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Learning Objectives

After completing this chapter, yvou should be able 1:

determine various kinematic elements of the flow given the yelocity field.

explain the conditions necessary for a velocity field to satisly the continmity equation.
apply the concepts o stream function and velocity potential.

characterize simple potential flow helds.

analyze certain types of flows using the Navier-Stokes equations.




6.1 Fluid Element Kinematics

Because of the generally complex velocity varation within the ficld, we expect the element not
only to translate from one position to another but to be ceformed as well. Even though they occur
simultaneously, we can break the element’s complex mwotion into four components: translation,
roration, linear deformation, and angular defrrmatior. as shewn in Fig, 6.15h. Since clement
motion and deformation are intimately related to the velocity and variation of velccity thrcughout
the flow field, we wil briefly review the manner in which velocity and acceleration fields can be
described.

Fluid elemeni
INETCN CenTyEal s

o translation,
linear deformation,
Folalion,

aned angular
defarmarion.



&>

Particle at trme t + &1

Pariicle at timer

{a) - Translaton Raotation

Linear coformatian Argular delormation
(b)

W Figure 6.1 CGeneral fluid element motion and its components: (@) total clement motion; (b) componens
of dlement motion.




6.1.1 Velocity and Acceleration Fields Revisited

V=ui +vj+nk
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The acceleration 1s also concisely expressed as
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where the operator
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1s termed the material derivative, or substantial derivative. In vector notation
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6.1.2 Linear Motion and Deformation

The corresponding change in the oniginal volume, 6 ¥ = &x dy dz. would be

This rate of change of the volume per unit volume 1s called the velumetric dilatation rate.

/A .

However, for an incompressible fluid the volumetnc dilatation rate 1s zero
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Change in 5% = (d—; Bx) (v 82)(57)

and the rare at which the volume &# 1s changing per unit volume due to the gradient du/dx 1s
1 do¥F d dx) &t o
Ldon)_ , [(ouian
Sr—l

= — 6.5
oF  dt ot dx ©.5)

If velocity gradients ov/dy and dw/dz are also present. then using a similar analysis 1t follows that.
in the general case,

1 d(d¥) au iw
=—+—+—=

_= — vV 6.9
oF dt dax Ay dz (6.9)

BFIGURE 6.3
Linear deformartion of a fluid
element.




Angular Motion and Deformation
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BFIGURE 6.4
Angular motion and deforma-
tion of a fluid element.
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In this mstance if du/dy 15 positive, wqop Will be clockwise. The rotfation, w.. of the element about the
z axis 15 defined as the average of the angular velocities wg and wgp of the two mutually perpendicular
lines @4 and OB.! Thus. if counterclockwise rotation is considered to be positive, it follows that

1/av du _
wW; = —(T - —) (6.12)
2\ ax  dy,

—

Rotation of the field element about the other two coordinate axes can be obtamned 1n a stmualar
manner with the result that for rotation about the x axis

(E‘W v ) (6.13
w =—|——— 0.13
*o2\ay oz, J

—

and for rotation about the y axis
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The three components, @,. @,. and @. can be combined to give the rotation vector, w. m the form
0 =wl+oj+ ok (6.15)

An examination of this result reveals that w 1s equal to one-half the curl of the velocity vector. That 1s.
w=1cul V=1V xV (6.16)

since by definition of the vector operator V x V

1 (ﬂw aru)g 1(31.; dw) l(ﬂj - ﬁ)i&
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2\ady  az 2\dz  ax 2\ax oy

The vorticity, £. 15 defined as a vector that 1s twice the rotation vector; that 1s,
I=20=VXxV (6.17)

/A .

More generally if V X V = 0, then the rotation (and the vorticity) are zero




ExAvPLE 61 R
GIVEN For a certain two-dimensional flow field the velocity FIND Is this flow irrotational?
15 given by the equation
V=@ -)i-20)
SOLUTION
For an irrofational flow the rotation vector, «, having the compo-  Zero, since by definition of two-dimensional flow  and v are not
nents given by Egs. 6.12, 6.13. and 6.14 must be zero. Forthe pre-  functions of z, and w is zero. In this instance the condition for ir-
scribed velocity field rotationality simply becomes @, = 0 or dv/ox = du/ay.
. . The streamlines for the steady, two-dimensional flow of this ex-
u=x -y v=-y w=0 ample are shown in Fig. E6.1. (Information about how to calculate
and therefore ) .
iy = l (a_w _ E) = U ____.-/ / ,-'I.lll || .I‘.'!..
2\ay oz /
AT 1
_ (o aw) _ / ' N
%=2\az ax)"° : | I /
1w du 1 A
=50 =5 ) =7 [(=2) - (=] =0 / | ~
2 (dl’ ) 2 7 .
a ) \\“m_ .
Thus, the flow is irrotational. (Ans) / e N
. ===
COMMENTS It s to be noted that for a two-dimensional flow x
field (where the flow is in the x—y plane) w, and w, will alwaysbe B F1 G UR E E&.1




In addition to the rotation associated with the derivatives du/dy and dv/dx, it 1s observed
from Fig. 645 that these denvatives can cause the flud element to undergo an angular
deformation, which results 1n a change in shape of the element. The change in the original nght
angle formed by the lines 04 and OB 1s termed the sheanng strain, éy. and from Fig. 6.4b

dy = da + 6
where &y 1s considered to be positive if the original nght angle 1s decreasing. The rate of change
of &y 1s called the rate of shearing strain or the rate of angular deformation and 1s commonly

denoted with the symbol . The angles d« and 68 are related to the velocity gradients through Eqs.
6.10 and 6.11 so that

5 av/fax) 8t + (au/ay) 5t
RPN [ L ST
af—sll ﬁf af—sll 5?
and. therefore.
av o
¥y =—+— (6.18)

DN




Conservation of Mass

As 15 discussed 1n Section 5.1, conservation of mass requires that the mass. M, of a system remain
constant as the system moves through the flow field. In equation form this principle 1s expressed

DM,
Dt

We found 1t convenient to use the control volume approach for fluid flow problems, with the contro
volume representation of the conservation of mass written as

)0 ,
- l pd¥ + | pV-tiddi=0 (6.19
it |

< L5



6.2.1 Differential Form of Continuity Equation

We will take as our control volume the small, stationary cubical element shown in Fig. 6.5a. At
the center of the element the fluid density 15 p and the velocity has components u, v, and w. Since
the element 15 small. the volume integral in Eq. 6.19 can be expressed as
d dp
— d¥ =—dbx by d 6.20
p J P ar O ay bz (6.20)

&}'
7; pu + 2o} %]ay 5

(a) (&)
B FIGURE 6.5 A dfferential element for the development of conservation of mass equation.




