the system the system

In symbolic form, this statement is

ll))’ / ep dV e (Z Qin = Z Q.nut)“\ s (2 “/in == Z Woul)

sys ys sys

D ; :
Dr / epdV = (QPcl + Wm)syh (5.55)

sys

Some of these variables deserve a brief explanation before proceeding further. The total stored
energy per unit mass for each particle in the system, e, is related to the internal energy per unit mass,
it, the kinetic energy per unit mass, V?/2, and the potential energy per unit mass, gz, by the equation

N

VA

vV
e =n+ 5 + gz (5.56)




The net rate of heat transfer into the system is denoted with @, ;,. and the net rate of work
transfer into the system is labeled W, . Heat transfer and work transfer are considered “+" going
into the system and “—"" coming out. [It should be noted that the opposite sign convention is often
used for work (see Ref. 3 for example).|

Equation 5.55 is valid for inertial and noninertial reference systems. We proceed to develop
the control volume statement of the first law of thermodynamics. For the control volume that is
coincident with the system at an instant of time

(Qnet + Wm-l).sy.\ e (ant - ncl)comcidcnl (5°57)

in n in in  control volume

Furthermore, for the system and the contents of the coincident control volume that is fixed and
nondeforming, the Reynolds transport theorem (Eq. 4.19 with the parameter b set equal to ¢) allows
us to conclude that

D 0 5
Dt.[ epdV = d’fe/)dv+ [epV-ndA (5.58)

SYS ov cs

or in words,

Time rate : . net rate of flow
A time rate of increase '
of increase of the total stored energy
of the total stored
of the total = + out of the control

energy of the contents
stored energy ; volume through the
; of the control volume
of the system control surface




Combining Eqs. 5.55, 5.57, and 5.58, we get the control volume formula for the first law of ther-
modynamics:

d ~ : :
5 / epdV + f ep¥ +mdA = (Qp + Waide
oV n in

(2

E wﬁli.iﬂ

Section {1) Control voluma Sectlon (2) Plpe

“man
E W =FWV

=FVcos 8

B Figure 5.6 Simple, fully developed
pipe fow.




1e power transter, W, associated with a force F acting on an object moving with velocity V
is given by the dot product F + V. This is illustrated by the figure in the margin. Hence, the power
transfer associated with normal stresses acting on a single fluid particle, dW,,;mai wress» €an be evalu-
ated as the dot product of the normal stress force, OF .1 suesss @nd the fluid particle velocity, V, as

()Wnnmml stress ‘Sanrmal stress v

If the normal stress force 1s expressed as the product of local normal stress, ¢ = —p, and fluid
particle surface area, m 0A, the result is

5Wnnmm| stress ()’ﬁ oA+ V¥ = —Pﬁ 0A -V = —[7v ’ |;l oA

For all fluid particles on the control surface of Fig. 5.6 at the instant considered, power transfer due
to fluid normal stress, W, mal siresss 1S

W, . = f oV - hdA = / —pV - i dA (5.62)

shress

s L)

Work transfer can also occur at the control surface because of tangential stress forces.
Rotating shaft work is transferred by tangential stresses in the shaft material. For a fluid particle,
shear stress force power, W, st aress» €@N be evaluated as the dot product of 1angential stress

force, OF pgeniial siress» @Nd the fluid particle velocity, V. That is,

SW, = oF -V

angentiad stress tangential siress




Using the information we have developed about power, we can express the first law of ther-
modynamics for the contents of a control volume by combining Eqgs. 5.59, 5.60, and 5.62 to obtain

