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Learning Objectives

After completing this chapter, you should be able to:

identify and understand various characteristics of the flow in pipes.

discuss the main properties of laminar and turbulent pipe flow and appreciate
their differences.

calculate losses in straight portions of pipes as well as those in various
pipe system components.

apply appropriate equations and principles to analyze a variety of pipe
flow situations.

predict the flowrate in a pipe by use of common flowmeters.




nasic components of a typical pipe system are s . 8.1. They include
the pipes themselves (perhaps of more than one diameter), the various fittings used to connect the
individual pipes to form the desired system, the flowrate control devices (valves), and the pumps
or turbines that add energy to or remove energy from the fluid. Even the most simple pipe systems
are actually quite complex when they are viewed in terms of rigorous analytical considerations.

B FIGURE 8.1 Typical pipe system components.




8.1 General Characteristics of Pipe Flow

Before we apply the various governing equations to pipe flow examples, we will discuss some of
the basic concepts of pipe flow. With these ground rules established we can then proceed to for-
mulate and solve various important flow problems.

(a)
B FIGURE 8.2 (a) Pipe flow. (b) Open-channel flow.




8.1.1 Laminar or Turbulent Flow

The flow of a fluid in a pipe may be laminar flow or it may be turbulent flow.

) Turbulent

) Transitional
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entrance {
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(a) (B)
B FIGURE 8.3 (a) Experiment to illustrate tvpe of flow. (b) Typical dve streaks.
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M FIGURE 8.4 Time dependence of fluid velocity at a point.




L SEULIGRN Laminar or Turbulent Flow

GIVEN Water at a temperature of 50 °F flows through a pipe
of diameter D = 0.73 in. and into a glass as shown in Fig. E8.1a.

FIND Determine

(a) the minimum time taken to fill a 12-0z glass (volume =
0.0125 ft*) with water if the flow in the pipe is to be laminar.
Repeat the calculations if the water temperature is 140 °F.

(b) the maximum time taken to fill the glass if the flow is to be tur-
bulent. Repeat the calculations if the water temperature is 140 °F

SoLuTiON

(a) If the flow in the pipe is to remain laminar, the minimum
time to fill the glass will occur if the Reynolds number is the max-
imum allowed for laminar flow, typically Re = p¥VD/u = 2100.
Thus, ¥ = 2100 u/pD, where from Table B.1, p = 1.94 slugs/ft’
and u = 2.73 X 1073 Ib - s/ft* at 50 °F, while p = 1.91 slugs/ft’
and p = 0.974 X 10 Ib - s/ft® at 140 °F. Thus, the maximum
average velocity for laminar flow in the pipe is

_2100p 2100273 X 10~ Ib - s/ft)
~ pD  (1.94 slugs/f)(0.73/12 ft)
= 0.486 Ib - s/slug = 0.486 ft/s

Similarly, ¥V = 0.176 ft/s at 140 °F. With ¥ = volume of glass
and ¥ = Ot we obtain

=i

D

B FIGURE E8.1a
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4(0.0125 ft)

O  (w/4DV  (m[0.73/12]2)(0.486 ft/s)
= 885satT = 50°F (Ans)

Similarly, r = 24.4 s at 140°F. To maintain laminar flow, the less
viscous hot water requires a lower flowrate than the cold water.

(b) If the flow in the pipe is to be turbulent, the maximum time to
fill the glass will occur if the Reynolds number is the minimum al-
lowed for turbulent flow, Re = 4000. Thus, ¥ = 4000w/
pD = 0.925 ft/s and

t = 4.65sat50°F (Ans)
Similarly, ¥ = 0.335 ft/s and t = 12.8 s at 140 °F.

laminar

(50°F, 8.85 5)
- "'"f
(50°F, 4.65 s)
250

BFIGURE E8.1b



8.1.2 Entrance Region and Fully Developed Flow

Any fluid flowing in a pipe had to enter the pipe at some location. The region of flow near where
the fluid enters the pipe is termed the enfrance region and is illustrated in Fig. 8.5. It may be the
first few feet of a pipe connected to a tank or the initial portion of a long run of a hot air duct com-
ing from a furnace.

Viscous effects are of considerable importance within the boundary layer. For fluid outside the
boundary layer [within the imniscid core surrounding the centerline from (1) to (2)], viscous effects
are negligible.

The shape of the velocity profile in the pipe depends on whether the flow is laminar or tur-
bulent, as does the length of the entrance region, {_. As with many other properties of pipe flow,
the dimensionless entrance length, /D, correlates quite well with the Reynolds number. Typi-
cal entrance lengths are given by

{
Ee = (.06 Re for laminar flow

{
5’“ = 4.4 (Re)"" for turbulent flow




For very low Reynolds number flows the entrance length can be quite short (£, = 0.6D if Re = 10),
whereas for large Reynolds number flows it may take a length equal to many pipe diameters before
the end of the entrance region is reached ({, = 120D for Re = 2000). For many practical engineer-
ing problems, 10* < Re < 10° so that as shown by the figure in the margin, 20D < {, < 30D.

Entrance region Fully developed
flow flow

e

B —————

Inviscid core Boundary layer

Fully developed Developing
flow flow

[—————

M FIGURE 8.5 Entrance region, developing flow, and fully developed flow in a pipe
system.




8.1.3 Pressure and Shear Stress

Fully developed steady flow in a constant diameter pipe may be driven by gravity and/or pressure
forces. For horizontal pipe flow, gravity has no effect except for a hydrostatic pressure variation
across the pipe, yD, that is usually negligible. It is the pressure difference, Ap = p; — p,, between
one section of the horizontal pipe and another which forces the fluid through the pipe. Viscous ef-
fects provide the restraining force that exactly balances the pressure force, thereby allowing the
fluid to flow through the pipe with no acceleration. If viscous effects were absent in such flows,
the pressure would be constant throughout the pipe, except for the hydrostatic variation.

The fact that there is a nonzero pressure gradient along the horizontal pipe is a result of vis-
cous effects. As is discussed in Chapter 3, if the viscosity were zero, the pressure would not vary
with x. The need for the pressure drop can be viewed from two different standpoints. In terms of
a force balance, the pressure force is needed to overcome the viscous forces generated. In terms
of an energy balance, the work done by the pressure force is needed to overcome the viscous dis-
sipation of energy throughout the fluid. If the pipe is not horizontal, the pressure gradient along it
is due in part to the component of weight in that direction. As is discussed in Section 8.2.1, this
contribution due to the weight either enhances or retards the flow, depending on whether the flow
is downhill or uphill.
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M FI GURE 8.6 Pressure distribution along a horizontal pipe.
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There are numerous ways to derive important results pertaining to fully developed laminar
flow. Three alternatives include: (1) from F = ma applied directly to a fluid element, (2) from the
Navier—Stokes equations of motion, and (3) from dimensional analysis methods.




8.2.1 From F = ma Applied Directly to a Fluid Element

The local acceleration is zerg (#V/dt = 0) because the flow is steady, and the convective acceleration
is zero (V + VV = u du/ax i = 0) because the flow is fully devel oped. Thus, every part of the fluid
merely flows along its streamline parallel to the pipe walls with constant welmlty

If gravitational effects are neglected, the pressure is constant across any vertical cross sec-
tion of the pipe, although it varies along the pipe from one section to the next. Thus, if the pres-
sure is p = p, at section (1), it is p, = p; — Ap at section (2) where Ap is the pressure drop be-
tween sections (1) and (2). We anticipate the fact that the pressure decreases in the direction of
flow so that Ap = 0. A shear stress, 7. acts on the surface of the cylinder of fluid. This viscous
stress 1s a function of the radius of the cylinder, 7 = 7(r).