Fic. 1. — Mass flow into and out of a small rectangular region of
space.




The rate of mass flow through the surfaces of the element can be obtained by considening the flow
in each of the coordinate directions separately. For example, in Fig. 6.55 flow in the x direction 1s

depicted. If we let pu represent the x component of the mass rate of flow per unit area at the center
of the element. then on the right face

d(pu) &x

6.21
dx 2 ( )

PU |y s @y = pu +

and on the left face

d(pu) bx

6.22
dx 2 ( )

P |x—(5"-l:-"1:| - pu
Note that we are really using a Taylor series expansion of pu and neglecting higher order terms
such as (8x)°, (8x)°. and so on. When the right-hand sides of Eqs. 6.21 and 6.22 are multiplied by
the area &y oz, the rate at which mass 1s crossing the right and left sides of the element are obtamed
as 1s illustrated in Fig. 6.56. When these two expressions are combined. the net rate of mass flowmng
from the element through the two surfaces can be expressed as

outflow in x direction

Net rate of mass [ d(pu) dx
dx 2

o+ ——} oy oz

d pu)

d dx
— ’pu— (pu) o ox dy dz  (6.23)




For simplicity. only flow in the x direction has been considered in Fig. 6.55, but, in general.
there will also be flow in the y and z directions. An analysis similar to the one used for flow in the
x direction shows that

Net rate of mass _ 9(p?) :
outflow 1n v direction N ay ox 8y bz (6.24)

Net rate of mass _ i pw)
outflow 1n = direction iz

ox dy bz

d a( pv o pw
Netrateof _ () + (o) + (o) 8x By 8z (6.26)
mass outflow ox ay az

From Eqs. 6.19, 6.20, and 6.26 1t now follows that the differential equation for conservation of mass 1s

ap  d(pu) alpv) alpw)
ar+a;r+a;p+az_

0 (6.27)




The continuity equation 15 one of the fundamental equations of fluid mechanics and, as

expressed in Eq. 6.27, 1s valid for steady or unsteady flow. and compressible or mcompressible
fluids. In vector notation, Eq. 6.27 can be written as

d

P oiv.gv=0 (6.28)
ot

Two special cases are of particular interest. For steady flow of compressible fluids

V-pV=0

o) | alpv) | alow
i ay az

=0 (6.29)

Thas follows since by definition p 15 not a function of time for steady flow, but could be a function
of position. For incompressible fluids the fluud density. p. 1s a constant throughout the flow field
so that Eq. 6.28 becomes

V-V=0 (6.30)

dul ar aw
— +— 4+ — =
dx  ay 0z
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GIVEN The velocity components for a certain incompress-
ible. steady flow field are

u=x1+}'2+32
V=xy +yz+:z
w=7

SoLuTION

[ BEUTINRFY Continuity Equation

FIND Determine the form of the z component. w. required to
satisfy the continuity equation.

Any physically possible velocity distnibution must for an incom-
pressible fluid satisfy conservation of mass as expressed by the
continuity equation

du dv  dw
—+—+—=0
dx  dy oz
For the given velocity distribution
ﬁ = d E — + =
PR an oy X + z

5o that the required expression for dw/dz 1s
—=-Xx—(x+z)=-3x—=:

Integration with respect to £ yields

o2

w= —3xz — % + flx.») (Ans)

COMMENT The third velocity component cannot be explic-
itly determined since the function f{x. y) can have any form and
conservation of mass will still be satisfied. The specific form of
this function will be governed by the flow field described by these
velocity components—that 1s, some additional information is
needed to completely determine w.

N\




6.2.2 Cylindrical Polar Coordinates

V=08 + v, + v (6.32)

where &, &y, and é_ are the umt vectors in the 7, 8, and z directions, respectively, as are illustrated
m Fig. 6.6. The use of cylindrical coordinates 1s particularly convemient when the boundaries of
the flow system are cylindrical. Several examples illustrating the use of cylindrical coordmates will
be given in succeeding sections in this chapter.

The differential form of the continuity equation in cylindrical coordinates 1s

ip 10(rpv,) 10 ) po,
ap  1d(rpv,)  19(pve) i(pv.)
it N rooaf 0z

=0 (6.33)

This equation can be derived by following the same procedure used in the preceding section (see
Problem 6.20). For steady, compressible flow

L pve) | 3(pv2)

— -
dr rooae dz

1d(rpw,)
"

=0 (6.34)

For incompressible fluids (for steady or unsteady flow)

1d(ry,)  1dv, dv,
+ — + =0
roodr r o8 dz




B FIGURE 6.6 The representation of
velocity components in cvlindrical polar coordinates.




6.2.3 The Stream Function

Steady, incompressible, plane, two-dimensional flow represents one of the simplest types of flow
of practical importance. By plane, two-dimensional flow we mean that there are only two velocity
components, such as ¥ and v, when the flow i1s considered to be in the x—y plane. For this flow

the continuity equation, Eq. 6.31, reduces to

i v
— + — =10 (6.36)
dx  dy

We still have two varnables, u and v, to deal with, but they must be related n a special way as
indicated by Eq. 6.36. This equation suggests that if we define a function s(x, ), called the stream

Jfuncrion, which relates the velocities shown by the fipure in the margin as

Velocity compo-
nents in a ftwo-
dimensional flow
field can be ex-
pressed in terms of
a stream function.




then the continmty equation 1s identically satisfied. This conclusion can be venified by sumply
substituting the expressions for u and v into Eq. 6.36 so that

i(ﬂ)Jri( mp)z il B il .
dx c]_}:' :'J'_}»‘ ox ax ﬂ_}' ﬂ]-’ dx

Thus, whenever the velocity components are defined in terms of the stream function we know that
conservation of mass will be satisfied. Of course, we still do not know what is(x. y) 1s for a particular
problem, but at least we have sumplified the analysis by having to determine only one unknown
function, i(x, y), rather than the two functions, u(x. y) and v(x, y).