%/ epdV + /ep\’ “ndA = Q!m + Wshaﬂ - /pV - ndA (5.63)

ok nel in cs

Finally, we multiply and divide by p inside the pressure integral, substitute the stored energy from
Eq. 5.56, and group terms to obtain the energy equation:

d V2 - ¢ g
ot / ep {!V i / (l} T p‘ T ‘,T i .QZ) I)\y i ndA - Qnel ] W\ll:lfl

di ev cs r b in net in




5.3.2 Application of the Energy Equation

In Eq. 5.64, the integrand of

V2 .
/(174—?-4- 7+gz)pV-ndA

s

can be nonzero only where fluid crosses the control surface (V + n # 0). Otherwise, V + n is zero
and the integrand is zero for that portion of the control surface. If the properties within parentheses,

it, p/p. V12, and gz, are all assumed to be uniformly distributed over the flow cross-sectional areas
involved, the integration becomes simple and gives

p WV = o B = P :
7T e + gz pV-ndA=Z U+ —+—<+pz)m
2 flow /) 2

ot

v ’) Vz =
—Z ittt R
flow P 2

-

Furthermore, if there is only one stream entering and leaving the control volume, then

v? ,
/(1’«+§+ ;+g:)pV'ndA:

s

(' + P + v | ) ! ( i
{ = T oA ' My — | W
l p 2 g oul = ‘




Streamtube

B Figure 5.7 Streamtube flow.

o - w P P Vl?;ﬂl — vﬁl - " Vg .
Mo — 8ig T\ iR T 3 T g(énm ~ <in == QIH.‘I ¥ wshaﬂ
out mn ol n

I) l) net m

4

We call Eq. 5.67 the one-dimensional energy equation for steady-in-the-mean flms/

nit, = M, = Hi




) 4
out o v

AR 2 = + g(ﬁnul ‘vm

» -

';1 hum = hin

] le . “/shuﬂ (5069)

net in

EXAMPLE 5.20

GIVEN A pump delivers water at a steady rate of 300 gzl/min
as shown in Fig. E5.20. Just upstream of the pump [section (1))
where the pipe diameter is 3.5 in., the pressure is 18 psi. Just  Confrol volume
downstream of the pump [section (2)] where the pipe diameter is
1 in., the pressure is 60 psi. The change in water elevation across
the pump is zero. The rise in internal energy of water, it, — it;,, —»
associated with a temperature rise across the pump is 93 ft - Ib/lbm.
The pumping process is considered to be adiabatic.

0=
300 gal/min.

Section (2)

Section (1) P =60 psi

FIND Determine the power (hp) required by the pump. py = 18 psi

i, ~ iy = 93 ft-Ib/ibm
P Figure E5.20




SOLUTION

We include in our control volume the water contained in the
pump between its entrance and exit sections. Application of Eq.
5.67 to the contents of this control velume on a time-average
basis yields

0 (no elevation change)

) '] V:i-y?
rirl:‘«l—(a,-f-(’) —(I) + ") IBQ—:,]]
2 I

P/2 P

0 (adiabatic flow)

= Qucl th.m (l)

] net in
We can solve directly for the power required by the pump,
Wohatt netine 1TOM Eq. 1, after we first determine the mass flowrate.
m. the speed of flow into the pump, V,, and the speed of the flow

out of the pump. V,. All other quantities in Eq. 1 are given in the

problem statement. From Eq. 5.6. we get

: 0 (1.94 slugs/ft*) (300 gal/min)(32.174 Ibm/slug)

m= pQ = -

; (7.48 gal/ft’)(60 s/min)
= 41.8 Ibm/s

Also from Eq. 5.6.

Q_©Q
A aD*/4

Q (300 gal/min)4 (12 in./ft)*
A, (7.48 gal/ft*)(60 s/min)x (3.5 in.)?
10.0 ft/s



and . (123 ft/'s)> — (10.0 ft/s)>

V. Q (300 gal/min)4 (12 in./ft)? 2[32.174 (Ibm-ft) /(1b-s?)]
2 = y = & -3 - 3 T B I
A, (7.48 gal/ft')(60 s/min)r (1 in.) e -5 -
= 123 ft/s (4) [550(tt-1b/s)/hp]

Substituting the values of Egs. 2, 3, and 4 and values from the COMMENT Of the total 32.2 hp. internal energy change
problem statement into Eq. 1 we obtain accounts for 7.09 hp. the pressure rise accounts for 7.37 hp, and
the kinetic energy increase accounts for 17.8 hp.

