

Eastern Mediterranean University
Computer Engineering Department

AAAAAAAAAAAASSSSSSSSSSSSSSSSSSSSSSSSEEEEEEEEEEEEMMMMMMMMMMMMBBBBBBBBBBBBLLLLLLLLLLLLEEEEEEEEEEEERRRRRRRRRRRRSSSSSSSSSSSS

AAAAAAAAAAAANNNNNNNNNNNNDDDDDDDDDDDD

DDDDDDDDDDDDEEEEEEEEEEEEVVVVVVVVVVVVEEEEEEEEEEEELLLLLLLLLLLLOOOOOOOOOOOOPPPPPPPPPPPPMMMMMMMMMMMMEEEEEEEEEEEENNNNNNNNNNNNTTTTTTTTTTTT TTTTTTTTTTTTOOOOOOOOOOOOOOOOOOOOOOOOLLLLLLLLLLLLSSSSSSSSSSSS

FFFFFFFFFFFFOOOOOOOOOOOORRRRRRRRRRRR

888888888888000000000000888888888888666666666666 AAAAAAAAAAAANNNNNNNNNNNNDDDDDDDDDDDD 888888888888000000000000555555555555111111111111

MMMMMMMMMMMMIIIIIIIIIIIICCCCCCCCCCCCRRRRRRRRRRRROOOOOOOOOOOOPPPPPPPPPPPPRRRRRRRRRRRROOOOOOOOOOOOCCCCCCCCCCCCEEEEEEEEEEEESSSSSSSSSSSSSSSSSSSSSSSSOOOOOOOOOOOORRRRRRRRRRRRSSSSSSSSSSSS

CMPE323CMPE323CMPE323CMPE323 MMMMICROPROCESSORS ICROPROCESSORS ICROPROCESSORS ICROPROCESSORS LLLLAB AB AB AB MMMMANUALANUALANUALANUAL

Dr. Mehmet Bodur

ii Assemblers and Development Tools for 8086 and 8051 Microprocessors

 Assemblers and Development Tools for 8086 and 8051 Microprocessors iii

ForewForewForewForewordordordord

The objective of this book is to supply sufficient guidance to exploit the tools for
developing microprocessor based design and application projects up to physical level of
the implementation. The contents of is book is a collection of the hands-on experiments to
practice several hardware/interfacing/software issues for an introductory level
microprocessor course in a Computer Engineering program.

You may find considerable amount of practical information to guide a student in using the
modern microprocessor development tools along with the classical assembly programming
environments. The material is displayed in ten experimental chapters, where the first five
experiments are mainly on the development and demonstration of software in 8086
assembly language, next three are on the 8051 hardware for microprocessor interface units
including ports, memory, analog to digital converters and serial communication ports.
Furthermore it contains two 8051 system examples with development details in higher
level languages Keil-C51 C compiler. These two design examples are expected to serve for
term assignments to an introductory level microprocessor course such as CMPE 323 in
Computer Engineering Program of the Computer Engineering Department at Eastern
Mediterranean University, where the experiments are currently carried as lab activities of
CMPE 323 course.

The author of this book is aware of lots of books concentrating on both application design
and practical issues on using microprocessors. In the perspective of the author, the shift of
the microprocessor based applications from the assembly to the higher level languages is
inevitable while the interfacing units, memory size, and processing power of the processors
are developed in Moore’s law, almost doubling at every two or three years.

Finally it is the authors pleasure to acknowledge his colleagues Dr. Mohammed Salamah
and Prof. Dr. Hasan Komurcugil who contributed to the previously given microprocessor
courses, CMPE222, CMPE 326 and CMPE328. The finalized experiments are a product of
an evolution starting from the mentioned courses.

This kind of books to guide the practical applications on diverged microprocessor
development tools are not expected to be error-free, although the author spent considerable
effort for the correction of the errors during the practical laboratory exercise of the students
who followed the included experimental procedures. The author welcomes your comments,
suggestions, and corrections for the corrected editions of these laboratory notes.

Welcome to work with the microprocessors, their languages, and their development tools.

Dr. Mehmet Bodur

iv Assemblers and Development Tools for 8086 and 8051 Microprocessors

 Assemblers and Development Tools for 8086 and 8051 Microprocessors v

ContentsContentsContentsContents
FOREWORD.. III

CONTENTS.. V

11.. TASM, EDIT, DEBUG AND EMU8086 ASSEMBLER TOOLS... 1

1.1 OBJECTIVE .. 1
1.2 INTRODUCTION ... 1

1.2.1. Editing the source file.. 1
1.2.2. Assembling to an object file.. 1
1.2.3. Linking to an Executable or Command File .. 2
1.2.4. Tracing and Debugging of an EXE file ... 3
1.2.5. Emu86 IDE .. 4
1.2.6. EMU8086 Source Editor ... 4
1.2.7. EMU8086 / MASM / TASM compatibility ... 5

1.3 EXPERIMENTAL PART.. 7
1.3.1. Writing a Source File .. 7
1.3.2. Assembling with TASM.. 8
1.3.3. Assembling with Emu8086... 9

22.. DATA TYPES, AND EFFECT OF ALU INSTRUCTIONS ON FLAGS .. 11

2.1 OBJECTIVE .. 11
2.2 PRELIMINARY STUDY.. 11
2.3 EXPERIMENTAL PART.. 11

2.3.1. Data types and Data directives.. 11
2.3.2. ALU Operations and Flags.. 13

33.. SIMPLE VIRTUAL 8086 DEVELOPMENT BOARD... 15

3.1 OBJECTIVE .. 15
3.2 INTRODUCTION ... 15

3.2.1. 8086 and main memory ... 15
3.2.2. 8086 Processor Bus ... 15
3.2.3. Address Latching ... 16
3.2.4. System Configuration .. 16
3.2.5. IO Address decoding ... 16
3.2.6. Simple Output Port UL .. 18
3.2.7. Simple Input Ports UA and UB.. 18
3.2.8. Serial Communication Device ... 19