Another particular advantage of using the stream function is related to the fact that /ines
along which i is constant are streamlines. Recall from Section 4.1.4 that streamlines are lines in
the flow field that are everywhere tangent to the velocities, as 1s illustrated in Fig. 6.7 It follows
from the definition of the streamline that the slope at any point along a streamline 15 given by

(4
i



The change in the value of i as we move from one pomt (x, y) to a nearby pomnt (x + dx, y + dy)
15 given by the relationship:

—vdx + udy

Along a line of constant ¢ we have dif = 0 so that
—vdx + udy =0

and, therefore, along a line of constant




Streamlines

B FIGURE 6.7 Velocity and velocity
components along a streamline.




W + dy

M FIGURE 6.8 The flow between two streamlines.




or in terms of the stream function

The right-hand side of Eq. 6.38 1s equal to dir so that
dg = dis (6.39)

Thus, the volume rate of flow, g, between two streamlines such as i, and i, of Fig. 6 85 can be
determined by integrating Eq. 6.39 to yield

¥,
q = J. dp = i, — i (6.40)

The relative value of i, with respect to i, determines the direction of flow, as shown by the figure
in the margin.




In cylindrical coord s the continuty equation (Eq. 6.35) for incompressible, plane, two-
dimensional flow reduces to

19(rv,) 1wy

Foodr r o8

(6.41)

and the velocity components, v, and v,. can be related to the stream function, (7, #), through the
equations




GIVEN The velocity components in a steady. incompressible.
two-dimensional flow field are

Exavpie 6.3 IR

FIND
(a) Determine the corresponding stream function and

(b) Show on a sketch several streamlines. Indicate the direction
of flow along the streamlines.

u =2y
T = 4x
SoLuTION
(a) From the definition of the stream function (Eqs. 6.37)
afr
= —_-— = 2 K
u P )
and
d
v=-2 &
dx

The first of these equations can be integrated to give

¥ =+ filx)
where fi(x) 15 an arbitrary function of x. Simularly from the sec-
ond equation

b= 22 + )

where f5(v) 1s an arbitrary function of y. It now follows that in or-

der to satisfy both expressions for the stream function
=-2x*+y'+C (Ans)

where C 15 an arbitrary constant.

1l
o

Y w

i
A\

w=0

W
¥

[
7\

HBFIGURE E&.3




6.3 Conservation of Linear Momentum

To develop the differential momentum equations we can start with the linear momentum
equation
_Dp

= 6.43
D ¢ )

S¥S

where F 1s the resultant force acting on a fluid mass, P is the linear momentum defined as

P= ( V dm
< 5¥5

-

> Fromens orme = l Vpd¥ + J PV - i dA
B

conirol volume Jow s

It 1s probably simpler to use the system approach




where 6F 1s the resultant force acting on ém. Using this system approach ém can be treated as a
constant so that

DV
oF = om—
Dt

But DV/Dt is the acceleration, a. of the element. Thus,

oF = om a

0.3.1 Description of Forces Acting on the Differential Element

In general, two types of forces need to be considered: surface forces, which act on the surface of the
differential element, and body forces, which are distributed throughout the element. For our purpose,
the only body force, 6F,. of interest 1s the weight of the element, which can be expressed as

oF, = 8m g (6.46) /

where g 1s the vector representation of the acceleration of gravity. In component form
OF, = om g, (6.47a)
8F, = Om g, (6.47h)
OF . = om g. (6.47¢c)




Surface forces act on the element as a result of 1ts mteraction with 1ts surroundings.

The normal stress. o, 1s defined as
ar,

ir, — ~

™~ arbitrary B F 1 G UR E 6.9 Components of force acting
surface om am arbitrary differential area.

The force oF, can be resolved into three components, 6F,. 6F;. and oF,.
where 6F, 1s normal to the area. 64. and 6F; and oF, are parallel to the area and

orthogonal to|each other.




k1

B FIGURE 6.10 Double subscript notation for siresses.

and the shearing stresses are defined as




We will use o for normal stresses and 7 for shearing stresses
For simplicity only the forces in the x direction are shown. Note that the stresses must be multiplied
by the area on which they act to obtain the force. Summing all these forces in the x direction yields

NT ':-'IT_]:J: E:.]’T
oF, = + + ox oy oz (6.482a)

ox dy dz

Surface forces in the x direction acting on a

-
&

B FIGURE 6.11
fluid element.




F1G 6.12 Normal and tangential surface forces per unit area (stress) on a small rectangular flud element 1 motion.




for the resultant surface force in the x direction. In a similar manner the resultant surface forces in

the y and z directions can be obtained and expressed as

,a F -'1}’ — ( - - _|_ - o
. 00X r.'i'_‘__l.--T
T

iz o 'TJ-‘-: oo,

OF.. = ( + + ) ox 6y Oz

ox oy oz
o

The resultant surface force can now be expressed as
SF, = 8F,i + 8F, ] + 8F_k

and this force combined with the body force. 6F,. yields the resultant force. 6F
differential mass. ém. That is, 6F = 6F, + 8F,,.

(6.48b)

(6.48¢)

(6.49)

. acting on the



6.3.2 Equations of Motion

The expressions for the body and surface forces can now be used in conjunction with Eq. 6.45 to
develop the equations of motion. In component form Eq. 6.45 can be written as

oF, = om a,
oF, = ém a,
OoF, = ém a,

where ém = p éx dy 6z, and the acceleration components are given by Eq. 6.3. It now follows
(using Eqs. 6.47 and 6.48 for the forces on the element) that

do,, g Au du ;
+ — : + + (6.502)
ox

Pgx T

Ty : . : .
pgy + + : — + (6.50D)
ax ay

- '] : - qu
Fg_.; a - - .-I (ﬁ“‘ E)

where the element volume dx éy 6z cancels out.