An actual pump would require slightly more than 32.2 hp

Wt
haf v & iy . #
i owing to mechanical friction loss in bearings and shaft seals. The

= (41.8 Ibm/s) (93 It - Ib/Ibm)

(60 psi) (144 in/ft*) sum of the pressure rise, the Kinetic energy increase. and any

t increase in elevation is sometimes called water horsepower.

» (1.94 slugs/ft’)(32.174 Ibm/slug)
(18 psi) (144 in /i)
(1.94 slugs/ft*) (32.174 Ibm/slug)




If the lMow is truly steady throughout, so that no work is done, one-dimensional, and only one fluid
stream is involved, then setting the shaft work to zero, the energy equation becomes

. - v p I) Vlz)l“ = Vl:n -
migy — Uiy i ( R | p b == g(:-uul = :‘m) - anl (5'70)
\ o in

p p

- mn

We call Eq. 5.70 the one-dimensional, steady-flow energy equation.

)| = anl

n




EXAMPLE 5.22

GIVEN The 420-ft waterfall shown in Fig. E5.22a involves
steady flow from one large body of water to another.

FIND Determine the temperature change associated with this
flow.

SOLUTION

To solve this problem, we consider a control volume consisting
of a small cross-sectional streamtube from the nearly motionless
surface of the upper body of water to the nearly motionless sur-
face of the lower body of water as is sketched in Fig. E5.225. We
need to determine T, — 7). This temperature change is related to
the change of internal energy of the water. it, — it;. by the rela-
tionship

(1)




Section (1)
VA

v —
= }‘,/Control
(" volume
| |
(| ; . 3 =
:: where ¢ = 1 Btu/(lbm - °R) is the specific heat of water. The
i application of Eq. 5.70 to the contents of this control volume leads to
| > &
T <2 2 2
ﬂ | A P P Vi- Vi
i mli, — u; + = T + 8(Z22 — y)
|| £/ P/ 2
(1 420 1t .
u e 2)
| Section (2) = Qner (
mn
i
il

We assume that the flow is adiabatic. Thus Qm., o = 0. Also,
because the flow is incompressible (p;, = p,) and atmospheric
pressure prevails at sections (1) and (2) (p, = p).

El=C) ®
B Figure E5.22b )i \p/s :




Furthermore,

because the surface of each large body of water is considered
motionless. Thus, Egs. | through 4 combine to yield

8z — %)

(".

T: ~ T| —
so that with

¢ = [1 Bw/(Ibm - “R)] (778 ft - Ib/Btu)
= [778 ft « Ib/(Ibm - °R)]

(32.2 ft/s?)(420 ft)
[778 ft - Ib/(1bm « °R)][32.2 (Ibm - ft)/(Ib + §%)]

Tv_Tl

= ().540 °R (Ans)

COMMENT Note that it takes a considerable change
of potential energy to produce even a small increase in
temperature,



5.3.3 The Mechanical Energy Equation and the Bernoulli Equation

ptml 2 R
P ? ' == <—in) =3 anl
P n

m [ﬁoul - l}in +

»
Pout V:ml V'n v "
/’ + 2 + Blout p = 8%n — (“out = T q?“cl)

~ P

Pout B

Now we divide Eq. 5.74 by densily, p, and obtain

g )
Pout V;m Pin
S W
p 2 BZout P




when the steady incompressible flow is frictionless. For steady incompressible flow with friction,
we learn from experience (the second law of thermodynamics; see Sec. 5.4 for details) that

i"uul == i"in = qncl =0 (5°77)

m

In Egs. 5.73 and 5.75, we can consider the combination of variables
V2
4 el 2y
P 2

r‘uul = ;"in =5 qpcl = loss
n
For a frictionless flow, Eqs. 5.73 and 5.75 tell us that loss equals zero.
It is often convenient to express Eq. 5.73 in terms of loss as

Vgul Pin Vlzn
3 : + gznut = ! + ” + gZ,',, o lOSS




EXAMPLE 5.23

GIVEN As shown in Fig. E5.23a, air flows from a room
through two different vent configurations: a cylindrical hole in
the wall having a diameter of 120 mm and the same diameter
cylindrical hole in the wall but with a well-rounded entrance. The
room pressure is held constant at 1.0 KPa above atmospheric pres-
sure. Both vents exhaust into the atmosphere. As discussed in
Section 8.4.2, the loss in available energy associated with flow
through the cylindrical vent from the room to the vent exit is