Steady, fully devel-
oped pipe flow ex-
periences no
acceleration.

Velocity profiles

Streamlines




Fluid element at time ¢ Element at time 7 + &¢

Velocity 4 \ / ‘
profile === -
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~Vouph e ¢ - ! B FIGURE 8.7  Mation

. ] of a cylindrical fluid element within a
pipe.

B FIGURE 8.8 Freebady

diagram of a cvlinder of flmd.

This force balance can be written as

(p)mr* — (py — Ap)ar? — (7)2@r€ = 0

which can be simplified to give



Basic horizontal
pipe flow is gov-
erned by a balance
between viscous
and pressure
forees.

|deal
Laminar (inviscid)
profile profile

BFIGURE 8.9

Shear stress distribution within the
fluid in a pipe (laminar or turbulent
flow) and tvpical velocity profiles.




Equations 8.3 and 8.6 represent the two governing laws for fully developed laminar flow of
a Newtonian fluid within a horizontal pipe. The one is Newton’s second law of motion and the
other 1s the definition of a Newtonian fluid. By combining these two equations we obtain

o)
dr 2t

which can be integrated to give the velocity profile as follows:

A
[ du = _2P f I dr
2upt

A
= _(_p) P+ C,
4l

where | i1s a constant. Because the fluid is viscous it sticks to the pipe wall so that # = 0 at
7 = D/2. Thus, C, = (Ap/16u()D*. Hence, the velocity profile can be written as

-] h-G)] e




where V. = ApD*/(16u() is the centerline velocity. An alternative expression can be written by us-
ing the relationship between the wall shear stress and the pressure gradient (Egs. 8.5 and 8.7) to give

where R = D/2 is the pipe radius.

Since the flow is axisymmetric about the centerline, the velocity is constant on small area elements
consisting of rings of radius 7 and thickness 7 as shown in the figure in the margin. Thus,

reR R \2
0= [ nwdd = f u(r)2ar dr = 2 Vc[ [1 — (—) }-d;-
0 ; R

r

TRV,
2

By definition, the average velocity is the flowrate divided by the cross-sectional area,
V = 0/4 = O/mR?, so that for this flow

7RV, V. ApD’

= 8.8
2#R* 2 32uf @9

aD* Ap
128wl




The above results confirm the following properties of laminar pipe flow. For a horizontal
pipe the flowrate is (a) directly proportional to the pressure drop, (b) inversely proportional to the
viscosity, (c) inversely proportional to the pipe length, and (d) proportional to the pipe diameter to
the fourth power. With all other parameters fixed, an increase in diameter by a factor of 2 will in-
crease the flowrate by a factor of 2* = 16—the flowrate is very strongly dependent on pipe size.

This flow, the properties of which were first established experimentally by two independent
workers, G. Hagen (1797-1884) in 1839 and J. Poiseuille (1799-1869) in 1840, is termed

Hagen— Poiseuille flow. Equation 8.9 is commonly referred to as Poisewille’s law.

Ap — ylsinf 27
€ o

(8.10)

Thus, all of the results for the horizontal pipe are valid provided the pressure gradient is adjusted
for the elevation term, that i1s, Ap is replaced by Ap — y{ sin # so that

(Ap — y{ sin 8)D?
V= ot (8.11)

_ @(Ap — y{sin 6)D*
Q= 1284l




It is seen that the driving force for pipe flow can be either a pressure drop in the flow direction,
Ap, or the component of weight in the flow direction, —y{ sin 8. If the flow is downhill, gravity
helps the flow (a smaller pressure drop is required; sin # << 0). If the flow is uphill, gravity works
against the flow (a larger pressure drop is required; sin & > 0). Note that y{ sin § = yAz (where

Fluid cylinder

W sin@ = ymr®f sing

(&)
B FIGURE 8.10 Free-hody diagram of a fluid cvlinder for flow in a nonhorizontal pipe.




EXAWPLE 5.2

GIVEN An oil with a viscosity of & = 0.40 N - s/m” and den- (b) How steep a hill, #, must the pipe be on if the oil is to flow

sity p = 900 kg/m’ flows in a pipe of diameter D = 0.020 m. through the pipe at the same rate as in part (a), but with p, = p,?
(¢) For the conditions of part (b), if p, = 200 kPa, what is the

FIND (a) What pressure drop, p, — p», is needed to produce  pressure at section x; = 5 m, where x is measured along the pipe?

a flowrate of @ = 2.0 X 107> m’/s if the pipe is horizontal with

x;, = 0and x, = 10 m?

SoLuTION

(a) If the Reynolds number is less than 2100 the flow is
laminar and the equations derived in this section are valid. Since
the average velocity is ¥ = Q/4 = (2.0 X 1077 m’/s)/
((0.020)’'m*/4] = 0.0637 m/s, the Reynolds number is Re =
pVD/u = 2.87 << 2100. Hence, the flow is laminar and from Eq.
8.9 with { = x, — x;, = 10 m, the pressure drop is

Ay — _128ufQ
P =P — Pz —TTD4
128(0.40 N - s/m?)(10.0 m)(2.0 X 107" m/s)

(0.020 m)*

Ap = 20,400 N/m* = 20.4 kPa



(b) If the pipe is on a hill of angle # such that Ap = p, — p, =0,
Eq. 8.12 gives

1)

—128(0.40 N - s/m”)(2.0 X 107" m’/s)
(900 kg/m’)(9.81 m/s*)(0.020 m)*

sin @ = (Ans)

Thus, § = —13.34°.

(¢) With p; = p, the length of the pipe, €, does not appear in the
flowrate equation (Eq. 1). This is a statement of the fact that for such
cases the pressure is constant all along the pipe (provided the pipe
lies on a hill of constant slope). This can be seen by substituting the
values of O and # from case (b) into Eq. 8.12 and noting that Ap = 0
for any €. Forexample, Ap = p;, — p3 = 0if{ = x3 — x; = Sm.
Thus, p; = p, = p; so that

p3 = 200 kPa (Ans)




8.2.2 From the Navier—Stokes Equations

General motion of an incompressible Newtonian fluid is governed by the continuity equa-
tion (conservation of mass, Eq. 6.31) and the momentum equation (Eq. 6.127), which are rewritten
here for convenience:

V-V=0 (8.13)

Y \Y
Civeovv=s 24 g vy
dt o)

(8.14)

For steady, fully developed flow in a pipe, the velocity contains only an axial component, which
is a function of only the radial coordinate [V = u(7)i]. For such conditions, the left-hand side of
the Eq. 8.14 is zero. This is equivalent to saying that the fluid experiences no acceleration as it
flows along. The same constraint was used in the previous section when considering F = ma for
the fluid cylinder. Thus, with g = — gﬁ the Navier—Stokes equations become

V-v=0
Vo + pek = uV?V (8.15)

7
The flow i1s governed by a balance of pressure, weight, and viscous forces in the flow direction,

Poiseuille’s law can

be obtained from
the Navier—Stokes
equations.