6.4 Inviscid Flow

Flow fields in which the shearmng stresses are assumed to be negligible are
said to be imviscid, nonviscous, or frictionless.

As 15 discussed m Section 2.1, for fluids mn which there are no sheanng stresses the normal stress

at a point 1s independent of direction—that 1s. o, = o, = o In this instance we define the pressure, p.
as the negative of the normal stress so that

—p = [TJ:.T = [TJ{I-" = .—_]-33

The negative sign 15 used so that a compressive normal stress (which 1s what we expect in a fluad)
will give a posifive value for p.




6.4.1 Euler’s Equations of Motion

For an inviscid flow in which all the shearing stresses are zero, and the normal stresses are replaced
by —p. the general equations of motion (Eqs. 6.50) reduce to

3 (' i i u

pgx—‘£=p —H+y.—H+-1r—H+w‘—) (6.51a)
dx \ ot dx ey dz
a (v v av v

pg}.——p=p —tU—+t Vv —+tw_— (6.51Db)
ey \ ot X dy G
i (i w9 i

pga—‘£=p —l'?+nr‘—+tf1 w+w_w> (6.51c)
dz \ of ox dy iz

These equations are commonly referred to as Ewler’s equations of motion, named in honor of
Leonhard Euler (1707—1783), a famous Swiss mathematician who pioneered work on the relationship
between pressure and flow. In vector notation Euler’s equations can be expressed as

A
pge —Np=p [E + (V- T‘)T} (6.52)



6.4.2 The Bernoulli Equation

In Section 3.2 the Bernoulli equation was derived by a direct application of Newton's second law
to a flud particle moving along a streamline. In this section we will agamn derve this important

Streamline

B FIGURE 6.12 The notation for
differential length along a streamline.

equation, starting from Euler’s equations. Of course, we should obtain the same result since Euler’s
equations simply represent a statement of Newton's second law expressed 1n a general form that
1s useful for flow problems and maintains the restriction of zero viscosity. We will restrict our
attention to steady flow so Euler’s equation in vector form becomes

pg — Vp =p(V- V)V (6.53)




We wish to mtegrate this differential equation along some arbitrary streamline (Fig. 6.12) and select
the coordmate system with the z axis vertical (with “up” being positive) so that, as shown by the
figure 1n the margin, the acceleration of gravity vector can be expressed as

g = —gV:z

where g i1s the magnitude of the acceleration of gravity vector. Also, 1t will be convenient to use
the vector identity

(V- VJV=3V(V-V) -V x (VxV)

Equation 6.53 can now be wrtten in the form

—pg¥z = Vp = SV(V - ¥) = pV X (V X V)

and this equation can be rearranged to yield

Vo 1 2 . ;
?"‘EF{FJ‘FE‘FE:? % (V x V)




We next take the dot product of each term with a differential length ds along a streamline (Fig.

6.12). Thus,
Vo L :
" -ds+E‘F{Fj-ds + eV ds=[Vx(VxV)] ds (6.54)

Since ds has a direction along the streamline, the vectors ds and V are parallel. However. as shown
by the figure in the margin, the vector V X (V X V) 1s perpendicular to V (why?), so 1t follows that

Vx(VxV)]:ds=0

Recall also that the dot product of the gradient of a scalar and a differential length gives the
d@arﬂntia}‘ ::,h:a.ﬂg;e in the scalar in the direction of the differential length. That 1s. with ds =
dxi+ dyj + dzk we can wnite Vp - ds = (dp/ax) dx + (dp/av)dy + (dp/faz)dz = dp. Thus, Eq.

6.54 becomes

d 1
?F - Ed{rﬁj +gdz==0 (6.55)

Euler s equations
Vx(f = V) Eﬂﬂmmﬂdm
give the relation-
ship among pres-
1l sure, velocity, and
elevation for invis-
cid fluids




where the change in p. V. and z 15 along the streamline. Equation 6.55 can now be integrated to
give

5 + gz = constant (6.50)

i

which indicates that the sum of the three terms on the left side of the equation must remain a
constant along a given streamline. Equation 6.56 15 valid for both compressible and incompressible




mnviscid flows. but for compressible fluids the variation m p with p must be specified before the
first term 1 Eq. 6.56 can be evaluated.
For mviscid. mcompressible flmds (commeonly called ideal fTuids) Eq. 6.56 can be written as

Ve _
E + > + gz = constant along a streamline (6.57)

and this equation 15 the Bernonlli equation used extensively in Chapter 3. It 15 often convenient to
write Eq. 6.57 between two points (1) and (2) along a streamline and to express the equation 1 the
“head” form by dividing each term by g so that

(6.58)

It should be again emphasized that the Bernoull: equation, as expressed by Eqs. 6.57 and 6.58. 15
restricted to the following:

m inviscid flow m mcompressible flow
m steady flow m flow along a streamline

You may want to go back and review some of the examples in Chapter 3 that illustrate the use of
the Bernoulli equation.