SOLUTION

We use the control volume for each vent sketched in Fig. E5.23a.
What is sought is the flowrate, Q = A.V,, where A, is the vent
exit cross-sectional area, and V; is the uniformly distributed exit
velocity. For both vents. application of Eq. 5.79 leads to

0 (no elevation change)

P Vi
+ g1, = + + gk, — loss,
P -

0(V, = 0) (1)

>
adl Py

where loss, is the
Eg. | for V, we get

V, = \':;ZI(IN ,_, p,) = lloss:] (2)

Vi

loss between sections (1) and (2). Solving

Since

Energy—Effect of Loss of Available Energy

0.5V3/2 where V; is the uniformly distributed exit velocity of air.
The loss in available energy associated with flow through the
rounded entrance vent from the room to the vent exit is 0.05V3 /2,
where V, is the uniformly distributed exit velocity of air,

FIND Compare the volume flowrates associated with the two
different vent configurations.

Control
volume ™

e

—> D,=120mm | ——>
/'—g_—_ﬂ___-\Sechon (2)

Section (1) for
both vents Is
in the room and
involves V; =0

= 1.0 kPa \
\‘
\:\ e e
| V.,
— D, = 120 MM | —
i Ty

//'/ Section (2)
Control |
volume ™!

B Figure E5.230

N\




where K, is the loss coefficient (K; = 0.5 and 0.05 for the two
vent configurations involved) we can combine Eqs. 2 and 3 to get

Pi— P Vi
\ (1/’ >_KL"] e

Therefore, for flowrate. Q, we obtain

Q—4V—HDE ." Py — P2 ©)
Bk \p[u + K,)/2]
For the rounded entrance cylindrical vent, Eq. 6 gives
(120 mm)’
4(1000 mm/m)*
’,-' (1.0 kPa) (1000 Pa/kPa)[1(N/m?) /(Pa))
V (1.23 kg/m®H[(1 + 0.05)/2][ 1{N-s?)/(kg-m)]
or
Q = 0.445 m'/s (Ans)
For the cylindrical vent. Eq. 6 gives us
~ x(120mm)*
4(1000 mm/m)”
," (1.0 kPa)(1000 Pa/kPa)[1(N/m’) / (Pa)]
N (1.23 ke/m*)[(1 + 0.5)/2]1[1(N+s)/(kg'm)]
or
Q = 0.372 m'/s (Ans)

Solving Eq. 4 for V, we obtain

PR e e 5)
2=\ (1 + K,)/2] ¢

COMMENT By repeating the calculations for various values of

the loss coefficient, K;, the results shown in Fig. E5.23b are obtained.
Note that the rounded entrance vent allows the passage of more air
than does the cylindrical vent because the loss associated with the
rounded entrance vent is less than that for the cylindrical one. For this
flow the pressure drop, p; — p,. has two purposes: (1) overcome the
loss associated with the flow, and (2) produce the kinetic energy at
the exit. Even if there were no loss (Le.. K; = 0). a pressure drop
would be needed to accelerate the [luid through the vent.

0.5
x
0.4 | (0.05, 0.445 m?/s)
—
(0.5, 0.372 m¥s)
» 03
4=
S 0.2
0.1
0
0 0.1 0.2 0.3 0.4 0.5

B Figure E5.23b

N




An important group of fluid mechanics problems involves one-dimensional, incompressible,
steady-in-the-mean flow with friction and shaft work. Included in this category are flows through
pumps, blowers, fans, and wurbines. For this kind of flow, Eq. 5.67 becomes

4 41

. - v pnul pln Voul - V- 4
M| Ugy — Uip T S R g(-\-uul &7 *-m anl + W\h aft (5'80)

p p 2 net in

Dividing Eq. 5.80 by mass flowrate and using the work per unit mass, w 4.q = Wsh.m /m. we obtain

. V3 . V3 net in net in

out out l n » v

7/) = ,-" i 83om = 'p“ 2' . 83in + w shaft (Huul iy | e qut) (5.81)
e net in mn

Since the flow is incompressible, Eq. 5.78 shows that i, — i, — Guein €quals the loss of useful

energy and Eq. 5.81 can be expressed as

+ 8%in + W shatt ]OSS

net in

It is sometimes called the mechanical energy equation

Minimizing loss iy
a central goal of

Sluid mechanical
design.




