CMPE226 - Electronics for Computer Engineers							
Department:							
Computer Engin	eering		1				
Program Name: Program Code: 25							
Computer Engin	eering		110gruin Couct 25				
Course Number: CMPE226		Credits: 4 Cr		Year/Semester: 2022-2023 Spring			
Required Co	ourse 🗌 El	ective Course (click on and check the a	opropriate box)			
Prerequisite(s):							
MATH241 Lines	ar Algebra and C	rdinary Differentia	ll Equations				
Catalog Descrip	otion:						
Circuits, currents	s and voltages, p	ower and energy, K	Circhhoff's current and v	oltage laws. Circuit elements and			
circuits. Resistiv	e circuits: resista	nce in series and p	arallel, resistive network	analysis by series and parallel			
equivalents. The	venin equivalent	s. Superposition. In	iductance and capacitance	ee, practical capacitor and inductors.			
Transformer, bas	sic diode diode c	oncepts, zener diod	e, ideal diode model, rec	ctifiers and waveshaping. Basic amplifier			
concepts, Bipola	r Junction Trans	stors: Current and	Voltage relationship, co	mmon emitter characteristics.			
Course Web Pa	ge:	22 <i>i</i>					
http://cmpe.emu	.edu.tr/courses/ci	npe226					
Textbook(s):							
Floyed, T.L., Ele	ectronics Fundan	entals: Circuits, D	evices, and Applications	, 8th Edition, Prentice Hall, 2010.			
Indicative Basic	Reading List :			XX 11			
Hambley, A.R.,	Electrical Engine	ering: Principles a	nd Applications, Prentice	e-Hall.			
Terrel, D., Electi	ronics for Compu	iter Technology, II	nomson, 2000.				
1 opics Covered	and Class Sche	aule:					
(4 nours of lecti Weeks 1 2	Voltago ourros	t and register as F	lastrias abarga voltaga	ourrent resistance the electrical			
WEEKS 1-2	circuit. Ohm's law, energy, and power: Application of Ohm's law, energy and power, power in an electric circuit						
Weeks 3 -4	Series circuits:	resistors in series	total series resistance of	irrent in a series circuit			
WEEKS 5 -4	Kirchhoff's voltage law voltage dividers. Parallel circuits: Resistors in parallel total						
	parallel resistance, voltage in a parallel circuit. Kirchhoff's current law, current dividers						
Weeks 5-6	Series parallel	circuits: Identifyin	a series parallel relation	shine analysis of series-narallel			
WEEKS J-U	series parallel circuits: identifying series parallel relationships, analysis of series-parallel						
	power transfer	theorem, superposi	ition theorem.				
Weeks 7-9	Introduction to	alternating current	and voltage. The sinusc	idal waveform sinusoidal voltage			
WEEKS 7-9	sources voltag	e and current value	s of sine waves angular	measurement of a sine wave, the			
	sine wave form	ula analysis of AC	C circuits Capacitors Th	he basic capacitor series			
	capacitors, par	allel capacitors, car	pacitors in DC circuits. c	apacitors in ac circuits. (Midterm			
	Exam)	······································	·····,·				
Weeks 10-12	RC Circuits: S	inusoidal response	of RC circuits. Impedar	ice and phase angle of series RC			
Weeks 10 12	circuits, analys	is of series RC circ	uits, analysis of parallel	RC circuits, analysis of parallel-			
	series RC circu	its. Inductors: The	basic inductor. series an	d parallel inductors, inductors in			
	DC circuits, in	ductors in AC circu	its. RL Circuits: Sinuso	idal response of RL circuits,			
	impedance and	phase angle of ser	ies RL circuits, analysis	of series RL circuits, impedance			
	and phase angl	e of parallel RL cir	cuits, analysis of paralle	l RL circuits, analysis of series-			
	parallel RL cir	cuits.		-			
Weeks 13-15	RLC Circuits:	Impedance and ph	ase angle of series RLC	circuits, analysis of series RLC			
	circuits, parallel RLC circuits. Transformers: The basic transformer, step-up and step-or		ansformer, step-up and step-down				
	transformers. I	Diodes and Applica	tions: Introduction to ser	niconductors, the diode, diode			
	characteristics,	diode rectifiers, po	ower supplies, clippers. T	Fransistors: DC operation of			
	bipolar junctio	n transistors (BJT),	The BJT as a switch. (F	inal Exam).			

Laboratory Schedule:	
(2 hours of laboratory per week)	

week 4 Resistor networks

- week 5 Superposition theorem
- week 6 Thevenin's theorem
- week 7 Capacitive and inductive circuit at AC
- week 10 Semiconductor diode
- week 11 Half wave rectification
- week 12 Realization of AND and OR gates using diodes

Course Learning Outcomes:

On successful completion of the course, the student is expected to be able to:

- (1) Ability to apply knowledge of KVL, KCL, Superposition, Thevenin's theorems in DC circuits and ability to analyze the AC circuits.
- (2) Ability to solve basic electrical and electronic circuits.
- (3) Ability to use the digital multimeter, oscilloscope, function generator and power supply.
- (4) Apply fundamental principles in electric circuit theory.
- (5) Use Ohm's law, KVL, KCL, Superposition and Thevenin's theorems to analyse DC resistive circuits.
- (6) Identify RMS value, frequency and period of AC waveforms.
- (7) Use phasor concept to analyse AC circuits that include RC, RL and RLC.
- (8) Analyse diodes, clipper circuits, transformers and rectifiers.
- (9) Use circuit theory knowledge to analyse common-emitter connected transistor circuits.

Assessment	Method	No	Percentage			
	Midterm Exam I	1	35%			
	Final Examination	1	55%			
	Labs	7	10 %			
Contribution of Course to Criterion 5						
Credit Hours for:						
Mathematics & Basic Science : 0						
Engineering Sciences and Design : 4						
General Education : 0						
Relationship of Course to Program Outcomes						
The course has been designed to contribute to the following program outcomes:						
1) an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering.						

1) an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics.

6) an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions.

NOTES: 1) Only one makeup exam will be given for the midterm or final at the end of the semester that will cover all the topics listed above. The student MUST submit a written report to the course instructor, stating their excuse, within 3 days of that examination.

2) If you miss both midterm and final exams and did not submit any written report, you will get an "NG" grade.