CMPE 226 Electronics Lab Report Experiment # 3

Thevenin's Theorem

	Std. No	Name	Group	Date
1.				20
2.				
3.				

Aim of the Experiment: To find a method of simplifying a network in order to obtain the current flowing in one particular branch of the network

Step1: Connect the power supply unit to the mains supply line. Ensure that the variable d.c. Control is at minimum. DO NOT switch on yet.

Step2 : Connect up the following circuit as below and apply 10V dc from variable supply

Step3: Measure the current in 680 Ω resistor

I=....mA

<u>Q1)</u> Calculate the theoretical value of I using mesh-current law. Does the measured value of current correspond with the calculated value?

Cem Ergun Thevenin Theorem 1

E represents open circuit voltage of the source, r its internal resistance.

Step5: Lets us measure open circuit voltage E of the source, and it resistance r,

• To measure the voltage, disconnect the 680Ω resistor from the circuit, and measure the voltage between X and Y as shown in Fig2a.

Q2) The magnitude of E was found to be volts?

• Now we wish to determine the internal resistance **r** of the equivalent source. The internal resistance of a source is the resistance seen between the terminals of the source (**X** and **Y** in this case) with the source **E** is removed. This gives the network shown in Fig 3.

Step6) Or the resistance of the above network may be found by connecting a voltages 2V, 4V, 6V and 8V to points X and Y, and measuring the resultant current, copy these result to following table.

Cem Ergun Thevenin Theorem 2

Voltage (V)	Current (mA)	Resistance, $\mathbf{r}(\Omega)$
2V		
4V		
6V		
8V		
	Average value	of r=

It can be seen from Fig2b that required Current I, can easily be found by dividing the E by the total resistance

$$I = \frac{E}{R + r}$$
 where R is the resistance of required branch

<u>Q4)</u> Calculate the resistance using Ohm's Law, and take the average of the values is found. (insert the average values to above table)

<u>Q5)</u> Calculate $I = \frac{E}{R+r}$ and compare the value with the current measured (in Step3) initially in the 680Ω resistor

Conclusions

Cem Ergun Thevenin Theorem 3