EXAMPLE 5.24

GIVEN An axial-flow ventilating fan driven by a motor that FIND Determine how much of the work to the air actually
delivers 0.4 kW of power to the fan blades produces a 0.6-m-  produces useful effects, that is, fluid motion and a rise in avail-
diameter axial stream of air having a speed of 12 m/s. The flow  able energy. Estimate the acrodynamic efficiency of this fan.

far upstream of the fan has negligible speed.

SOLUTION

We select a fixed and nondeforming control volume as is illus- Section (1)
trated in Fig. E5.24, The application of Eq. 5.82 to the contents

of this control volume leads to \ Stream surface
\</ Section (2)

Control volume
______ - .

0 (atmospheric pressures cancel) 0(V,=0)

pi V3 '
Wahat — loss = (/* " 2 = g'l) = (% +
netin ) - :

0 (no elevation change)

I
")‘ +g\, (I)

-~

where W, 4 vetin — 1085 is the amount of work added to the air that
produces a useful effect. Equation 1 leads to

o e — ———————

RITY. L
1 l
NS\

V3 (12 m/s)? ;
W — lOss = s 2 /
net in 2 2|](|\g'm)/(.\"\‘)]

|

72.0 N'm/kg (2) (Ans) W FigureE5.24




A reasonable estimate of efficiency, n, would be the ratio of

amount of work that produces a useful effect. Eq. 2, to the
amount of work delivered to the fan blades. That is,

W "
shaft i
net in loss

= _ 3)

W \hnlvl

netin
To calculate the efficiency. we need a value of W, g ne ine Which
is related to the power delivered to the blades,W. We note

shalt net in*

that
v
w shaft
net in
Waun = . (4)
net in m

where the mass flowrate, m. is (from Eq. 5.6)
: D3
m = pAV = p o v, (5)

For fluid density. p. we use 1.23 kg/m’ (standard air) and. thus.
from Eqs. 4 and 5 we obtain

“‘lsh.]ll
W oo onetim
N in (prD3/4)V,

_ (0.4 kW)[1000 (Nm)/ (skW)]
(23 kg/nf)l(;r)(l).() m)?/41(12 m/s)
or

Wt = 95.8 N-m/kg (6)

net in
From Egs. 2, 3, and 6 we obtain

72.0 N-m/kg

= = (.752
95.8 N-m/kg

7 (Ans)

COMMENT Note that only 75% of the power that was deliv-
ered to the air resulted in useful effects and, thus, 25% of the shaft
power is lost to air friction. The power input to the motor would
be more than 0.4 kW because of electrical losses in the motor and
mechanical friction in the bearings.




If Eq. 5.82, which involves energy per unit mass, is multiplied by fluid density, p, we obtain

PV
Yoot = Pin s 2 = 7Zin + I"vshal.'l I [)(lOSS) (5'83)
net
where y = pg is the specific weight of the fluid. Equation 5.83 involves energy per unit volume and
the units involved are identical with those used for pressure (ft - Ib/ft’ = Ib/ft?orN - m/m’ = N/m?),
If Eq. 5.82 is divided by the acceleration of gravity, g, we get

)0 ‘/:.: ) I VZ‘
[r'“ Foe Stz = ’;‘ = 2" +oth—h
=8 8

Wsh;lﬁ Wshufl

e —_ netin netn

h-‘ = Wihaft net in/ - p—— =
mg rQ

We can define a total head. H. as follows:

ffﬂm = h'm X }I_i - ;IL




(a)
(b)

FIND Determine

the flowrate and

the power loss associated with this flow.