3.3 EXPERIMENTAL PART.. 21
3.3.1. Execution of a code on a virtual 8086 system.. 21
3.3.2. Adding Port UA and Port UB.. 22
3.3.3. USART and Capitalization .. 23

44.. BIOS AND DOS SERVICES.. 29

4.1 OBJECTIVE .. 29
4.2 PRELIMINARY STUDY.. 29
4.3 EXPERIMENTAL PART.. 29

4.3.1. DOS services for String Display and Input.. 29
4.3.2. Subroutines and Include files... 31

vi Assemblers and Development Tools for 8086 and 8051 Microprocessors

55.. USING SIGNED NUMBERS AND LOOK-UP TABLES ... 35

5.1 OBJECTIVE ...35
5.2 PRELIMINARY STUDY ..35
5.3 EXPERIMENTAL PART ..35

5.3.1. Macro Library for BIOS and DOS Services...35
5.3.2. Average by Signed Arithmetic Operations38
5.3.3. Look-Up Table for the Square Root of an Integer..39
5.3.4. Simple Look-Up Table for Fibonacci Numbers..40

66.. I/O AND EXTERNAL MEMORY INTERFACE FOR 8051 .. 45

6.1 OBJECTIVE ...45
6.2 INTRODUCTION ..45

6.2.1. Typical features..45
6.2.2. Registers...45
6.2.3. Instruction Set ..47
6.2.4. The 8051 Ports ...48
6.2.5. Command line Assembler for 8051 ..48
6.2.6. IDE Tool for Coding of 8051 ...49
6.2.7. Simulation in ISIS...50

6.3 EXPERIMENTAL PART ..50
6.3.1. Installation of A51 to your work folder ..50
6.3.2. Simulation of a Microcontroller Circuit...52

77.. 8051 MEMORY DECODERS AND MEMORY INTERFACE.. 55

7.1 OBJECTIVE ...55
7.2 8051 MEMORY INTERFACING ..55
7.3 EXPERIMENTAL PART ..55

7.3.1. Installation of KC51 and preparation of -.HEX files ...55
7.3.2. Simulation of 8051 with External Memory...57

88.. 8051 MEMORY MAPPED I/O AND 8255A INTERFACING ... 61

8.1 OBJECTIVE ...61
8.2 8051 EXTERNAL IO INTERFACING ...61
8.3 EXPERIMENTAL PART ..61

8.3.1. Memory Mapped I/O interfacing..61
8.3.2. Interfacing 8255 to 8051 Microcontroller. ..64
8.3.3. Interfacing 8086 to a stepper Motor. ...66

99.. DESIGN AND CODING OF AN INTELLIGENT RESTAURANT SERVICE TERMINAL 69

9.1 OBJECTIVE ...69
9.2 INTRODUCTION ..69

9.2.1. Installing KC51 on your drive..69
9.2.2. Starting a 8051 or 8052 project in KC51...69
9.2.3. LCD display ...70
9.2.4. Serial Port ..72
9.2.5. ADC interfacing ...73
9.2.6. Switches and Operation of the System..74

9.3 ABOUT KEIL C51 COMPILER ..75
9.4 DESIGN REQUIREMENTS ..75
9.5 REPORTING ..77

1100.. DESIGN AND CODING OF AN INTELLIGENT HUMAN WEIGHT SCALE................................... 79

10.1 OBJECTIVE ...79
10.2 INTRODUCTION ..79

10.2.1. Installing KC51 on your drive ...79
10.2.2. Starting a project in KC51 for 8051 or 8052 projects...79
10.2.3. LCD display...79
10.2.4. Serial Port ...79
10.2.5. ADC interfacing ..79

 Assemblers and Development Tools for 8086 and 8051 Microprocessors vii

10.2.6. Switches and Operation of the System .. 79
10.3 ABOUT KEIL C51 COMPILER ... 79
10.4 DESIGN REQUIREMENTS.. 80
10.5 REPORTING ... 81

1111.. APPENDIX .. 83

COMPLETE 8086 INSTRUCTION SET.. 83
Mnemonics ... 83
Operand types:... 83
Notes: ... 83
Instructions in alphabetical order: .. 84

SUMMARY SHEET FOR ASSEMBLY PROGRAMMING ... 96

viii Assemblers and Development Tools for 8086 and 8051 Microprocessors

 1

11111111........
TASM, EDIT, DEBUG TASM, EDIT, DEBUG TASM, EDIT, DEBUG TASM, EDIT, DEBUG

andandandand Emu80Emu80Emu80Emu8086868686 AssemblerAssemblerAssemblerAssembler ToolsToolsToolsTools

1.1 Objective

TASM is one of the well known 8086 Assembler programs. This experiment will
introduce you TASM, its input, and output file types.
Our objective covers hands-in experience to use

“Notepad” to create an assembler source file,
“TASM” to assemble the a source file into an object code
“TLink” to link an object code into an executable file.
“TD” and “Emu8086” debuggers to trace an executable file.

1.2 Introduction

Assembly language is the lowest level of symbolic programming for a computer system. It
has several advantages and disadvantages over the higher level programming languages.
Assembly language requires an understanding of the machine architecture, and provides
huge flexibility in developing hardware/software interface programs such as interrupt
service routines, and device drivers. 8086 Turbo Assembler is one of the well known
assembler programs used for PC-XT and AT family computers.

1.2.1. Editing the source file

The source for an assembly program is written into a text file with the extension -.ASM, in
ASCII coding. Any ASCII text editor program can be used to write an assembly source
file. We recommend to use NOTEPAD as a general purpose text editor, or the source
editor of the Emu86, which is especially tailored to write 8086 Flat ASM sources for your
experiments.