When it is written in terms of polar coordinates (as was done in Section 6.9.3), the compo-
nent of Eq. 8.15 along the pipe becomes

o roor dr

dp _ 1 o du
— + pgsinf = u——| r— (8.16)

8.2.3 From Dimensional Analysis

Ap = E(V. (,D, )

There are five variables that can be described in terms of three reference dimensions (M, L, T).
According to the results of dimensional analysis (Chapter 7), this flow can be described in terms
of ¥ — r =35 — 3 = 2 dimensionless groups. One such representation is

Day_ (1) ¥
o =5 (8.17)




which can be rewritten as

It is usually advantageous to describe a process in terms of dimensionless quantities. To this end
we rewrite the pressure drop equation for laminar horizontal pipe flow, Eq. 8.8, as Ap = 32u(¥V/D?
and divide both sides by the dynamic pressure, p??/2, to obtain the dimensionless form as

=t =) (5) % (5)
Loz 1pr2 T \pvD/\D) Re\D

This 1s often written as

¢ pV*

Y5

where the dimensionless quantity

f=Ap(D/0)/(pV?/2)

is termed the friction factor. or sometimes the Darcyv friction factor




factor, which is defined to be f/4. In this text we will use only the Darcy friction factor.) Thus,
the friction factor for laminar fully developed pipe flow is simply

. 64
f

= — 8.19
f=r (8.19)

as shown by the figure in the margin.
By substituting the pressure drop in terms of the wall shear stress (Eq. 8.5), we obtain an al-
ternate expression for the friction factor as a dimensionless wall shear stress

8T,

f= (8.20)

= ) =

Laminar flow

0.01
10 100 1000

Ee




8.2.4 Energy Considerations

For the ideal (inviscid) cases discussed in previous chapters, a; = a, = 1, iy = 0,

Even though the velocity profile in viscous pipe flow is not uniform, for fully developed
flow it does not change from section (1) to section (2) so that &; = a,. Thus, the kinetic energy
is the same at any section (@, V1/2 = a, ¥3/2) and the energy equation becomes

(ﬂ + zl) - (@ + ;2) — I, (8.22)
Y Y

The energy dissipated by the viscous forces within the fluid i1s supplied by the excess work done
by the pressure and gravity forces as shown by the figure in the margin.
A comparison of Egs. 8.22 and 8.10 shows that the head loss is given by

27€
-IFL - —
yYr




The energy dissipated by the viscous forces within the fluid is supplied by the excess work done
by the pressure and gravity forces as shown by the figure in the margin.
A comparison of Egs. 8.22 and 8.10 shows that the head loss is given by

27¢
-'rfj_'. =
yr

(recall p; = p, + Ap and z, — z; = { sin ), which, by use of Eq. 8.4, can be rewritten in the form

B 4€t,

hy = 8.23
I D ( )

The head loss in a
pipe is a vesult of
the viscous shear

stress on the wall.




GIVEN The flowrate, Q. of corn syrup through the horizontal
pipe shown in Fig. E8.3a is to be monitored by measuring the pres-
sure difference between sections (1) and (2). It is proposed that
O = K Ap, where the calibration constant, K, is a function of tem-
perature, T, because of the variation of the syrup’s viscosity and
density with temperature. These variations are given in Table E8.3.

FIND (a) Plot K(T) versus T for 60 °F = T = 160 °F. (b) De-
termine the wall shear stress and the pressure drop,
Ap = p, — p,.for @ = 0.5 f'/sand T = 100 °F. (c) For the con-
ditions of part (b), determine the net pressure force, (wD*/4) Ap,
and the net shear force, wD€T,, on the fluid within the pipe be-
tween the sections (1) and (2).

SoLuTION

(a) If the flow is laminar it follows from Eq. 8.9 that
wD'Ap (7 i) Ap
128uf 128u(6 ft)

Q:

1.60 x 1077
Q=KAp=—T—"-4Ap (1)
L
where the units on @, Ap, and p are ft'/s, Ib/ft*, and Ib - s/ft*, re-
spectively. Thus

_1.60 x 107°
i

where the units of K are ft*/Ib - s. By using values of the viscosity
from Table E8.3, the calibration curve shown in Fig. E8.3b is ob-
tained. This result is valid only if the flow is laminar.

K (Ans)

_EXAM PLE 8.3 BEVULETELAERAN TR Y] g

Q i | fff U
(1) (2)

3-in.
diameter
(a)

B TABLE E8.3

T (°F) p (slugs/ft) p (b - s/ft)
60 2.07 4.0 % 1072
80 2.06 1.9 x 1072

100 2.05 38 x 10°°
120 2.04 44 % 107*
140 2.03 92 x 107°
160 2.02 23 x 107°

K, ft%(1bs)




(b) For T = 100 °F, the viscosity is g = 3.8 X 1077 Ib - s/ft*
so that with a flowrate of @ = 0.5 ft*/s the pressure drop (accord-
ing to Eq. 8.9) is
128 Q
Ap=———
wD*
128(3.8 % 1077 1b - s/ft)(6 ft)(0.5 ft’/s)
(75 ft)*
= 119 Ib/ft* (Ans)
provided the flow is laminar. For this case

0.5 ft’
V= 9 = 051ft/s = 10.2 ft/s

A w4
— (35 ft)?
T

so that

pVD  (2.05 slugs/ft)(10.2 ft/s)( ft)
i (3.8 X 1073 1b - s/ft?)
= 1380 < 2100

Hence, the flow is laminar. From Eq. 8.5 the wall shear stress

Re

_ ApD (119 1b/ff)(3 ft)
L VA 4(6 ft)

T = 1.24 1b/ft2 (Ans)



(c¢) For the conditions of part (b), the net pressure force, Fp, on
the fluid within the pipe between sections (1) and (2) is

L. Ei _1Tf.3 : N = oy g
FP = ID Ap = I Fﬂ (119 1b/ft") = 5.84 b  (Ans)

=

Similarly, the net viscous force, F, on that portion of the fluid is

Fy 2 (E) t Tw

3 _ o "
27 { ft}{_ﬁ ft)(1.24 Ib/ft") = 5.84 Ib (Ans)

2(12)




8.3 Fully Developed Turbulent Flow

8.3.1 Transition from Laminar to Turbulent Flow

Flows are classified as laminar or turbulent. For any flow geometry, there is one (or more) di-
mensionless parameter such that with this parameter value below a particular value the flow is
laminar, whereas with the parameter value larger than a certain value the flow is turbulent. The
important parameters involved (i.e., Reynolds number, Mach number) and their critical values de-

pend on the specific flow situation involved.

As a general rule for pipe flow, the value of the Reynolds number must be less than approximately
2100 for laminar flow and greater than ap proximately 4000 for turbulent flow.

Random,
turbulent fluctuations

N

L

Turbulent

Turbulent
bursts
N,
Transitional

Laminar

a
1, sec

B FIGURE 8.11 Transition from laminar to turbulent flow in a pipe.
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8.3.2 Turbulent Shear Stress

The fundamental difference between laminar and turbulent flow lies in the chaotic, random behav-
ior of the various fluid parameters. Such variations occur in the three components of velocity, the
pressure, the shear stress, the temperature, and any other variable that has a field description.

th+T
j“[ u(x, v, z, t) dt (8.24)
i

where the time interval, T, is considerably longer than the period of the longest fluctuations, but con-
siderably shorter than any unsteadiness of the average velocity. This is illustrated in Fig. 8.12.

The fluctuating part of the velocity, ', is that time-varying portion that differs from the av-
erage value

u=u+u or u =wu—u (8.25) /
Clearly, the time average of the fluctuations is zero, since /

o+ T 1 to+T ot T
!f':—f (u—ﬁ)JIZ—(f un’f—ﬂf dr‘)
I f T\ ;

o ]

1
=—(Ta-Tuw)=0




B FIGURE 8.13 Average of the fluctuations and average of the
square of the fluctuations.