(a)

The energy equation (Eq. 5.84) for this flow is

P2
Y

SOLUTION

t

The pump shown in Fig. E5.254 adds 10 horsepower
to the water as it pumps water from the lower lake to the upper
lake. The elevation difference between the lake surfaces is 30 fi
and the head loss is 15 [t
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Section (2)

B Figure E5.25ag

EXAMPLE 5.25

GIVEN

Section (1)




where points 2 and | (corresponding to “out™ and “in™ in Eq.
5.84) are located on the lake surfaces. Thus, p, = p, = 0 and
Vs = V| = 0 so that Eq. | becomes

h" = hl. o+ > 4 St 5| (2)
where z, = 30ft,z, = 0, and h, = 15 ft. The pump head is
obtained from Eq. 5.85 as

h\ = ‘i/\hufl net m/YQ

(10 hp)(550 ft - 1b/s/hp) /(62.4 b/t Q
88.1/Q

Il

where /i, is in ft when Q is in ft'/s.
Hence, from Eq. 2.

88.1/Q = 15ft + 30t
or

Q = 1.96 ft'/s {Ans)

(b) The power lost due to friction can be obtained from Eq. 5.85 as
Wi = yOh, = (62.4 Ib/fE)(1.96 ft'/s)(15 ft)
= 1830 ft - Ib/s (1 hp/550 ft - Ib/s)

= 3.33 hp (Ans)
COMMENTS The remaining 10hp — 3.33 hp = 6.67 hp
that the pump adds to the water is used to lift the water from the
lower to the upper lake. This energy is not “lost.” but it is stored
as potential energy.

By repeating the calculations for various head losses, i, the
results shown in Fig. E5.25b are obtained. Note that as the head
loss increases, the flowrate decreases because an increasing por-
tion of the 10 hp supplied by the pump is lost and. therefore, not
available to lift the fluid to the higher elevation.

Note that in this example the purpose of the pump is to lift the
water (a 30-ft head) and overcome the head loss (a 15-ft head): it
does not, overall, alter the waler’s pressure or velocity.

(15 ft, 1.96 ft°/s)




5.3.4 Application of the Energy Equation to Nonuniform Flows

The forms of the energy equation discussed in Sections 5.3.2 and 5.3.3 are applicable to one-
dimensional flows, flows that are approximated with uniform velocity distributions where fluid
crosses the control surface.

If the velocity profile at any section where flow crosses the control surface 18 not uniform,
inspection of the energy equation for a control volume, Eq. 5.64, suggests that the integral

will require special attention.

Jua|ngin |
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For one stream of fluid entering and leaving the contral volume, we can define the relationship

Vv 5 L[
f 2pV-ndA=m(a

where a is the kinetic energy coefficient and V is the average velocity defined earlier in Eq. 5.7.
From the above we can conclude that

maV? V2 "
=i A 5 pY - ndA

e

for flow through surface area A of the control surface. Thus,

f (V¥ 2)pV - ndA
A

a= ===
mV</2

Therefore, for nonuniform velocity profiles, the energy equation on an energy per unit mass basis for
the incompressible flow of one stream of fluid through a control volume that is steady in the mean is

2 2
FourV o _ P @V

B8low = 5 a5 83in iy Wahan — loss (5'87)

/) - net in




On an energy per unit volume basis we have
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EXAMPLE 5.26

Energy—Effect of Nonuniform Velocity Profile

GIVEN The small fan shown in Fig. E5.26 moves air at a mass D, = 30 mm
1

flowrate of 0.1 kg/min. Upstream of the fan, the pipe diameteris = = = @ ——V————————— —
Turbulent |

60 mm. the flow is laminar. the velocity distribution is parabolic.

flow i
and the Kinetic energy coefficient, a,, is equal to 2.0. Downstream ) VR
of the fan. the pipe diameter is 30 mm, the flow is turbulent. the Section (2)
velocity profile is quite uniform, and the kinetic energy coetfi- Gz=1.08

cient, a,, is equal to 1.08. The rise in static pressure across the
fan is 0.1 kPa, and the fan motor draws 0.14 W.