1.2.2. Assembling to an object file

Once the source file is ready for assembling, you will
need TASM program to be executed on the source
file. TASM is a quite old program, written for DOS
environment. Indeed, in most embedded system
application DOS operating system is preferred over
Windows because Windows is unnecessary, too
bulky and too expensive for most embedded
applications. In the Windows operating system, you
can invoke a DOS command window by running the “CMD.EXE” executable. Figure 1
shows a Command Window, with its typical cursor. You may change the font and the
colors of the Command window by the defaults and properties dialog which is opened with
a left-click on the windows title. Colors such as screen text black on white, popup text blue
on gray, and fonts Lucida-Console 18 point will make your command window much
more readable. Whenever you want, you can use CLS command of DOS to clear the
screen and the screen buffer.

Figure 1. A typical Command
Window in the Windows

Environment.

2 Assemblers and Development Tools for 8086 and 8051 Microprocessors

The Turbo Assembler program (TASM.EXE) can be started in the command window by
writing TASM <source-file-name> , and transmitting it to DOS using the“ENTER” key.
The full syntax of TASM command is:
 > > > >TASM [options] source [,object] [,listing] [,xref]TASM [options] source [,object] [,listing] [,xref]TASM [options] source [,object] [,listing] [,xref]TASM [options] source [,object] [,listing] [,xref]

TASM command line options are shown in Table 1.

Table 1. Possible Switches of the Turbo Assembler Program.
/a,/s Alphabetic or Source-code segment ordering

/c Generate cross-reference in listing

/dSYM[=VAL] Define symbol SYM = 0, or = value VAL

/e,/r Emulated or Real floating-point instructions

/h,/? Display this help screen

/iPATH Search PATH for include files

/jCMD Jam in an assembler directive CMD (eg. /jIDEAL)

/kh#,/ks# Hash table capacity #, String space capacity #

/l,/la * Generate listing: l=normal listing, la=expanded listing

/ml,/mx,/mu Case sensitivity on symbols: ml=all, mx=globals, mu=none

/n Suppress symbol tables in listing

/p Check for code segment overrides in protected mode

/t Suppress messages if successful assembly

/w0,/w1,/w2 Set warning level: w0=none, w1=w2=warnings on

/w-xxx,/w+xxx Disable (-) or enable (+) warning xxx

/x Include false conditionals in listing

/z Display source line with error message

/zi,/zd Debug info: zi=full, zd=line numbers only

In DOS and Assembly programming, the names are not case-dependent, which means
writing TASM FIRST, Tasm first, tasm FIRST or tasm firST does not make any
difference.

Assume that you have written the following simple assembly program into a text file with
the name first.asm. To assemble it into first.obj file, you shall simply write the command

 >tasm first>tasm first>tasm first>tasm first

1.2.3. Linking to an Executable or Command File

The object files contains the program code but some of the labels are still in symbolic
form. A linker converts them into the executable file replacing all symbols with their
corresponding values. The use of library procedures, and splitting the large programs into
modules are possible since a linker can calculate a label referred from a different object
file. The file first.obj is converted to an executable by the DOS command

 >tlink first >tlink first >tlink first >tlink first

Figure 2 shows typical command window message after tasm and tlink is executed.

 Assemblers And Development Tools For 8086 And 8051 Microprocessors 3

Figure 2 Command Window after tasm and tlink are executed.

After running Tlink, you shall find the executable file first.exe in your working folder.
First.exe terminates with a return to DOS interrupt, without giving any message. An
assembly debugging tool can trace what happens during the execution of the first.exe file.

1.2.4. Tracing and Debugging of an EXE file

Turbo Debugger, td.exe, is an 8086 debugging tool which gives a convenient view of the
CPU status, and the memory segments. The command line syntax of TD has options,
program-file-name, and arguments
>TD [options] [program [arguments]] >TD [options] [program [arguments]] >TD [options] [program [arguments]] >TD [options] [program [arguments]] ----xxxx---- = turn option x off = turn option x off = turn option x off = turn option x off

The options of td.exe is shown in Table 2.
Table 2. Command Line Options for Turbo Debugger TD.EXE

 -c<file> Use configuration file <file>

 -do,-dp,-ds Screen updating: do=Other display, dp=Page flip, ds=Screen swap

 -h,-? Display this help screen

 -i Allow process id switching

 -k Allow keystroke recording

 -l Assembler startup

 -m<#> Set heap size to # kbytes

 -p Use mouse

 -r Use remote debugging

 -rn<L;R> Debug on a network with local machine L and remote machine R

 -rp<#> Set COM # port for remote link

 -rs<#> Remote link speed: 1=slowest, 2=slow, 3=medium, 4=fast

 -sc No case checking on symbols

 -sd<dir> Source file directory <dir>

 -sm<#> Set spare symbol memory to # Kbytes (max 256Kb)

 -sn Don't load symbols

 -vg Complete graphics screen save

 -vn 43/50 line display not allowed

 -vp Enable EGA/VGA palette save

 -w Debug remote Windows program (must use -r as well)

 -y<#> Set overlay area size in Kb

 -ye<#> Set EMS overlay area size to # 16Kb pages

4 Assemblers and Development Tools for 8086 and 8051 Microprocessors

Figure 3. The turbo debugger started with first.exe file.

Entering the command
 >td first>td first>td first>td first

into the command window will start the debugger to load the executable first.exe to its
memory space. The screenshot of TD is shown in Figure 3. In Turbo debugger, you can
execute the instructions step by step and trace the execution of the code. Any message
written to the screen will invoke the screen display mode to let you observe the message.