6.4.3 Irrotational Flow

For example, for rotation about the 7 axis to be zero, 1t follows from Eq. 6.12 that

_1lfav dwy
R PR B

and. therefore,

aw_a:._r

ax dy

Similarly from Eqs. 6.13 and 6.14

dw  av
E —_ E (6.60)
o dw

_— = 0.01
az ax ( )

7/
For an mnwviscid fluid there are no shearing stresses—the only forces acting on a fluid element

are 1ts weight and pressure forces. Since the weight acts through the element center of gravity, and
the pressure acts in a direction normal to the element surface. neither of these forces can cause the
element to rotate. Therefore_ for an inviscid fluid. if some part of the flow field 1s irrotational the

fluid elements emanating from this region will not take on any rotation as they progress through
the flow field. '
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6.4.4 The Bernoulli Equation for Irrotational Flow

In the development of the Bemmoull equation in Section 6.4 2, Eq. 6.54 was integrated along a
streamline. This restriction was imposed so the right side of the equation could be set equal to
zero; that 1s,

[Vx(VxV)]-ds=10

(since ds 15 parallel to V). However, for irrotational flow, ¥ X V = 0, so the right side of Eq. 6.54
1s zero regardless of the direction of ds. We can now follow the same procedure used to obtain Eq.
6.55. where the differential changes dp. d(¥7). and d= can be taken in any direction. Integration of

— + — + = constant 6.62

where for irrotational flow the constant 1s the same throughout the flow field Thus, for
imncompressible, irrotational flow the Bermoulli equation can be wnitten as

Jdp 7?2

#

(6.63)
Y 2g

between any rwo points in the flow field. Equation 6.63 is exactly the same form as Eq. 6.58 but
15 not limited to application along a streamline. However, Eq. 6.63 15 restricted to

m inviscid flow m mcompressible flow

B steady flow B urotational flow




6.4.5 The Velocity Potential

For an wrrotational flow the velocity gradients are related through Eqs. 6.59. 6.60, and 6.61. It
follows that in this case the velocity components can be expressed in terms of a scalar function
$(x.y.2.1) as

B difs dih b

- V= — W= — (6.64)
ax ay oz

)

where ¢ 1s called the velocity potential. Direct substitution of these expressions for the velocity
components mto Eqs. 6.59. 6.60. and 6.61 will venfy that a velocity field defined by Eqs. 6.64 1s
indeed irrotational. In vector form, Eqs. 6.64 can be written as

50 that for an irrotational flow the velocity 15 expressible as the gradient of a scalar function ¢




For an incompressible fluid we know from conservation of mass that
V.Vv=0
and therefore for incompressible. irrotational flow (with V = V) 1t follows that
Vi =0

where V*( ) = V - V( ) is the Laplacian operator. In Cartesian coordinates

Fob &

R

ox” dy” dz*
This differential equation arises in many different areas of engineering and physics and 1is called
Laplace’s equation. Thus, inviscid, incompressible, irrotational flow fields are governed by
Laplace’s equation. This type of flow 15 commonly called a porential flow.

Imviscid, incom-
pressible, irrota-
tional flow fields
are governad by
Laplace’s equation
and are called
potential flows.

Vorticity contours




For some problems it will be convenient to use cyvlindrical coordinates. . @, and z. In this
coordinate system the gradient operator 1s

(6.67)

where ¢ = ¢(r. 0. z). Since
V = ve, + 18, + 1.8
1t follows for an wrotational flow (with V = V)

ag 13 o
A

Also, Laplace’s equation in cylindrical coordinates 1s

1a(ra¢) 1 &g eﬁ;::ﬂ

—_

Foar iz

o) TR




_EXAMPLE 6.4

GIVEN The two-dimensional flow of a nonviscous, incom-
pressible fluid in the viciity of the 90° corner of Fig. E6.4a 1s
described by the stream function

= 277 5in 28

where  has units of m*/s when r is in meters. Assume the
fluid density is 10° kg/m’ and the x—y plane is horizontal—

Velocity Potential and Inviscid Flow Pressure

that is, there is no difference in elevation between points (1)
and (2).

FIND

(a) Determine, 1f possible, the comresponding velocity potential.
(b) If the pressure at point (1) on the wall 1s 30 kPa, what 1s the
pressure at point (2)7

Streamline {w = constant)

Equipotantial
ling
{¢ = constant)

BFIGURE Es.4




N

SoLUTION

(a) The radial and tangential velocity components can be ob-  and therefore by integration
famed from the stream funcfion as (see Eq. 6.42) & = 272 cos 20 + ;(6) @)

o, =2 cos 0 where () is an arbitrary function of #. Similarly
1ad

Fof
g _;E = —4rsin 20

and integration yields
¢ = 2r' cos 20 + fi(r) (2)

where f5(r) is an arbitrary function of 7. To satisfy both Eqs. 1 and
2, the velocity potential must have the form

¢=2cos20 + C (Ans)

where C'1s an arbitrary constant. As is the case for stream functions.
the specific value of C is not important, and it is customary to let
aeb C = 0 so that the velocity potenfial for this comer flow 1s
— = 4r cos 20

ar ¢ = 2r'cos 20 (Ans)

it follows that




(b) Since we have an irrotational flow of a nonviscous, incom-
pressible flmd, the Bernoulli equation can be applied between any
two points. Thus, between points (1) and (2) with no elevation

This result indicates that the square of the velocity at any point
depends only on the radial distance, r, to the point. Note that the
constant, 16. has units of s . Thus.

change
73 = (165 )1 m)* = 16 m/s’
noA_p B = (165 (1 m)
Yy % v X% and
or V3= (165~ %)(0.5 m)* = 4 m’/s’
- Substitution of these velocities into Eq. 3 gives
p=p+-(Fi-¥) 3) . 10° kg/m’
- _m=ﬂﬂx1wnmf+——§£—uﬁm%¥—4mﬁﬁ
Since — 36kPa (Ans)

12 = vl + vi

it follows that for any point within the flow field
2 = (4rcos 20) + (—4r sin 20)

= 16r%(cos’ 28 + sin” 26)

= 16r°
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0.8 Viscous Flow

6.8.1 Stress—Deformation Relationships

For incompressible Newtonian fluids it is known that the stresses are linearly related to the rates
of deformation and can be expressed in Cartesian coordinates as (for normal stresses)

On = P+ 2u— (6.1252)
(6.125b)

(6.125¢)

(for shearing stresses)

(6.1254)

dv e
7 (— - (6.125¢)

dz

dw )
— + — (6.1251)

dx oz

P = (E)(ﬂ-ﬂ + Ty + ﬂ'zz)




In cylindrical polar coordinates the stresses for incompressible Newtonian fluids are expressed
as (for normal stresses)
av,

—p + 2p— (6.126a)
ar

) L9vy | o 6.126b

y% Ay . (6. )
V.