The fluctuations are equally distributed on either side of the average. It is also clear, as is indicated
in Fig. 8.13, that since the square of a fluctuation quantity cannot be negative [(u')* = 0], its av-
erage value is positive. Thus,

| [otT
(u') = E_[ (') dt >0

Iy




The structure and characteristics of turbulence may vary from one flow situation to another.

The turbulence intensity, .J

The relationship be- Turbulent flow

tween fluid motion shear stress is

larger than laminar
flow shear stress
because of the
irregular, random

and shear stress is
very complex for
turbulent flow.

motion.




Average velocity profile,
- Velocity profile, L 7 = fly)
ull u=uly -

Turbulent

(a)

B FIGURE 8.14 (a) Laminar flow shear stress caused by random motion of molecules.
(b) Tarbulent flow as a series of random, three-dimensional eddies.




The random velocity components that account for this momentum transfer (hence, the shear
force) are u' (for the x component of velocity) and v' (for the rate of mass transfer crossing the
plane). A more detailed consideration of the processes involved will show that the apparent shear
stress on plane 4—4 is given by the following (Ref. 2):

du
}J’ f.{';.'

= 1 T = T (8.26)

Note that if the flow is laminar, " = v' = 0, so that #’v" = 0 and Eq. 8.26 reduces to the cus-
tomary random molecule-motion-induced /aminar shear stress, 7,,,, = M du/dv. For turbulent flow
it is found that the furbulent shear stress, T,y = —pu'v', 1s positive.

Viscous
sublayer

l
IT-

Pipe wall

Pipe centerline

/

T(r) ulr)

(a) (b
B FIGURE 8.15 Structure of turbulent flow in a pipe. (@) Shear stress. (b) Average velocity.




An alternate form for the shear stress for turbulent flow is given in terms of the eddv viscos-
itv, n, where

du
b = M (8.27)

This extension of laminar flow terminology was introduced by J. Boussinesq. a French scientist,
in 1877. Although the concept of an eddy viscosity is intriguing, in practice it is not an easy pa-
rameter to use. Unlike the absolute viscosity, ., which is a known value for a given fluid, the eddy
viscosity is a function of both the fluid and the flow conditions. That is, the eddy viscosity of wa-
ter cannot be looked up in handbooks—its value changes from one turbulent flow condition to an-
other and from one point in a turbulent flow to another.

The inability to accurately determine the Reynolds stress, pu'v’, is equivalent to not knowing
the eddy viscosity. Several semiempirical theories have been proposed (Ref. 3) to determine approx-
imate values of 7). L. Prandtl (1875-1953), a German physicist and aerodynamicist, proposed that
the turbulent process could be viewed as the random transport of bundles of fluid particles over a
certain distance, {,, the mixing length, from a region of one velocity to another region of a differ-
ent velocity. By the use of some ad hoc assumptions and physical reasoning, it was concluded that
the eddy viscosity was given by

2| du

= pf?|—
U s

du'\?
=i (4)

Thus, the turbulent shear stress is




In the viscous sublayer the velocity profile can be written in dimensionless form as

[T

T v (8-29)

commonly called the /aw of the wall 1s valid very near the smooth wall. for 0 = yu*fy < 5

O Experimental data

Viscous
sublayer

le———— Turbulent effects ———

Viscous and
turbulent effects

Pipe
centerling
—

B FIGURE 8.16
Twpical structure of the
turbulent velocity profile in
a pipe.




Dimensional analysis arguments indicate that in the overlap region the velocity should vary
as the logarithm of yv. Thus. the following expression has been proposed:

i 11
— =25 111("—) + 5.0 (8.30)
u* v

u* = (1,/p)"” 1s termed the friction velocity

1 1s the tume-averaged x component of velocity

A number of other correlations exist for the velocity profile i turbulent pipe flow. In the cen-
tral region (the outer turbulent layer) the expression (V. — u)/u* = 2.5 In(R/y), where V, 1s the cen-
terline velocity, 1s often suggested as a good correlation with experimental data. Another often-used

(and relatively easy to use) correlation 1s the empirical power-law velocity profile
I, 7 1/n
—=|1-= 8.31

A closer examination of Eq. 8.31 shows that the power-law profile cannot be valid near the
wall, since according to this equation the velocity gradient is mfinite there. In addition, Eq. 8.31

cannot be precisely valid near the centerline because it does not give du/dr = 0 at r = 0. How-

ever, 1t does provide a reasonable approximation to the measured velocity profiles across most of
the pipe.
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B FIGURE 8.17 Exponent, n, for power-law velocity profiles.
(Adapted from Ref. 1.)
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profiles.




L STXTINEERY Turbulent Pipe Flow Properties

GIVEN Water at 20°C (p = 998 kg/m’ and v = 1.004 X
10" ®m®/s) flows through a horizontal pipe of 0.1-m diameter
with a flowrate of @ = 4 X 102 m?/s and a pressure gradient of
2.59 kPa/m.

FIND (a) Determine the approximate thickness of the vis-
cous sublayer.

SoLuTION

(a) According to Fig. 8.16, the thickness of the viscous sub-
layer, 8., is approximately

Therefore,

where

(b) Determine the approximate centerline velocity, V..

(¢) Determine the ratio of the turbulent to laminar shear stress,
Tirb/ Tlam» @t @ point midway between the centerline and the pipe
wall (i.e., at r = 0.025 m).

The wall shear stress can be obtained from the pressure drop data
and Eq. 8.5, which is valid for either laminar or turbulent flow.
Thus,

DAp (0.1 m)(2.59 X 10° N/m?)

= 64.8 N/m*
Y 4(1 m) /m
Hence, from Eq. 1 we obtain
64.8 N/m” \'/?
w = (7’&“3) = 0.255m/s
998 kg/m

50 that
5(1.004 x 10°¢ mzfs}

: 0.255 m/s
1.97 ¥ 10 m = 0.02 mm




(b) The centerline velocity can be obtained from the average
velocity and the assumption of a power-law velocity profile as
follows. For this flow with

) 0.04m’
_Q_ 0mfs o9y
A (0.1 m)7/4
the Reynolds number is
VD (5.09 m/s)(0.1 m)
Re = — = =5.07 X 10°

v (1.004 x 1078 mzfs]l
Thus, from Fig. 8.17, n = 8.4 so that

u ( r)w
— =1 -—
v, R

To determine the centerline velocity, V., we must know the re-
lationship between F (the average velocity) and V. This can be

obtained by integration of the power-law velocity profile as fol-
lows. Since the flow is axisymmetric,

r=R - 1/n
Q=AV=JE¢M=V{_J (1——) (27rr) dr
- R

r=
which can be integrated to give
"

(n+ 1)(2n + 1)

O = 2wRV,

Thus, since Q@ = 7RV, we obtain

V 2n?
V. (n+1)2n+ 1)

With n = 8.4 in the present case, this gives

(n+ 1)(2n + 1)
V. = — V= 1.186V = 1.186 (5.09 m/s)
2

= 6.04 m/s

(Ans)




Recall that ¥, = 2V for laminar pipe flow.

(c) From Eq. 8.4, which is valid for laminar or turbulent flow,
the shear stress at r = 0.025 m is

27,0 2(64.8 N/ mzj{:{lﬂzﬂ m)
Y"p (0.1 m)
T = Typm + Tun = 32.4 N/m?

where 7, = —p du/dr. From the power-law velocity profile
(Eq. 8.31) we obtain the gradient of the average velocity as

du V. { - N1—n)n
— =11 ==
dr nR ( R )

which gives
du (6.04 m/s) /
dr (

0.025 m ")':1_3'4:“"\3'4
84(0.05m) \ 0.05m ,

= —26.5/s

du . du
=—p = ) -
= —(1.004 X 10~° m?/s)(998 kg/m*)(-26.5/s)
= 0.0266 N/m?