1.2.5. Emu86 IDE

An Integrated Development Environment (IDE) provides a convenient environment to
write a source file, assemble and link it to a -.COM or -.EXE file, and trace it in both
source file, and machine code. Emu86 is an educational IDE for assembly program
development. You can download the latest student version of EMU86 from the web page
www.emu8086.com. It is a Windows program, and will run by dragging an -.ASM, -

.OBJ, -.LST, -.EXE , or

-.COM file into the emu86 shortcut icon. By this action, asm or lst files will start the 8086
assembler source editor, while obj and exe files starts the disassembler and debugger units.

1.2.6. EMU8086 Source Editor

The source editor of EMU86 is a special purpose editor which identifies the 8086
mnemonics, hexadecimal numbers and labels by different colors as seen in Figure 4.

a) b)

Figure 4. a) EMU8086 Source Editor, and b) assembler status report windows.

 Assemblers And Development Tools For 8086 And 8051 Microprocessors 5

The compile button on the taskbar starts assembling and linking of the source file. A report
window is opened after the assembling process is completed. Figure 5 shows the emulator
of 8086 which gets opened by clicking on emulate button.

Figure 5. first.exe in the emulator window of EMU8086 debugging environment

Emul8086 environment contains templates to generate command and executable files.
Another benefit of Emul8086 is its emulation of a complete system, including the floppy
disk, memory, CPU, and I/O ports, which raises opportunity to write custom bios and boot
programs together with all other coding of a system. More over, its help is quite useful
even for a beginner of asm programming.

1.2.7. EMU8086 / MASM / TASM compatibility

Syntax of emu8086 is fully compatible with all major assemblers including MASM and
TASM; though some directives are unique to this assembler.
1) If required to compile using any other assembler you may need to comment out these
directives, and any other directives that start with a '#' sign:

#make_b#make_b#make_b#make_bin#in#in#in#
#make_boot##make_boot##make_boot##make_boot#
#cs=...##cs=...##cs=...##cs=...#

 etc...
2) Emu8086 ignores the ASSUME directive. manual attachment of CS:, DS:, ES: or SS:
segment prefixes is preferred, and required by emu8086 when data is in segment other
then DS. for example:

mov ah, [bx] ; mov ah, [bx] ; mov ah, [bx] ; mov ah, [bx] ; read byte from DS:BXread byte from DS:BXread byte from DS:BXread byte from DS:BX
mov ah, es:[bx] ; read byte from ES:BXmov ah, es:[bx] ; read byte from ES:BXmov ah, es:[bx] ; read byte from ES:BXmov ah, es:[bx] ; read byte from ES:BX

3) emu8086 does not require to define segment when you compile segmentless COM file,
however MASM and TASM may require this, for example:

name testname testname testname test
CSEG SEGMENT ; code segment starts hCSEG SEGMENT ; code segment starts hCSEG SEGMENT ; code segment starts hCSEG SEGMENT ; code segment starts here.ere.ere.ere.
ORG 100hORG 100hORG 100hORG 100h
start: MOV AL, 5 ; some sample code...start: MOV AL, 5 ; some sample code...start: MOV AL, 5 ; some sample code...start: MOV AL, 5 ; some sample code...
 MOV BL, 2 MOV BL, 2 MOV BL, 2 MOV BL, 2
 XOR AL, BL XOR AL, BL XOR AL, BL XOR AL, BL
 XOR BL, AL XOR BL, AL XOR BL, AL XOR BL, AL
 XOR AL, BL XOR AL, BL XOR AL, BL XOR AL, BL

 RET RET RET RET
CSEG ENDS ; code segment ends here.CSEG ENDS ; code segment ends here.CSEG ENDS ; code segment ends here.CSEG ENDS ; code segment ends here.
END start ; stop compiler, and set entry point.END start ; stop compiler, and set entry point.END start ; stop compiler, and set entry point.END start ; stop compiler, and set entry point.

6 Assemblers and Development Tools for 8086 and 8051 Microprocessors

 4) entry point for COM file should always be at 0100h, however in MASM and TASM you
may need to manually set an entry point using END directive even if there is no way to
set it to some other location. emu8086 works just fine, with or without it; however error
message is generated if entry point is set but it is not 100h (the starting offset for com
executable). the entry point of com files is always the first byte.

5) if you compile this code with Microsoft Assembler or with Borland Turbo Assembler,
you should get test.com file (11 bytes). Right click it and select send to and emu8086.
You can see that the disassembled code doesn't contain any directives and it is identical
to code that emu8086 produces even without all those tricky directives.

6) emu8086 has almost 100% compatibility with other similar 16 bit assemblers. the code
that is assembled by emu8086 can easily be assembled with other assemblers such as
TASM or MASM, however not every code that assembles by TASM or MASM can be
assembled by emu8086.

7) a template used by emu8086 to create EXE files is fully compatible with MASM and
TASM.

8) The majority of EXE files produced by MASM are identical to those produced by
emu8086. However, it may not be exactly the same as TASM's executables because
TASM does not calculate the checksum, and has slightly different EXE file structure, but
in general it produces quite the same machine code. There are several ways to encode
the same machine instructions for the 8086 CPU, so generated machine code may vary
when compiled on different compilers.