—p + 2u— (6.126¢)

oz

(for shearing stresses)

d [ Vg 1 Eﬂ)r
o = p|r—(— | + = (6.126d)

ar\r roaf

=7 9, L0V, (6.126¢)
2= H\Co: T v e '

dv,  dv,
T = M + (6.126f)

dz dr
The double subscript has a meaning similar to that of stresses expressed in Cartesian coordinates—

that is, the first subscript indicates the plane on which the stress acts, and the second subscript the
direction.




6.8.2 The Navier—Stokes Equations

The stresses as defined in the preceding section can be substituted into the differential equations
of motion (Eqs. 6.50) and simplified by using the continuity equation (Eq. 6.31) to obtain:

(x direction)

p — + T, — —+ U__ -+ Hr'— = —— —'— P81 + # + 5 + N (6.1273)

(v direction)

v Iy, ey ) )

p(%—l—u%-l—tl;;—r?-i-w;—'):——p+pgl+,u.( + o+ ) (6.127b)

0z h ( h dy =",

(z direction)

O AW 3 | dp Pw o Pw Pw 6.127¢
p\ — + u- . = —+pe.+p >t — 1t (6.127¢)

dz _dx” dy 0z*




These three equations of motion, when combined with the conservation of mass equation (Eq. 6.31),
provide a complete mathematical description of the flow of incompressible Newtonian fluids. We
have four equations and four unknowns (u, v, w, and p), and therefore the problem is “well-posed”
in mathematical terms. Unfortunately. because of the general complexity of the Navier—Stokes
equations (they are nonlinear, second-order, partial differential equations). they are not amenable
to exact mathematical solutions except in a few instances. However, in those few instances in which
solutions have been obtained and compared with experimental results, the results have been in close
agreement. Thus. the Navier—Stokes equations are considered to be the governing differential
equations of motion for incompressible Newtonian fluids.




In terms of cylindrical polar coordinates (see the figure in the margin), the Navier—Stokes
equations can be written as

(» direction)

i v
or ar 00 r 26

0, v, vy v, v o,
p + o, — + — *
oz

op, o, |Lof ov) v 1 v, 2 0vg N v, 128
A AT - o T3 ) .128a
or - PSRRI\ rr o8> rrae o ( )

(# direction)

V.
ot dr Foal o -

dv v Vg 0V VU dv
p(—ﬂ—l-ﬂr—ﬂ-i-—a Rl —3)

oz

14 1a( ov vy 1 vy 2 dv,  dw
——% + pg, + ,L{——(r—ﬂ) T . A R
¥

6.128Db
For\. or e il LA T | az> ] ( )

(= direction)

[
or

U !1 d ( Emz) L1 v, . 5;21:2] ¢ 125
- - ——\r - . C
dz pez T I For\ or r* 06? 0z ( )

-




6.9 Some Simple Solutions for Laminar, Viscous, Incompressible Fluids

A principal difficulty in solving the Navier—Stokes equations is because of their nonlinearity arising
from the convective acceleration terms (i.e., u du/dx, w dv/oz, etc.). There are no general analytical
schemes for solving nonlinear partial differential equations (e.g.. superposmon of solutions cannot
be used). and each problem must be considered individually.

6.9.1 Steady, Laminar Flow between Fixed Parallel Plates

We first consider flow between the two horizontal. infinite parallel plates of Fig. 6.31a. For this
geometry the fluid particles move in the x direction parallel to the plates, and there is no velocity
in the y or z direction—that is, ¥ = 0 and w = 0. In this case it follows from the continuity equation
(Eq. 6.31) that du/ox = 0. Furthermore, there would be no variation of « in the = direction for
infinite plates, and for steady flow du/dt = 0 so that u = u(y). If these conditions are used in the
Navier—Stokes equations (Eqs. 6.127), they reduce to

0 P, (32”) 6.129
o 0y (6-129)
dp

T pg (6.130)
y

dp

6.131
dz ( )




where we have set g, = 0, g, = —g, and g, = 0. That is, the y axis points up. We see that for this
particular problem the Navier—Stokes equations reduce to some rather simple equations.
Equations 6.130 and 6.131 can be integrated to yield

p = —pgy + filx) (6.132)

which shows that the pressure varies hydrostatically in the y direction. Equation 6.129, rewritten
as
d*u 1dp

vt odx

can be integrated to give

d ()
12
dy  p\ix/)

and integrated again to yield

a
y = —(—p) P+ ey + o (6.133)
2w\ dx




]
T
+

M FIGURE 6.31 The viscous flow between parallel plates:

(a) coordinate system and notation used in analysis: (b) parabolic velocity
distribution for flow between parallel fixed plates.

Note that for this simple flow the pressure gradient. dp/dx. is treated as constant as far as the /
integration is concerned. since (as shown in Eq. 6.132) it is not a function of y. The two constants
¢, and ¢, must be determined from the boundary conditions. For example, if the two plates are

fixed. then # = 0 for y = = h (because of the no-slip condition for viscous fluids). To satisty this

condition ¢; = 0 and
|
e ()
2\ dx




Thus, the velocity distribution becomes

"= ZL (ap ) 02 — i) (6.134)

Equation 6.134 shows that the velocity profile between the two fixed plates is parabolic as illustrated
in Fig. 6.31D.