Thus, the ratio of turbulent to laminar shear stress is given by

Twh T~ Tam 324 — 0.0266
0.0266

= 1220 (Ans)

Tlam Tlam



8.3.4 Turbulence Modeling

Although it is not yet possible to theoretically predict the random, irregular details of turbulent
flows, it would be useful to be able to predict the time-averaged flow fields (pressure, velocity, etc.)
directly from the basic governing equations. To this end one can time average the governing Navier—
Stokes equations (Egs. 6.31 and 6.127) to obtain equations for the average velocity and pressure.
However, because the Navier—Stokes equations are nonlinear, the resulting time-averaged differ-
ential equations contain not only the desired average pressure and velocity as variables, but also
averages of products of the fluctuations—terms of the type that one tried to eliminate by averag-
ing the equations! For example, the Reynolds stress —pu'v’ (see Eq. 8.26) occurs in the time-
averaged momentum equation.

8.3.5 Chaos and Turbulence

Chaos theory is a relatively new branch of mathematical physics that may provide insight into the com-
plex nature of turbulence. This method combines mathematics and numerical (computer) techniques
to provide a new way to analyze certain problems. Chaos theory, which is quite complex and is cur-
rently under development, involves the behavior of nonlinear dynamical systems and their response to
initial and boundary conditions. The flow of a viscous fluid, which is governed by the nonlinear Navier—
Stokes equations (Eq. 6.127), may be such a system.




8.4 Dimensional Analysis of Pipe Flow

As noted previously, turbulent flow can be a very complex, difficult topic—one that as yet has
defied a rigorous theoretical treatment. Thus, most turbulent pipe flow analyses are based on
experimental data and semi-empirical formulas. These data are expressed conveniently in dimen-

sionless form.

8.4.1 Major Losses

Thus, as indicated by the figure in the margin, the pressure drop, Ap, for steady, incompress-
ible turbulent flow in a horizontal round pipe of diameter D can be written in functional form as

Ap = F(V, D, {, ¢, p, p) (8.32)




Velocity
profile, i = u(y)
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Yy Y Y Y¥YYyYyYyY¥Yywvwyw

T Viscous sublayer

1‘,.-'"""'1.___.--—--.__----.,"" u
4 7 B FIGURE 8.19 Flow in the
el viscous sublaver near rough and smooth
Smooth wall walls.




From Eq. 5.89 the energy equation for steady incompressible flow is

i Vi ) Vs

? + ¥y 2
where /17 is the head loss between sections (1) and (2). With the assumption of a constant diame-
ter (D, = D, so that ¥/}, = V,), horizontal (z; = z,) pipe with fully developed flow (@; = «3), this
becomes Ap = p, — p, = yh;, which can be combined with Eq. 8.33 to give

Equation 8.34, called the Darcv—Weisbach equation, is valid for any fully developed, steady, in-
compressible pipe flow—whether the pipe is horizontal or on a hill. On the other hand, Eq. 8.33
is valid only for horizontal pipes. In general, with 7} = ¥, the energy equation gives

Py — P = '}’(—"2 - —'"'l) + yhp = '}"(3: - 3|) +




B TABLE 8.1

Equivalent Roughness for New Pipes [From Moody
(Ref. 7) and Colebrook (Ref. §)]

Equivalent Roughness, £

Pipe Feet Millimeters

Riveted steel 0.003-0.03 0.9-90
Concrete 0.001-0.01 0.3-3.0
Wood stave 0.0006—0.003 0.158-0.9
Cast iron 0.00085 0.26
Galvanized iron 0.0005 0.15
Commercial steel

or wrought iron 0.00015 0.045
Drawn tubing 0.000005 0.0015
Plastic, glass 0.0 (smooth) 0.0 (smooth)
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B FIGURE 8.20 Friction factor as a function of Revnolds number and relative roughness for round pipes—the Moody
chart. (Data from Ref. 7 with permission.)

The Moody chart, on the other hand, is universally valid for all steady, fully developed, incompressible pipe flows.



The following equation from Colebrook is valid for the entire nonlaminar range of the Moody
chart

(8.35a)

e/D 251
== —20log (i + )

3.7 ReVf

o




GIVEN Air under standard conditions flows through a 4.0-mm-
diameter drawn tubing with an average velocity of V= 50 m/s.
For such conditions the flow would normally be turbulent. How-
ever, if precautions are taken to eliminate disturbances to the flow
(the entrance to the tube is very smooth, the air is dust free, the tube
does not vibrate, etc.), it may be possible to maintain laminar flow.

SoLuTION

Under standard temperature and pressure conditions the density
and viscosity are p = 1.23kg/m® and p =179 X 10°°
N - s/m’. Thus, the Reynolds number is

pVD  (1.23 kg/m%)(50 m/s)(0.004 m)
Con 1.79 X 105N - s/m?

Re = 13,700

which would normally indicate turbulent flow.

(a) If the flow were laminar, then f= 64/Re = 64/13,700 =
0.00467 and the pressure drop in a 0.1-m-long horizontal section
of the pipe would be

€1
$P=f5§PV2

(0.1 m) 3 2
000im) 2 (1.23 kg/m’)(50 m/s)

= (0.00467)

Ap = 0.179 kPa (Ans)

_EXAM PLE 8.5 E* Ul EUGELEIE ST

or Turbulent Pressure Drop

FIND (a) Determine the pressure drop in a 0.1-m section of
the tube if the flow is laminar.

(b) Repeat the calculations if the flow is turbulent.

COMMENT Note that the same result is obtained from Eq. 8.8:

32(1.79 X 107" N - s/m?)(0.1 m)(50 m/s)
(0.004 m)*

179 N/m?




Eq. 8.35b provides an alternate form to the Colebrook formula
that can be used to solve for the friction factor directly.

L 80| (22} 2] - g (LO0BTYT, &9
v~ 18l |(37 Re | B|\" 37 1.37 % 10°

= (.0289

(b) If the flow were turbulent, then f= @(Re, /D), where
from Table 8.1, £ = 0.0015 mm so that &/D = 0.0015 mm/
4.0 mm = 0.000375. From the Moody chart with Re = 1.37 X
10%and &/D = 0.000375 we obtain f = 0.028. Thus, the pressure
drop in this case would be approximately

T (0.1 m) 1 . . :
Ap=fp 5PV =(0.028) (0.004 m) 2 (1.23 kg/m")(50 m/s)* Blasius formula, for tur-bulent flow in smooth pipes (&/D = 0) with Re < 10%is
0.316
or f=3am
ﬂp = 1.076 kPa I::’S.ll‘::l For our case this gives

. — f=0.316(13,700) "* = 0.0292
An alternate method to determine the friction factor for

the turbulent flow would be to use the Colebrook formula,
Eq. 8.35a. Thus,

- —2.0 log (E’I—D ¢ 2! ) = —201log (ﬂﬂm}?i + 251 ?)

37 ' ReVF 37 1.37 % 10°v

(1)

1.83 x 1(:--4)

—2.0 lng(l.ﬂl X 107 + 7
y




8.4.2 Minor Losses

As discussed in the previous section, the head loss in long, straight sections of pipe. the major losses,
can be calculated by use of the friction factor obtained from either the Moody chart or the Colebrook

equation.