9) Emu8086 integrated assembler supports shorter versions of byte ptr and word ptr,
these are: b. and w. For MASM and TASM you have to replace w. and w. with byte ptr
and word ptr accordingly.

 for example:
lea bx, var1lea bx, var1lea bx, var1lea bx, var1
mov word ptr [bx], 1234h ; works everywhere.mov word ptr [bx], 1234h ; works everywhere.mov word ptr [bx], 1234h ; works everywhere.mov word ptr [bx], 1234h ; works everywhere.
mov w.[bx], 1234h ; same instruction / shorter emu8086 mov w.[bx], 1234h ; same instruction / shorter emu8086 mov w.[bx], 1234h ; same instruction / shorter emu8086 mov w.[bx], 1234h ; same instruction / shorter emu8086
syntax.syntax.syntax.syntax.
hlthlthlthlt

var1 db 0var1 db 0var1 db 0var1 db 0
var2 db 0var2 db 0var2 db 0var2 db 0

10) LABEL directive may not be supported by all assemblers, for example:
 TEST1 LABEL BYTETEST1 LABEL BYTETEST1 LABEL BYTETEST1 LABEL BYTE
 ; ...; ...; ...; ...
 LEA DX,TESTLEA DX,TESTLEA DX,TESTLEA DX,TEST1111

 the above code should be replaced with this alternative construction:
 TEST1: TEST1: TEST1: TEST1:
 ; ... ; ... ; ... ; ...
 MOV DX, TEST1MOV DX, TEST1MOV DX, TEST1MOV DX, TEST1

 the offset of TEST1 is loaded into DX register. this solutions works for the majority of
leading assemblers.

 Assemblers And Development Tools For 8086 And 8051 Microprocessors 7

1.3 Experimental Part

In this experiment you will use TASM, TLINK, and EMU8086 to generate an executable
from an assembly source, and to trace the step-by-step execution of the executable in TD
debugger and in EMU8086 emulator

1.3.1. Writing a Source File

Objective: to practice writing and editing an ASCII assembly source file using notepad.
Procedure: Generate a folder asm. Copy the files tasm.exe, tlink.exe, td.exe into asm
folder. Generate a working folder with name exp1, and start a text file in your working
folder In the explorer while folder is open

- click on right button of mouse, and
- select new, select text document. “New Text Document.txt” will be generated.

 - Rename it “exp1.asm”
Now, you have an empty text file, with the name exp1.asm. Use windows-start > all-
programs > accessories > notepad to open the Notepad text editor. Drag the file
exp1.asm to the title-bar of the Notepad. The title will change to exp1.asm – Notepad. It
means that you successfully opened the file exp1.asm for editing in notepad. Write the
following source program into the edit window.

------file: exp1.asm-----
; STUDENT NAME and SURNAME:; STUDENT NAME and SURNAME:; STUDENT NAME and SURNAME:; STUDENT NAME and SURNAME:
; STUDENT NUMBER: ; STUDENT NUMBER: ; STUDENT NUMBER: ; STUDENT NUMBER:

TITLETITLETITLETITLE PROG2PROG2PROG2PROG2----2 (EXE) PURPOSE :ADD 4 WORDS OF DATA2 (EXE) PURPOSE :ADD 4 WORDS OF DATA2 (EXE) PURPOSE :ADD 4 WORDS OF DATA2 (EXE) PURPOSE :ADD 4 WORDS OF DATA
PAGEPAGEPAGEPAGE 60,13260,13260,13260,132
 .MODEL SMALL.MODEL SMALL.MODEL SMALL.MODEL SMALL
 .STACK 64.STACK 64.STACK 64.STACK 64
;;;;--
 .DATA.DATA.DATA.DATA
DATA_INDATA_INDATA_INDATA_IN DW 234DH,1DE6H,3BC7H,566AHDW 234DH,1DE6H,3BC7H,566AHDW 234DH,1DE6H,3BC7H,566AHDW 234DH,1DE6H,3BC7H,566AH
 ORG 10HORG 10HORG 10HORG 10H
SUMSUMSUMSUM DW ?DW ?DW ?DW ?
;;;;--
 .CODE.CODE.CODE.CODE
MAINMAINMAINMAIN PROC FARPROC FARPROC FARPROC FAR ;THIS IS THE PROGRAM ENTRY POINT;THIS IS THE PROGRAM ENTRY POINT;THIS IS THE PROGRAM ENTRY POINT;THIS IS THE PROGRAM ENTRY POINT
 MOVMOVMOVMOV AX,@DATAAX,@DATAAX,@DATAAX,@DATA ;load the data segment adress;load the data segment adress;load the data segment adress;load the data segment adress
 MOVMOVMOVMOV DS,AXDS,AXDS,AXDS,AX ;assign value to DS;assign value to DS;assign value to DS;assign value to DS
 MOVMOVMOVMOV CX,04CX,04CX,04CX,04 ;set up loop counter CX=4;set up loop counter CX=4;set up loop counter CX=4;set up loop counter CX=4
 MOVMOVMOVMOV DI,OFFSET DATA_INDI,OFFSET DATA_INDI,OFFSET DATA_INDI,OFFSET DATA_IN ;set up data pointer DI;set up data pointer DI;set up data pointer DI;set up data pointer DI
 MOV SI,OFFSET SUM MOV SI,OFFSET SUM MOV SI,OFFSET SUM MOV SI,OFFSET SUM
 MOVMOVMOVMOV BX,00BX,00BX,00BX,00 ;initialize BX;initialize BX;initialize BX;initialize BX
ADD_LP:ADD_LP:ADD_LP:ADD_LP:
 ADDADDADDADD BX,[DI]BX,[DI]BX,[DI]BX,[DI] ;add contents pointed at by [DI] to BX;add contents pointed at by [DI] to BX;add contents pointed at by [DI] to BX;add contents pointed at by [DI] to BX
 INCINCINCINC DIDIDIDI ;increment DI twice;increment DI twice;increment DI twice;increment DI twice
 INCINCINCINC DIDIDIDI ;to point ;to point ;to point ;to point to next wordto next wordto next wordto next word
 DECDECDECDEC CXCXCXCX ;decrement loop counter;decrement loop counter;decrement loop counter;decrement loop counter
 JNZJNZJNZJNZ ADD_LPADD_LPADD_LPADD_LP ;jump if loop counter not zero;jump if loop counter not zero;jump if loop counter not zero;jump if loop counter not zero
 MOV SI,OFFSET SUM ; SI points SUM MOV SI,OFFSET SUM ; SI points SUM MOV SI,OFFSET SUM ; SI points SUM MOV SI,OFFSET SUM ; SI points SUM
 MOVMOVMOVMOV [SI],BX[SI],BX[SI],BX[SI],BX ;store ;store ;store ;store BX to SUM BX to SUM BX to SUM BX to SUM in data segmentin data segmentin data segmentin data segment
 MOVMOVMOVMOV AH,4CHAH,4CHAH,4CHAH,4CH ;set up return;set up return;set up return;set up return
 INTINTINTINT 21H21H21H21H ;return to DOS;return to DOS;return to DOS;return to DOS
MAINMAINMAINMAIN ENDPENDPENDPENDP
 END MAINEND MAINEND MAINEND MAIN ;this is the program exit point;this is the program exit point;this is the program exit point;this is the program exit point