FIND Compare the value of loss calculated: (a) assuming uriform Control volume
velocity distributions, (b) considering actual velocity distribut:ons.

SOLUTION

D, =60 mm —» _

v

Application of Eq. 5.87 to the contents of the control volume
shown in Fig. E5.26 leads to

Section (1)
ay=2.0

0 (change in gz i1s negligible) Laminar flow
: = — m = 0,1 kg/min
P2 | @V;3 P Vi

et i ot Pt g B Figure E5.26
P 2 P 2

— loss + Waan (1)

net m




or solving Eq. 1 for loss we get
2 2
P2 — P a,V,  aV;
loss = w4 —( - e (2)
net in 4

To proceed further, we need values of Wyuq peiine V- and V.
These quantities can be obtained as follows. For shaft work

power to fan motor
Wihat =

net in m

or

(0.14 W)[(I N - m/s) /W]
0.1 kg/min

= 84.0N - m/kg (3)

Waaht = (60 s/min)

net in

For the average velocity at section (1). V|, from Eq. 5.11 we obtain
m
V=
/)/1 1
n
p(rD}/4)

(0.1 kg/min) (1 min/60 ) (1000 mm/m)*
- ﬁ( 12? kg)m""f)[ﬂ((rwdnﬁlﬁﬂ)i/ci’]’ -
= 0.479 m/s
For the average velocity at section (2), Vs,
7 (0.1 kg/min) (1 min/60 s) ( 1000 mm/m)°

5 (1.23 kg/m*)[x(30 mm)*/4]
= 1.92 m/s (5)

-

(a) For the assumed uniform velocity profiles (@, = a, = 1.0),
Eq. 2 yields

loss = W

net i )

'Ps : Vi 1
. (P.f pu) Ly 6)
N “

Using Eqgs. 3, 4. and 5 and the pressure rise given in the problem
statement, Eq. 6 gives
l N-m (0.1 kPa)(1000 Pa/kPa)(1 N/m*/Pa)
oss = 84.0 =

kg 1.23 kg/m’




(0.479 m/s)’ (1.92 m/s)? . 2(0.479 m/s)? 1.08(1.92 m/s)?

21 (kg - m)/(N - 8] Bll(kg-rn)/(N-sb)l 2[1 (kg - m)/(N - 5] 2[1 (kg-m)/r(.\l-sj)l

loss = 840N - m/kg — 81.3 N - m/kg loss = 84.0N - m/kg — 81.3 N - m/kg
+ 0.115N » m/kg — 1.84 N - m/kg + 0.230N . m/kg — 1.99 N . m/kg

= 0.975 N + m/kg (Ans) = 0.940 N - m/kg (Ans)

2! > J ~1 7 ") t S —_ " —_— “ -y . - .
(i.’) For the actual velocity profiles (@, = 2.a, = 1.08). Eq. 1 COMMENT The difference in loss calculated assuming uni-
BEYES form velocity profiles and actual velocity profiles is not large
Ps— pi’ Z V2 compared tO W seiin fOr this fluid flow situation.
- + a, — e (7)
P 2

0SS = Wy —

netan
If we use Egs. 3, 4, and 5 and the given pressure rise, Eq. 7 yields

(0.1 kPa)( 1000 Pa/kPa)(1 N/m*/Pa)

loss = 84 N - m/kg — 1.23 ka/m®
23 kg/m




5.3.5 Combination of the Energy Equation and the Moment-of-Momentum Equation®

I Eq. 5.82 is used for one-dimensional incompressible flow through a turbomachine, we can use
Eq. 5.54, developed in Section 5.2.4 from the moment-of-momentum equation (Eq. 5.42), to evalu-
ate shaft work. This application of both Eqs. 5.54 and 5.82 allows us to ascertain the amount of loss
that occurs in incompressible turbomachine flows as is demonstrated in Example 5.28.

Second Law of Thermodynamics—Irreversible Flow*

The second law of thermodynamics affords us with a means to verify the inequality
ity = ity = G = 0 (5.90)
n
for steady, incompressible, one-dimensional flow with friction (see Egs. 5.73 and 5.77). In this sec-
tion we continue to develop the notion of loss of useful energy for flow with friction.