M FIGURE 8.21 Flow through a valve.

so that
Ap = K;3p7?




The actual value of K is strongly dependent on the geometry of the component considered.
It may also be dependent on the fluid properties. That is,

K; = ¢(geometry, Re)

Minor losses are sometimes given in terms of an equivalent length, €. In this terminology,

the head loss through a component is given in terms of the equivalent length of pipe that would
produce the same head loss as the component. That is,

Minor head losses
are often a result of
the dissipation of
kinetic energy.
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B FIGURE 8.22 Entrance flow conditions and loss coefficient
(Refs. 28, 29). (a) Reentrant, K; = 0.8, (b) sharp-edged, K; = 0.5, (¢) slightly
rounded, K; = 0.2 (see Fig. 8.24), (d) well-rounded, K; = 0.04 (see Fig. §.24).

i




Separated flow
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B FIGURE 8.23 Flow pattern and pressure distribution for a sharp-

edged entrance.




B FIGURE 8.24
Entrance loss coefficient as a
function of rounding of the
inlet edge (Ref. 9).




B FIGURE 8.25 Exit flow conditions and loss coefficient.
(a) Reentrant, K; = 1.0, () sharp-edged, K; = 1.0, (¢) slightly rounded, K; = 1.0,
(d) well-rounded, K; = 1.0.




B FIGURE 8.26
Lass coefficient for a sudden

contraction (Ref. 10).

1.0

BFIGURE 8.27
Loss caefficient for a sudden
expansion (Ref. 10).




B FIGURE 8.28 Control volume used to calculate the loss coefficient

for a sudden expansion.
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= pdsV(Vs = )




These can be rearranged to give the loss coefficient, K; = h; /(Vi/2g), as

1.4

1.2

1.0

0.8

0.6

0.4

0.2

G{] 30 &0 80 120 150 180

6, degrees
M FIGURE 8.29 Loss coefficient for a typical conical diffuser (Ref. 5).




An alternative to using the Moody diagram that avoids any trial-and-error
process is made possible by empirically derived formulas. Perhaps the best of
such formulas were presented by Swamee and Jain (1976) for pipe flow; an
explicit expression that provides an approximate value for the unknown in each
category above is as follows:

2 0.07]—2 10—6 —9 _
hy = 1.07 QD‘E‘ [mL € 462 (%) ” 10" < e/D <10 (7.6.29)

g 1D 3000 < Re <3 x 10°

Sp, \0.5 | 0.3
gD hL) ,n[g € 3-17'”2*'4) ] Re > 2000  (7.6.30)

— —0.965 +
Q ( 3 7D (gD3hL

. LO?\+75 L 32004 107 <e/D <1072 .
_ 1.25 04 &= 7.6.31
b D'ﬁﬁ[e ( ghL) e (ghL) ] 5000 < Re <3 x 10° )




Example

‘

Water at 74°F is transported for 1500 ft in a 11 -in.-diameter wrought iron horizontal
pipe with a flow rate of 0.1 ft*/sec. Calculate the pressure drop over the 1500-ft length
of pipe, using (a) the Moody diagram and (b) the alternate method.

Solution
(a) The average velocity is
0.1
V=== = 8.15ft
A 7 x 075144 fsec
The Reynolds number is
8.15 X 1.5/12
Re =YD _ _5’f =1.02 X 10°

v 10

Obtaining e from Fig. 7.13, we have, using D = 1.5/12 ft,
e _ 0.00015

D 0125 = 0.0012

The friction factor is read from the Moody diagram to be

f=0.023



The head loss is calculated as

L V?
hi =fﬁ£

1500 8.15% ft¥/sec?
= = 0.023 = 280 ft
1.5/12 2 x 32.2 ft/sec”

This answer is given to two significant numbers since the friction factor is known to at
most two significant numbers. The pressure drop is found by Eq. 7.6.22 to be

Ap = vhy
= 62.4 Ib/ftx 280 ft= 17,500 psf or 120 psi

(b) The alternate method for this Category 1 problem uses Eq. 7.6.29, with
D = 1.5/12 = 0.125 ft:

hy = 1.07

0.17 % 1500 {1 [ﬂ.umz

-5 0.97]-2
L 4.6 (l[] KU.lZﬁ) ]}

32.2 X 0.125° 3.7 0.1

= 1.07 x 15,265 x 0.01734 = 280 ft




Drawn tubing of what diameter should be selected to transport 0.002 m*/s of 20°C
water over a 400-m length so that the head loss does not exceed 30 m? (a) Use the
Moody diagram and (b) the alternative method.

Solution

(a) In this problem we do not know D. Thus, a trial-and-error solution is anticipated.
The average velocity is related to D by

Q _ 0.002 _ 0.00255
A =D*4 D’

V:

The friction factor and D are related as follows:

L V?
h - F =
20 400 (0.00255/D?)?

D 2X98

D’ =442 x 10°°f
The Reynolds number is

Re = VD _ 0.00255D _ 2550
vy  D*x10°°® D

Now, let us simply guess a value for fand check with the relations above and the Moody
diagram. The first guess is f = 0.03, and the correction 1s listed in the following table.
Note: the second guess is the value for f found from the calculations of the first guess.




f D(m) Re e/D f (Fig. 7.13)

0.03 0.0421 6.06 x 10° 0.000036 0.02
0.02 0.0388 6.57 x 10* 0.000039 0.02

The value of f = 0.02 is acceptable, yielding a diameter of 3.88 cm. Since this diameter
would undoubtedly not be standard, a diameter of

D =4cm

would be the tube size selected. This tube would have a head loss less than the limit of
h; = 30 m imposed in the problem statement. Any larger-diameter tube would also sat-
isfy this criterion but would be more costly, so it should not be selected.

(b) The alternative method for this Category 3 problem uses the explicit relationship
(7.6.31). We can directly calculate D to be

400 x 0.002%
0.81 x 30

= 0.66[5.163 x 10~ + 2.102 x 10 °1°* = 0.039 m

D= D.ﬁﬁ[{l.ﬁ X 10—5)'-25(

)4_?5 +107° x G.IJDZE"“( 400 )S'E]D'm

0.81 x 30

Hence D = 4 ecm would be the tube size selected. This is the same tube size as that
selected using the Moody diagram.




TABLE 7.2 Nominal Loss Coefficients K (Turbulent Flow)®

Type of fitting Screwed

Flanged

Diameter 25 ¢cm 5 in. 10 cm

10 em

Globe valve (fully open) 8.2 6.9 5.7
(half open) 20 17 14
(one-quarter open) 57 48 40
Angle valve (fully open) 4.7 2.0 1.0
Swing check valve (fully open) 2.9 2.1 2.0
Gate valve (fully open) 0.24 0.16 0.11
Return bend ) 1.5 0.95 0.64
Tee (branch) _} 1.8 1.4 1.1
Tee (line) T 0.9 0.9 0.9
Standard elbow ™) 1.5 0.95 0.64
Long sweep elbow 0.72 0.41 0.23
45% elbow — \ 0.32 0.30 0.29

Square-edged entrance }: — 0.5

Reentrant entrance _l— — 0.8

Well-rounded entrance L_...