------end of file ------

Use tabs to start the mnemonics at the same column.

Reporting:

8 Assemblers and Development Tools for 8086 and 8051 Microprocessors

 Start a text file (you may use notepad) with name exp1.txt. Fill in the following
title to your text file.
 CMPE 323 ExperimCMPE 323 ExperimCMPE 323 ExperimCMPE 323 Experimentententent----1 Report.1 Report.1 Report.1 Report. <your name surname, student number>
 PART1 Assembly source filePART1 Assembly source filePART1 Assembly source filePART1 Assembly source file

Copy-and-paste your exp1.asm into your report file.
; STUDENT NAME and SURNAME: ALI VELI; STUDENT NAME and SURNAME: ALI VELI; STUDENT NAME and SURNAME: ALI VELI; STUDENT NAME and SURNAME: ALI VELI
; STUDENT NUMBER: 012345; STUDENT NUMBER: 012345; STUDENT NUMBER: 012345; STUDENT NUMBER: 012345

TITLETITLETITLETITLE PROG2PROG2PROG2PROG2----2 (EXE) PURPOSE :ADD 4 WORDS OF DATA2 (EXE) PURPOSE :ADD 4 WORDS OF DATA2 (EXE) PURPOSE :ADD 4 WORDS OF DATA2 (EXE) PURPOSE :ADD 4 WORDS OF DATA
PAGEPAGEPAGEPAGE 60,13260,13260,13260,132
 .MODEL SMALL.MODEL SMALL.MODEL SMALL.MODEL SMALL

 …

 …

Keep your report file in a safe place until you complete the experiment and e-mail it to the
specified address.

1.3.2. Assembling with TASM

Objective: Assembling the source file with TASM, and tracing it in TD.
Procedure: You have already written the source file exp1.exe .
- Organize a folder structure such as
 ASM folder contains

files TASM.EXE, TLINK.EXE, and TD.EXE.
 folder exp1, which contains exp1.asm and exp1.bat.
-Edit exp1.asm to contain the complete source text by copy and paste.
Fill your student name and number to the first two lines.

-Edit exp1.bat to have the following text lines in it.
 \\\\tasm tasm tasm tasm ----l exp1l exp1l exp1l exp1

pausepausepausepause
........\\\\tlink exp1tlink exp1tlink exp1tlink exp1
pausepausepausepause
........\\\\td exp1td exp1td exp1td exp1
pausepausepausepause

-Click on exp1.bat to execute assembler. You will observe a DOS window opened, and
tasm executed on exp1.asm, with the list option active. DOS window will pause and
will allow you to read the messages generated by TASM. You will observe
exp1.obj, exp1.lst, and exp1.map files generated in folder exp1.

-If you press on space-bar, bat file will continue to execution, and it will execute the
linker tlink on exp1.obj. Tlink will generate exp1.exe file into the exp1 folder. Batch
file will pause until you press the space-bar.

-Press the space-bar again to execute turbo debugger on exp1.exe file. In the debugger,
you can trace the execution by executing each line of the assembly program stepwise.

Reporting:

In td read the hexadecimal contents of the program code exp1.exe (28 bytes), and the
contents of the memory location cs:0009. Start PART2PART2PART2PART2 in your report file, and fill in (as text,
i.e., A3 02A3 02A3 02A3 02 etc)
 PART2PART2PART2PART2
 B8 68 5B 8E D8 ...B8 68 5B 8E D8 ...B8 68 5B 8E D8 ...B8 68 5B 8E D8 ...
 cs:0009 containscs:0009 containscs:0009 containscs:0009 contains

Then open exp1.lst, which is generated by turbo assembler in a text editor (notepad).
Copy-and-paste the first page of the listing into your report file
 exp1.lst contains exp1.lst contains exp1.lst contains exp1.lst contains --

Turbo Assembler Version 1.0 01/13/11 11:32:32 Page 1Turbo Assembler Version 1.0 01/13/11 11:32:32 Page 1Turbo Assembler Version 1.0 01/13/11 11:32:32 Page 1Turbo Assembler Version 1.0 01/13/11 11:32:32 Page 1
EXP1.ASMEXP1.ASMEXP1.ASMEXP1.ASM

 1 ; STUDENT NAME and SURNAME: 1 ; STUDENT NAME and SURNAME: 1 ; STUDENT NAME and SURNAME: 1 ; STUDENT NAME and SURNAME:
 2 ; STUDENT NUMBER: 2 ; STUDENT NUMBER: 2 ; STUDENT NUMBER: 2 ; STUDENT NUMBER:
 3 3 3 3
 4 0000 .MODEL SMALL 4 0000 .MODEL SMALL 4 0000 .MODEL SMALL 4 0000 .MODEL SMALL