5.4.1 Semi-infinitesimal Control Volume Statement
of the Energy Equation

If we apply the one-dimensional, steady flow energy equation, Eq. 5.70, to the contents of a control
volume that is infinitesimally thin as illustrated in Fig. 5.8, the result is

,;l[da + d(ﬁ ) + d( ‘;) + g(dz)‘ =604 (5.91)

For all pure substances including common engineering fluids, such as air, water, and oil, the fol-
lowing relationship among fluid properties, called the first Tds equation, is valid (see. for example,
Ref. 3).

1
Tds = dit + pd(p) (5.92)

where T is the absolute temperature and s is the entropy per unit mass. (See Chapter 11 and Ref. 3
for more information about entropy.)
Combining Eqs. 5.91 and 5.92 we get

’[Td- - 1(1) + I(B) + l(v—l) + 1—] = 5Q
m 5 — Pt » (¢ P ¢ 5 g dz pet

or, dividing through by st and letting 8¢, = 50, /., we obtain
in

dp V?
— 4+ ¥ + = — ’l‘ ! - B
5 d( 2 ) gd (T ds quf,)




5.4.2 Semi-infinitesimal Control Volume Statement
of the Second Law of Thermodynamics

A general statement of the second law of thermodynamics is (see Ref. 3)

D 0Q:
spav= Y (-
D:/ e ( T

sV

Semi-infinitesimal
control volume

W Figure 5.9 Semi-infinitesimal control volume.




Z(‘SQ?‘d) = Z(‘SQ() (5.95)
T T T

With the help of the Reynolds transport theorem (Eq. 4.19) the system time derivative can be
expressed for the contents of the coincident fixed and nondeforming control volume. Using
Eq. 4.19, we obtain

D d =
3 = spdV + /e A
D!/ spdV i / spd /sp\- n dA (5.96)

SVS oV cs

Eqs. 5.94, 5.95, and 5.96 comhine to give

" BQnet
‘%/';S/)dv-}- fspv-ndA=_-2< T )

s

At any instant for steady flow

g{ f spdV =0 (5.98)

oy

If the flow consists of only one stream through the control volume and if the properties are uni-
formly distributed (one-dimensional flow), Eqgs. 5.97 and 5.98 lead to

Qe
’h(soul o sin) = Z 77:"]”- (5‘99)
For the infinitesimally thin control volume of Fig. 5.8, Eq. 5.99 yields
Qe
mds =Y, —




If all of the fluid in the infinitesimally thin control volume is considered as being at a uniform
temperature, T, then from Eq. 5.100 we get

Tds = 8¢,

n

Tds — 8gpe = 0 (5.101)

m
The equality is for any reversible (frictionless) process; the inequality is for all irreversible (friction)
processes.

The relationship
between entropy
and heat transfer
is different for
reversible and
irreversible
processes.




54.3 Combination of the Equations of the First and Second Laws
of Thermodynamics

Combining Egs. 5.93 and 5.101, we conclude that

d 2
= [p o d(v) + gdz:] = (5.102)
P 2

.-

) + g dz] = o(loss) = (T ds — 0q,.) (5.103)

in

(5.104)

net in

V2
3 ) St gd:-] — 5(1085) — (s“’slmfl (5-105)




Equations 5.103 and 5.105 are valid for incompressible and compressible flows. If we combine
Eqgs. 5.92 and 5.103, we obtain

|
du + pd(p) — 8¢, = 6(loss) (5.106)

m

For incompressible flow, d(1/p) = 0 and, thus, from Eq. 5.106,
dit — 8q,e = 6(loss) (5.107)

Integrating for a finite control volume, we obtain
Wi — Ilm = Ypet = loss
mn
which is the same conclusion we reached earlier (see Eq. 5.78) for incompressible flows.

For compressible flow, d(ljp) # 0, and thus when we apply Eq. 5.106 to a finite control
volume we obtain

out 1
Wiy — W5y + f pd(—) ~ Gua = lOSS (5.108)

in P

indicating that i, — ty, — Guerin 15 NOL equal 1o loss.