6.0

15

42
2.0
2.0
0.16
0.30
0.64
0.14
0.30
0.19




Pipe exit
Area ratio
Sudden contraction” 2:1
e N 5:1
— 10:1
N
Area ratio A/A,
Orifice plate 1.5:1
2:1
T
— 4:1
I
=6:1

—

c —_
Sudden enlargement — "

90° miter bend (without vanes)

(with vanes) —‘:'\‘

General contraction (30° included angle) 0.02

ﬁ)—* (70° included angle) 0.07

“Values for other geometries can be found in Technical Paper 410, The Crane Company, 1957.
"Based on exit velocity V.
“Based on entrance velocity V.




Separated flow

Secondary
flow
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M FIGURE 8.30 Character of the flow in a 90° hend and the
associated loss coefficient (Ref. 5).




B TABLE 8.2 _
Loss Coefficients for Pipe Components ( hy = E; —) (Data from Refs. 5, 10, 2

Component EK;

a. Elbows
Regular 907, flanged
Regular 907, threaded
Long radius 90°, flanged
Long radius 90°, threaded
Long radius 45°, flanged
Regular 457, threaded

. 1830° retwrn bends
1807 return bend, flanged
1807 return bend, threaded

c. Tees
Line flow, flanged
Line flow, threaded
Branch flow, flanged
Branch flow, threaded

. Union, threaded

. Valves
Globe, fully open
Angle, fully open
Gate, fully open
Gate, _l— closed
Gate, 1; closed
Gate, ; closed
Swing check, forward flow
Swing check. backward flow
Ball valve, fully open
Ball valve, 1 closed
Ball valve, § closed

*Sea Fig. 832 for typical valve geometry.
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5.4.3 Noncircular Conduats

Many of the conduits that are used for conveying fluids are not circular in cross section. Although the
details of the flows in such conduits depend on the exact cross-sectional shape, many round pipe re-
sults can be camried over, with slight modification, to flow in conduits of other shapes.

A = cross-sectional
area

P = perimater ~
aof pipe

Iy = 4 4P = hydraulic
diameter

{iz}
B FIGURE B8.24 Noocrcular duet.

hydraulic diameter defined as D,




m TABLE 8.3

Friction Factors for Laminar Flow in Noncircular Ducts (Data from Ref. 18)

Shape

Parameter

I. Concentric Annulus
Dy=D;-Dy

-|—D1—-I

D, =!

II. Rectangle

D, - 2ab
a+b

!
¢

D,/D,
0.0001
0.01
0.1
0.6
1.00




f XAMPLE 8.7 BBULSILTIET e, 1]

GIVEN Air at a temperature of 120 °F and standard pressure '
flows from a furnace through an 8-in.-diameter pipe with an av- '
crage velocity of 10 fUs. It then passes through a transition sec-
tion similar to the one shown in Fig. ES.7 and into a square duct
whose side is of length a. The pipe and duct surfaces are smooth
(& = 0). The head loss per foot is to be the same for the pipe and
the duct.

FIND Determine the duct size, a.

SoLuTiON

We first determine the head loss per foot for the pipe,
hy /€ = (f/D) ¥*/2g, and then size the square duct to give the
same value. For the given pressure and temperature we obtain
(from Table B3)» = 1.89 x 10 * ft*/s so that

N NN\

BFIGURE EB.7

vD (10 fi/s)(5 1)

— = 35300
v 1.89 X 10 *ft’/s

Re =




With this Reynolds number and with /D = 0 we obtain the fric-
tion factor from Fig. 8.20 as f = 0.022 so that

by 0022 (10 f/s)’

= 0.0512
€ (S5 ) 2(32.2 ft/s%)

Thus, for the square duct we must have

h  fV:

— =——=0.0512

£ D,2g @
where

D, = 44/P = 4a*/4a = a and

awf 8 :
—| —ft ) (10 ft
o (Ln)aows
I/:_=—= 5

A a- a

3.49
= (2)

is the velocity in the duct.
By combining Egs. 1 and 2 we obtain

_ f(3.49/a%)
00512 == 2322

or

a=130f"

where a is in feet. Similarly. the Reynolds number based on the
hydraulic diameter is

V.Dy  (349/a*)a 1.85 x 10*
v 1.89 x 10°* a

Re; = 4
We have three unknowns (a, f, and Re;,) and three equations—
Eqgs. 3, 4, and either in graphical form the Moody chart (Fig. 8.20)
or the Colebrook equation (Eq. 8.35a).

If we use the Moody chart, we can use a trial and error solution
as follows. As an initial attempt, assume the friction factor for the
duct is the same as for the pipe. That is, assume f = 0.022. From
Eq. 3 we obtain a = 0.606 ft, while from Eq. 4 we have
Rej, = 3.05 X 10°. From Fig. 8.20, with this Reynolds number
and the given smooth duct we obtain f = 0.023, which does not
quite agree with the assumed value of f. Hence, we do not have the
solution. We try again, using the latest calculated value of
f=0.023 as our guess. The calculations are repeated until the
guessed value of fagrees with the value obtained from Fig. 8.20.
The final result (after only two iterations) is f = 0.023,
Re, = 3.03 X 10%, and

a=0611ft=734in. (Ans)

N NN




COMMENTS Alternatively, we can use the Colebrook equa-
tion (rather than the Moody chart) to obtain the solution as

follows. For a smooth pipe (g/Dy, = 0) the Colebrook equation,
Eq. 8.35a, becomes

Y

e/Dy , 251 )
37 " ReVF
"1-

S
= —2.0log Re V7
WIS, W T

1 r
—=. = —2.0log (

\Y%

where from Eq. 3,
f=0269q (6)
If we combine Egs. 4, 5, and 6 and simplify, Eq. 7 is obtained for a.
1.928 a* = —210g(2.62 X 107 a~¥?) (7)

By using a root-finding technique on a computer or calculator, the
solution to Eq. 7 is determined to be a = 0.614 ft, in agreement
(given the accuracy of reading the Moody chart) with that ob-
tained by the trial and error method given above.

Note that the length of the side of the equivalent square duct
isa/D = 7.34/8 = 0.918, or approximately 92% of the diameter
of the equivalent duct. It can be shown that this value, 92%,. is a
very good approximation for any pipe flow—Ilaminar or turbu-
lent. The cross-sectional area of the duct (4 = a* = 53.9 in.%) is
greater than that of the round pipe (4 = wD?*/4 = 50.3 in.?). Also,
it takes less material to form the round pipe (perimeter = wD =
25.1 in.) than the square duct (perimeter = 4a = 29.4 in.). Cir-
cles are very efficient shapes.



B TABLE 8.4
Pipe Flow Types

Variable Type II Type III

. Fluid

Density Given Given
Viscosity Given Given
. Pipe
Diameter Given Determine
Length Given Given
Roughness Given Given
. Flow
Flowrate or Determine Given
Average Velocity
. Pressure
Pressure Drop or Determine
Head Loss

SEE EXAMPLES 8.9, 8.10, AND 8.11 FROM BOOK




EXAMPLE 8.8 FROM DIFFERENT BOOK

If the flow rate through a 10-cm-diameter wrought iron pipe (Fig. E7.15) is 0.04 m/s,
find the difference in elevation H of the two reservoirs.