 Assemblers And Development Tools For 8086 And 8051 Microprocessors 9

 5 0000 .STACK 64 5 0000 .STACK 64 5 0000 .STACK 64 5 0000 .STACK 64
 6 ; 6 ; 6 ; 6 ;--
 7 0000 7 0000 7 0000 7 0000 .DATA .DATA .DATA .DATA
 8 0000 234D 1DE6 3BC7 566A DATA_IN DW 234DH,1DE6H,3BC7H,566AH 8 0000 234D 1DE6 3BC7 566A DATA_IN DW 234DH,1DE6H,3BC7H,566AH 8 0000 234D 1DE6 3BC7 566A DATA_IN DW 234DH,1DE6H,3BC7H,566AH 8 0000 234D 1DE6 3BC7 566A DATA_IN DW 234DH,1DE6H,3BC7H,566AH
 9 ORG 10H 9 ORG 10H 9 ORG 10H 9 ORG 10H
 10 0010 ???? SUM DW ? 10 0010 ???? SUM DW ? 10 0010 ???? SUM DW ? 10 0010 ???? SUM DW ?
 11 ; 11 ; 11 ; 11 ;--
 12 0012 .CODE 12 0012 .CODE 12 0012 .CODE 12 0012 .CODE
 13 0000 MAIN PROC FAR ;THIS IS THE PROGRAM ENTRY POINT 13 0000 MAIN PROC FAR ;THIS IS THE PROGRAM ENTRY POINT 13 0000 MAIN PROC FAR ;THIS IS THE PROGRAM ENTRY POINT 13 0000 MAIN PROC FAR ;THIS IS THE PROGRAM ENTRY POINT
 14 0000 B8 0000s MOV AX,@DATA ;load t 14 0000 B8 0000s MOV AX,@DATA ;load t 14 0000 B8 0000s MOV AX,@DATA ;load t 14 0000 B8 0000s MOV AX,@DATA ;load the data segment he data segment he data segment he data segment addressaddressaddressaddress

 …
 …
Save your report file in a safe place until you complete the experiment and e-mail it to the
specified address.

1.3.3. Assembling with Emu8086

Objective: Assembling a source file with Emu8086 assembler/emulator

Procedure:
-Start Emu8086, and close the welcome window. Use “open” in taskbar to start the file
browser. Select the folder exp1, and open exp1.asm.

-Emu8086 cannot use title, page, and org directives. Put a semicolon to make them a
comment line. Then, use emulate in taskbar to assemble, and start the emulator
window with the exp1.exe.

-Use the taskbar-button “single step” to execute each line of the assembly source.

Reporting

In PART3PART3PART3PART3 of your report answer the following questions in full sentences.
a) How many times the loop passes through the add instruction?
b) What is the effective address of the add instruction in the code segment?

After completing the experiment, write an e-mail that contains
 Please find the attached report file of experiment 1.Please find the attached report file of experiment 1.Please find the attached report file of experiment 1.Please find the attached report file of experiment 1.
 Regards.Regards.Regards.Regards.
 012345 Al012345 Al012345 Al012345 Ali Veli i Veli i Veli i Veli

attach the report file to the e-mail and send it
- from your student-e-mail account
- to the e-mail address cmpe323lab@gmail.com
- with the subject: ”exp1”.

Late and early deliveries will have 20% discount in grading. No excuse acceptable.

10 Assemblers and Development Tools for 8086 and 8051 Microprocessors

 11

22222222........
Data TypesData TypesData TypesData Types, , , ,

and Effect of ALU instructions and Effect of ALU instructions and Effect of ALU instructions and Effect of ALU instructions
on Flagson Flagson Flagson Flags

2.1 Objective

The aim of this experiment consists of
i- Experimenting with data types, and assembler directives.
ii- Observing the effect of ALU instructions on flags.
iii- Exercising some DOS interrupt services.

2.2 Preliminary Study

Before attending the lab, study from Mazidi&Mazidi textbook
- Section 1.4 and 2.5 to understand the data types and directives.
- Section 1.3, 1.4, and 1.5 to understand the MOV and ADD instructions, and the flags.

2.3 Experimental Part

2.3.1. Data types and Data directives

Objective: to observe the coding of several data types in various formats.

Procedure-1:
- Organize a folder structure such as
 ASM folder contains

files TASM.EXE, TLINK.EXE, and TD.EXE.
 folder exp2, which contains exp2p1.asm and exp2p1.bat.
-Edit exp2p1.asm to contain the following source text by copy and paste.
Fill your student name and number to the first two data items.
---file exp2p1.asm------
 .model small .model small .model small .model small
 .stack 64 .stack 64 .stack 64 .stack 64
 .data .data .data .data
data1 db 'Namedata1 db 'Namedata1 db 'Namedata1 db 'Name----Surname'Surname'Surname'Surname'
data2 db 'Number'data2 db 'Number'data2 db 'Number'data2 db 'Number'
data3 db 45, 4Chdata3 db 45, 4Chdata3 db 45, 4Chdata3 db 45, 4Ch
data4 dw 0123, 0123hdata4 dw 0123, 0123hdata4 dw 0123, 0123hdata4 dw 0123, 0123h
data5 dd 3, 2 dup(5)data5 dd 3, 2 dup(5)data5 dd 3, 2 dup(5)data5 dd 3, 2 dup(5)
data8 db 'Hello world! $'data8 db 'Hello world! $'data8 db 'Hello world! $'data8 db 'Hello world! $'
 .code .code .code .code
 mov ax,@data mov ax,@data mov ax,@data mov ax,@data
 mov ds,ax mov ds,ax mov ds,ax mov ds,ax
 mov dx,offset data8 mov dx,offset data8 mov dx,offset data8 mov dx,offset data8
 mov ah,9 mov ah,9 mov ah,9 mov ah,9
 int 21h ; displays message int 21h ; displays message int 21h ; displays message int 21h ; displays message
 mov ah,4ch mov ah,4ch mov ah,4ch mov ah,4ch
 int 21h ; retur int 21h ; retur int 21h ; retur int 21h ; return to dosn to dosn to dosn to dos
 end end end end

------end of file----------
 In this program, data8data8data8data8 is a DOS screen message, and all DOS screen messages
shall terminate with a “$” character. data8data8data8data8 contains the ASCII message string
to be printed on the screen. mov dx,offset data8mov dx,offset data8mov dx,offset data8mov dx,offset data8 loads the offset of data8 in

12 Assemblers and Development Tools for 8086 and 8051 Microprocessors

 ds into dx. mov ah,mov ah,mov ah,mov ah,09090909hhhh determines “print the pointed string to the screen”
service among many other DOS int 21h services. Similarly, ah=4ch selects
“exit to DOS” service among many int 21h DOS services.