The volume rate of flow, ¢. passing between the plates (for a unit width in the = direction) is
obtained from the relationship

h h
1 0 p 5
f —h 2!—" ( )

20 (dp
q=——"\— (6.135)
3p \ ox

The pressure gradient dp/dx is negative, since the pressure decreases in the direction of flow. If
we let Ap represent the pressure drop between two points a distance € apart, then

Ap  dp
=

and Eq. 6.135 can be expressed as

(6.136)




The flow is proportional to the pressure gradient. inversely proportional to the viscosity, and strongly
dependent (~5°) on the gap width. In terms of the mean velocity, V. where V = ¢g/2h. Eq. 6.136
becomes

W’ Ap
3t
Equations 6.136 and 6.137 provide convenient relationships for relating the pressure drop along a
parallel-plate channel and the rate of flow or mean velocity. The maximum velocity, .. occurs
midway (y = 0) between the two plates. as shown in Fig. 6.31b, so that from Eq. 6.134

W [ dp
u = —\ —
A 2p \ dx

V= (6.137)

[ ——

=3V (6.138)



The details of the steady laminar flow between infinite parallel plates are completely predicted
by this solution to the Navier—Stokes equations. For example, if the pressure gradient. viscosity, and
plate spacing are specified, then from Eq. 6.134 the velocity profile can be determined. and from
Eqs. 6.136 and 6.137 the corresponding flowrate and mean velocity determined. In addition, from

Eq. 6.132 it follows that
) Ip
filx) = (_) X T Po
ox

where p, is a reference pressure at x = y = 0, and the pressure variation throughout the fluid can
be obtained from

.rf.:]p _ .
p = —pgv + (E) x + po (6.139)



6.9.2 Couette Flow

Another simple parallel-plate flow can be developed by fixing one plate and letting the other plate
move with a constant velocity, U, as is illustrated in Fig. 6.32a.

u=0aty=0andu = Uaty = b.

Maving
plate

04 06 08 10 12 14

H
u
()

B FIGURE 6.32 The viscous flow between parallel plates with bottom plate fixed and
upper plate moving (Couette flow): (@) coordinate system and notation used in analysis: (b) velocity
distribution as a function of parameter, P, where P = —(b*/2ul’) dp/0x. (From Ref. 8, used by
permission.)




(6.140)

or. in dimensionless form.

> [(op\(»y
S i_.r E 1 (6.141)




Lubricating
oil

Rotating shaft

Housing
/

B FIGURE 6.33 Flow in the narrow gap of a

journal bearing.

The actual velocity profile will depend on the dimensionless parameter

» [(a
=22
2pU\ dx

Several profiles are shown in Fig. 6.32b. This type of flow is called Coueire flow.

The simplest type of Couette flow is one for which the pressure gradient is zero: that 1s. the
fluid motion 1s caused by the fluid being dragged along by the moving boundary. In this case, with
dp/ox = 0, Eq. 6.140 simply reduces to

(6.142)




As illustrated in Fig. 6.33, the flow in an unloaded journal bearing might be approximated by this simple
Couette flow if the gap width is very small (i.e.,r, — 7, < r;). Inthis case U = r;w. b = r, — r;, and
the shearing stress resisting the rotation of the shaft can be simply calculated as 7 = pr;w/(r, — ;).

6.9.3 Steady, Laminar Flow in Circular Tubes

Probably the best known exact solution to the Navier—Stokes equations 1s for steady, incompressible,
laminar flow through a straight circular tube of constant cross section. This type of flow is commonly
called Hagen—Poiseuille flow. or simply Poiseuille flow. It is named in honor of J. L. Poiseuille (1799—
1869), a French physician, and G. H. L. Hagen (1797—1884), a German hydraulic engineer.

BFIGURE 6.34
The viscous flow in a horizon-
tal, circular tube: (a) coordi-
nate system and notation used
in analysis: (b) flow through
differential annular ring.




Consider the flow through a horizontal circular tube of radius R as i1s shown in Fig. 6.34a.
Because of the cylindrical geometry it is convenient to use cylindrical coordinates. We assume that
the flow is parallel to the walls so that v, = 0 and vy = 0, and from the continuity equation (6.34)
dv./oz = 0. Also. for steady. axisymmetric flow, v, is not a function of ¢ or 6 so the velocity. v..

is only a function of the radial position within the tube—that is, v, = v.(r). Under these conditions
the Navier—Stokes equations (Eqs. 6.128) reduce fo

r’J

— —pesing — L (6.143)
dr

0 p_LP (6.144)
= — cos I .
PE roao

+ !1 a( Emz)] 6.145
® ooy rar (6. )

where we have used the relationships g, = —g sin # and gy = —g cos 6 (with 8 measured from the
horizontal plane).

Equations 6.143 and 6.144 can be integrated to give
p = —pg(rsinb) + fi(z)

p = —pgy + fi(2) (6.146)




Equation 6.146 indicates that the pressure is hydrostatically distributed at any particular cross
section. and the = component of the pressure gradient. dp/dz. is not a function of » or 6.
The equation of motion in the = direction (Eq. 6.145) can be written in the form

1o/ ov.\ 1dp
”or (r Br) N ;E
and integrated (using the fact that dp/dz = constant) to give
v, |
¥ P = a(f)rz T ¢
Integrating again we obtain

-

oz

1 /d
0. (f) 24 e lnr + o (6.147)

o
Since we wish v, to be finite at the center of the tube (» = 0). it follows that ¢; = 0 [since
In (0) = —o=]. At the wall (» = R) the velocity must be zero so that

1 [fd
L ()
4\ oz

and the velocity distribution becomes




1 (dp 5
v, = 4H( )(,2 R?) (6.148)

Thus, at any cross section the velocity distribution is parabolic.
To obtain a relationship between the volume rate of flow, Q. passing through the tube and the

pressure gradient, we consider the flow through the differential, washer-shaped ring of Fig. 6.34b.
Since v, is constant on this ring, the volume rate of flow through the differential area d4 = (277) dr is

dQ = v,(2mr) dr

and therefore

R

0= Qﬂf v dr (6.149)

0

Equation 6.148 for v, can be substituted into Eq. 6.149. and the resulting equation integrated to

yield
R* (0
s (—p) (6.150)
8 \ dz

Poiseuille’s [aw re-
lates pressure drop
and flowrate for
steady, laminar flow
in circular tubes.




