## CMPE226 Electronics Lab Report Experiment # 2 Superposition Theorem

| Std. No | Name | Group       |
|---------|------|-------------|
| 1       |      | <del></del> |
| 3.      |      |             |
| Date    |      |             |

Aim of the Experiment: To investigate the effects of more than one voltage source in a network.

**Step1**: Connect up the following circuit as below



- Previous experiments have shown what currents and voltages are present in a resistive network with one voltage source. We know wish to investigate networks which have more than one source, and to formulate some expressions for the resultant currents.
- This is a similar network to the one used to investigate Kirchhoff's Laws, except that two voltage sources are used.

**Step2**: Monitor the variable d.c. voltage. Switch on the psu and set the variable d.c voltage to 20 V.

**Step3**: Measure the current in each branch of the network. This will give the current in R<sub>1</sub> and R<sub>2</sub>, R<sub>3</sub>, R<sub>4</sub> and R<sub>5</sub> respectively.

**Step4**: Note both the magnitude and the polarity of each current, and tabulate them.

| Component<br>Branch | Polarity of | Current |
|---------------------|-------------|---------|
|                     | the current | (mA)    |
| R1and R2            |             |         |
| R3                  | :           |         |
| R4 and R5           |             |         |

- Q1) Do the current directions agree with those shown in Figure 1?
- If the answer to Question 1 is No, Do not alter the directions of the arrows, but mark the current as negative

Step5: Now disconnect the 15 V source and link the resistors R3 and R5, as shown below



**Step6**: Measure and tabulate the magnitude and the polarity of the currents  $I_1$ ,  $I_2$  and  $I_3$ 

| Component<br>Branch | Polarity of | Current |
|---------------------|-------------|---------|
|                     | the current | (mA)    |
| R1and R2            |             |         |
| R3                  |             |         |
| R4 and R5           |             |         |

Q2) Again do the directions of the currents agree with those shown on the diagram?

**Step7:** Remove the link between  $R_3$  and  $R_5$  and replace the +15V source connections as they are initially. Disconnect the 20V source, and link  $R_2$  and  $R_3$  like the circuit is shown below and fill following table for the currents  $I_1$ ,  $I_2$  and  $I_3$ .



| Component<br>Branch | Polarity of the current | Current (mA) |
|---------------------|-------------------------|--------------|
| R1and R2            |                         | 3            |
| R3                  |                         |              |
| R4 and R5           |                         |              |

- Q3) Can you notice any relationship between I<sub>1</sub>, I<sub>1</sub> and I<sub>1</sub> ?
- Q4) Does the same relationship hold for  $I_2$  with  $I_2$  and  $I_2$ , also  $I_3$  with  $I_3$  and  $I_3$ ?
- Q5) Calculate currents I<sub>1</sub> I<sub>2</sub> and I<sub>3</sub> (Consider Figure 1) Mesh-Current Analysis and compare your this theoretical solution with experimental one which you have found in Step 4. (Use back of the page if space is not enough)

## **Conclusions**