@ Screwed
: globe valve
(fully open) 1

Water

T

10-cm-dia.
wrought iron pipe

Fig. E7.15

Solution

The energy equation written for a control volume that contains the two reservoir sur-
faces (see Eq.4.5.17), where V|, = V, = 0and p; = p; = 0,is

O=z—z1+ h

Thus, letting z; — 7o = H, we have

(Kentranoe + K\ralve + 2*‘lr(IE:Itn:\ﬂ.!.-' + KE}EIT.) + fév_z
D 2g



V==x=_""" _
7 % 0.05°

L_VD _509x01

e _ 0.046

The average velocity, Reynolds number, and relative roughness are

= 5.09 m/s

=509 x 10°

= 0.00046

From the Moody diagram we find that
f=0.0173

H=(05+57+2x0064 +1.0)

=112+ 114=226m

Using the loss coefficients from Table 7.2 for an entrance, a globe valve, screwed 10-cm-
diameter standard elbows, and an exit there results

5.09°

+ 0.0173
X 9.8

Note: The minor losses are about equal to the frictional losses as expected, since there
are five minor loss elements in 500 diameters of pipe length.

50 5.09°
0.12x98




EXAMPLE 8.9 FROM DIFFERENT BOOK

Estimate the flow rate in the simple piping system of Fig. E7.18a if the pump characteristic
curves are as shown in Fig. E7.18b. Also, find the pump power requirement.

o 80

—a—| el 00m

Hp

e

Hp(m)
2
T | T | T
/%'
| | | I | | | | |
2 &

40 40
f&“ﬂ 9 €160 m 20 + 20
Ejfcm N ] — ﬂll | nlz | {1'3 |
\ P ) Water ) ' '
b~ 20°C O (m3/s)
(b)

Fig. E7.18

Solution

We will assume that the Reynolds number is sufficiently large that the flow is completely turbu-
lent. So, using e/D = 0.046/200 = 0.00023, the friction factor from the Moody diagram is

f=0.014
The energy equation (see Eq. 7.6.40), with Hp = —W g, applied between the two surfaces, yields

_;,ﬂ 0
VE 2
g Y



L\ Vv?
or H_P =90 — 60 + Kentr:mce + Kexit +f5 2_
400) £ 02
02/ 2xX98 X [xx0.17)

=30 + (D.S + 1.0 + 0.014

=30 + 15200°

This equation, the system demand curve, and the characteristic curve Hp(Q) of the pump are
now solved simultaneously by trial and error. Actually, the curve could be plotted on the same
graph as the characteristic curve, and the point of intersection, the operating point, would
provide Q. Try Q = 02 m¥s: (Hp)energy = 91 m, (Hp)ehar = 75 m. Try O = 0.15 m'/s:
(HF)energ}' = 64 m, {HP)char =75 mTry Q = 0.17 m3/5: (HP}Energj,f =74 m. (HP}char = 76 m. This
is our solution. We have

Q =017 ms

Check the Reynolds number: Re = DQ/Av = 0.2 X 0.17/(= x 0.1* x 10~ %) = 1.08 x 10°. This
is sufficiently large, but marginally so.
The power requirement of the pump is given by Eq. 4.5.26:

OvyHp

ne
_ 0.17 X 9800 X 75
0.65

where the efficiency np = 0.63 is found from the characteristic curve at Q = 0.17 m’/s.
Note: Since L/D = 1000, minor losses due to the entrance and exit could have been neglected.

Wp=

= 198000 W or 198 kW




8.5.2 Multiple Pipe Systems

In many pipe systems there is more than one pipe involved. The complex system of tubes in
our lungs (beginning as shown by the figure in the margin, with the relatively large-diameter
trachea and ending in tens of thousands of minute bronchioles after numerous branchings) and

the maze of pipes in a city’s water distribution system are typical of such systems. The gov-
erning mechanisms for the flow in multiple pipe systems are the same as for the single pipe
systems discussed in this chapter. However, because of the numerous unknowns involved,
additional complexities may arise in solving for the flow in multiple pipe systems. Some of
these complexities are discussed in this section.




M FIGURE 8.35 (a) Series and (b)

parallel pipe systems.




The governing equations can be written as follows:

pipes In series, _ _
O=0,=0

and

JI'ILJ_E = erl + frf_l + F?Ii

Thus, the governing equations for parallel pipes are

Q=0+ 0, + 05

hy, = hy, = hg,




Another type of multiple pipe system called a /oop 1s shown in Fig. 8.36. In this case the
flowrate through pipe (1) equals the sum of the flowrates through pipes (2)and (3),or O, = O, + Os.
As can be seen by writing the energy equation between the surfaces of each reservoir, the head

loss for pipe (2) must equal that for pipe (3), even though the pipe sizes and flowrates may be dif-
ferent for each. That 1s,

ps | Va
=—+—+zp+h, +h
y g BT L L,
for a fluid particle traveling through pipes (1) and (2), while

~_ Pe B

V3
_+_+:B+;?LL+F?L3

Yy 2

Node, N D,

n\

Oj=p ()= ® 2

Cf \f{a}\*’h—b— 05
Dy

B FIGURE 8.36 Multiple pipe loop system.




Example from William S. Jenna

Benzene flows through a 12-nominal, schedule 80 wrought ron pipe. The pressure drop measured at
points 350 m apart is 34 kPa. Determine the flow rate through the pipe.

SOLUTION

The method and calculations 1n the precedng example, where pressure drop 15 unknown, are
quite strmightforward. In this example, volume flow rate @ 8 the unknown; therefore, velocity V
and fnction factor f are also unknown. A tnal-and-error solution method will be required to solve
this problem, but the technique 1s simple. From property and data tables, we determine the following:

Benzene — 0.876(1 000) kg /m’
o g/ l [Table A.5]
pw=0.601 %107 N-s/m
12-nom, sch 80 D = 28.89 em
[Table C.1]

A = 63550 em”

& = 0004 6 cm

Wrought ron [Table 5.2]



The contmuty equation 18
Q =AV1 = Al

Because diameter s constant, A; =A; and so V) = V5. The Bemoulli equation with the friction factor
term applies:

] 2 2
71 1"'] | ] 1"'1 .ﬁ-’ V
—+—+zi=—+7—+n+ —
pg  2g pg g Dy 2g
Evaluating properties,
Vi =V (from continuity)
I =D (for a horizontal pipe)

L = 350m (given)

M —p2 = 3EkPa (given)




The Bernoulh equation becomes

L pV*
PremR=p7
In problems of this type, where volume flow rate @ is the unknown, it 15 convenient to solve the

Bemoulh equation for velocity:

2D — p2)
v_\/ pfL

Tral and error 1 necessary bocause velocity 15 unknown, but 1t 15 needed to caleulate the Reynolds
number, which in tum is needed o determine the fricion factor. Substituting yields

v _  [20.288 9)(34 000)
n R76f(350)




The Reynolds number 15

pVD  8T76V(0.288 0)
o 0601 x 1073

Re

— 421 % 10°V
In addibon, we have

g 0.4 6 cm 0.000 16
D 2889 em

With reference to the Moody diagram, Figure 5.14, we know that our operating point is somewhere

along the &/D =0.000 16 line. As our first estimate, we assume a value for the fnction factor that
corresponds to the fully turbulent value for this ine. Thus we have the following first trial:

f=0.013 (fully turbulent value for £/D = 0.000 16)




(0.253 0253

T Voo
Re = 4.21 x 10F(2.22) (from Equation ii)

V= 222 mfs (from Equation 1)

Thus

Re = 035 x 10F

} f=00145 (from Fgure 5.14)

£ 0000 16
D

For the second tnal,

(1.253
=00145 V=—r—=2.10m/s
! v0.014 5 /




Re =421 x 10°(2.10) = 8.85 x 10° £ 0.014 5
— 0.000 16

(from Fgure 5.14)

which agrees with our assumed value. S0

V =2.10 m/s

Q = AV = 655.50 = 107%2.10)

or Q@ =0.138m'/s

The method converges very mpudly. Seldom are more than two mials necessary.