This relationship can be expressed in terms of the pressure drop, Ap. which occurs over a length,
(. along the tube, since

Ap ap

{ dz
and therefore

= mRAp 6.151
0 =" (6.151)

For a given pressure drop per unit length. the volume rate of flow is inversely proportional to the
viscosity and proportional to the tube radius to the fourth power. A doubling of the tube radius

produces a 16-fold increase in flow! Equation 6.151 is commonly called Poiseuille’s law.
In terms of the mean velocity, ¥, where ¥ = O/mR*, Eq. 6.151 becomes

R*Ap
V= (6.152)
St

The maximum velocity v,,,, occurs at the center of the tube, where from Eq. 6.148

R’ (ap) _ RAp
4 4l

Uﬂlﬂ.}l = -
oz




Vpax = 2V

The velocity distribution. as shown by the figure in the margin. can be written in terms of v, as

% _ (Y 6.154
=1—(= 15




6.9.4 Steady, Axial, Laminar Flow in an Annulus

M FIGURE 6.35 The viscous flow through an annulus.

v. =0 at r

—




1 (4 ri— rl
v, = —(i—p)lrz - In 1] (6.155)
o 4p\ oz In(r,/r;) 7,

The corresponding volume rate of flow is

Fa H Fg B Ff 5
¢ J v{2mr)dr = — (,_p)[r'; -7 - u]
K 8# = ln(}" a/ I-"wf)

or in terms of the pressure drop. Ap. in length { of the annulus

3=y
ln(ra/?"f) ]

The velocity at any radial location within the annular space can be obtained from Eq. 6.155.
The maximum velocity occurs at the radius » = r,, where dv./dr = 0. Thus.

re —ri |12 /
o= T (6157 /

/4

These results for flow through an annulus are valid only if the flow is laminar.

mA
0= p[r:—r?—

15
3t (6.156)




4 X cross-sectional area
wetted perimeter

The wetted perimeter is the perimeter in contact with the fluid. For an annulus

e =)
! 2m(r, + 1;) e I

XAMPLE 9.10

GIVEN A viscous liquid (p=1.18 X 10’ kg/m’*; u =
0.0045 N - s/m?) flows at a rate of 12 ml/s through a horizontal.
4-mm-diameter tube.

of velocity 1s parallel to the tube axis. (b) It a 2-mm-diameter rod is
placed in the 4-mm-diameter tube to form a symmetric annulus,
what 1s the pressure drop along a 1-m length if the flowrate remains
the same as in part (a)?

FIND (a) Determine the pressure drop along a I-m length of the

tube which 1s far from the tube entrance so that the only component




SoLuTION

(a) We first calculate the Reynolds number, Re, to determine
whether or not the flow is laminar. With the diameter
D = 4mm = 0.004 m, the mean velocity is

_— 0  (12ml/s)(107° m’/ml)
~ (w/HD* (w/4)(0.004 m)?
= 0.955m/s

and, therefore,

pVD  (1.18 X 10° kg/m*)(0.955 m/s)(0.004 m)
poo 0.0045 N - s/m’
= 1000

Re =

Since the Reynolds number is well below the critical value of
2100 we can safely assume that the flow is laminar. Thus. we can
apply Eq. 6.151. which gives for the pressure drop

SulQ
Ap =
7 mR*
_ 8(0.0045 N - s/m’)(1 m)(12 X 107° m’/s)
- 7(0.002 m)*

= 8.59 kPa

(Ans)

(b) For flow in the annulus with an outer radius 7, = 0.002 m
and an mner radius 7; = 0.001 m, the mean velocity 1s

7 0 B 12 X 1075 m?/s
w(r2 —r?)  (w)[(0.002 m)* — (0.001 m)?*]

1

=127 m/s

and the Reynolds number [based on the hydraulic diameter.
D, =2(r, — r;) = 2(0.002m — 0.001 m) = 0.002 m] 1s
%

D,V
Re = P27
i

(118 X 10° kg/m’) (0.002 m) (1.27 m/s)
a 0.0045 N - s/m’

= 666

This value i1s also well below 2100 so the flow in the annulus
should also be laminar. From Eq. 6.156.

. _ Sul0 )
Ap=——|"% i - (r, /r,)




so that

Ap =

8(0.0045 N - s/m*)(1 m)(12 X 107°m’/s)

m

X {([}.0{]2 m)* — (0.001 m)*

~ [(0.002 m)* — (0.001 111)2]2}_1

1n(0.002 m/0.001 m)
= 68.2 kPa

(0.01, 1.28)

1.3

(0.50, 7.94)

0 0.1 0.2 0.3
rirg

B FIGURE Es&.10
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6.10 Other Aspects of Differential Analysis

In this chapter the basic differential equations that govern the flow of fluids have been developed.
The Navier—Stokes equations. which can be compactly expressed in vector notation as

.l".ﬁ"v 5
P ( v “") = —Vp + pg + uV?V (6.158)

along with the continuity equation

(6.159)

Very few practical
fluid flow problems
can be solved using
an exact analvtical
approach.




Acceleration of fluid particle
Vorticity
Conservation of mass

Stream function

Euler’s equations of motion

Velocity potential

Laplace’s equation

PEx

PEy

PE:

Some of the important equations in this chapter are:

IV dV A% IV
a=—+u—+v—+w (6.2)
df ox dy oz
[=20=V XV (6.17)
i o pu d(pv d( pw
'P+f('P)+(:~'3)+({3):ﬂ (6.27)
dt dx dy oz
0 i/
u = 'lb = —,—‘b (6.37)
dy ox
) ) ) 0 )
—i£=p(;”+ui—u+ﬂ,—u+1-t'ij) (6.51a)
dx at ax dy z
ap v v av v
—,—:p(_—+u,—+’u,—+11',—) (6.51b)
dy dt ox dy z
dp

0z

dw ow w
pl—+u—+v—+

ot ax dy
V=Vo
Vo =0

z

dw
w —) (6.51c¢)

(6.65)
(6.66)




The Navier—Stokes equations

(xx direction)
ou

p
— T pg T #(, _
X ox=

(v direction)

( v
p dt

(= direction)

.f_hi' 4,
e
P\ oz

.H."U
T pg T H

h* _i.1

0
£ Pg:

oz

dw ”‘111.
+vo—+w

rh‘

dw

ox dz

=7
d-u
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a%v
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¥
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) (6.127b)
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