- exp2p1.bat should have the following text lines in it.
 \\\\tasm tasm tasm tasm ----l exp2p1l exp2p1l exp2p1l exp2p1

pausepausepausepause
........\\\\tlink exp2p1tlink exp2p1tlink exp2p1tlink exp2p1
pausepausepausepause
exp2p1exp2p1exp2p1exp2p1
pausepausepausepause

- Execute the batch file, and press space bar to proceed with tlink and exp2p1.
You will observe the message “Hello world” written on the dos command
window before pressing the space bar for the third pause.

- Open the exp2p1.lst file in notepad to observe how the data directives place the
data items into the reserved memory locations in the data segment (First start
notepad, then open the file from browser, or drag the file into notepad
window). You will observe the followings in the list file.

Observations-1:

1- The quoted strings are converted to ASCII coding. Check the coded
characters against the following printable ASCII character table.

 ----0000 ----1111 ----2222 ----3333 ----4444 ----5555 ----6666 ----7777 ----8888 ----9999 ----AAAA ----BBBB ----CCCC ----DDDD ----EEEE ----FFFF
2222---- !!!! """" #### $$$$ %%%% &&&& '''' (((()))) **** ++++ ,,,, ---- ////
3333---- 0000 1111 2222 3333 4444 5555 6666 7777 8888 9999 :::: ;;;; <<<< ==== >>>> ????
4444---- @@@@ AAAA BBBB CCCC DDDD EEEE FFFF GGGG HHHH IIII JJJJ KKKK LLLL MMMM NNNN OOOO
5555---- PPPP QQQQ RRRR SSSS TTTT UUUU VVVV WWWW XXXX YYYY ZZZZ [[[[\\\\]]]] ^̂̂̂ ----
6666---- `̀̀̀ aaaa bbbb cccc dddd eeee ffff gggg hhhh iiii jjjj kkkk llll mmmm nnnn oooo
7777---- pppp qqqq rrrr ssss tttt uuuu vvvv wwww xxxx yyyy zzzz {{{{ |||| }}}} →→→→ ←←←←

2- db directive codes the numbers in single bytes, in the listed order.
3- dw directive codes the numbers in two-byte groups, in little endian
convention.

4- dd codes the numbers in four-byte groups, in little endian convention.
5- dup() codes repeated number of data into data area. In the list file data is
shown by dup() function. However, sufficient number of bytes are
allocated for the duplicate data.

Reporting:
 1- Start a text file with the name exp2.txt.
 2- Write the Report Title in the following format

 CMPE328 Experiment 2, Report file by <name surname studentnr>
 Part 1

2- Copy the data definition lines (data1 ... data8) from lst file to exp2.txt.

 3- Save the text file to report the coming report item.

Procedure-2:

1- Open exp2p1.exe in td (i.e., first start td.exe, then open the file exp2p1.exe in
td).

2- Right click on ds, and change its contents to the immediate value of the first
instruction in the code segment (i.e, for mov ax,5B68 make ds=5B68h.)

3- Click on view > dump to open the data segment window.
4- Right click on command window title-bar. From the pop-up menu click edit-

mark.

 Assemblers and Development Tools for 8086 and 8051 Microprocessors 13

5- Drag the mouse while left-clicked on data-segment dump window, to mark the
ds- dump from your name to hello world message (including both lines as well).

6- While the marked area stays on the dump window, right-click on command
window title-bar, and click edit-copy in the pop-up window. Then open exp2.txt
in notepad, and use paste to transfer the copied text into exp2.txt. Your text will
be similar to the following, however it will be different in some fields and
addresses.

 Typical exp2.txt file after Procedure-2, step-6
CMPE328 Experiment 2, Report file by <name surname studentnr>
Part 1
 4 0000 4E 61 6D 65 2D 53 75 + data1 db 'Name-Surname'
 5 72 6E 61 6D 65
 6 000C 4E 75 6D 62 65 72 data2 db 'Number'
 7 0012 2D 4C data3 db 45, 4Ch
 8 0014 007B 0123 data4 dw 0123, 0123h
 9 0018 00000003 02* + data5 dd 3, 2 dup(5)
 10 (00000005)
 11 004A 48 65 6C 6C 6F 20 77 + data8 db 'Hello world! $'
 12 6F 72 6C 64 21 20 24

ds:0000 4E 61 6D 65 2D 53 75 72 Name-Sur
ds:0008 6E 61 6D 65 4E 75 6D 62 nameNumb
ds:0010 65 72 2D 4C 7B 00 23 01 er-L{ #?
ds:0018 03 00 00 00 05 00 00 00 ? ?
ds:0020 05 00 00 00 03 00 00 00 ? ?
ds:0028 00 00 00 00 14 31 82 00 ¶1é
ds:0030 00 00 00 00 00 00 21 00 !
ds:0038 00 00 00 00 00 00 00 00
ds:0040 00 00 00 00 00 00 00 00
ds:0048 00 00 48 65 6C 6C 6F 20 Hello
ds:0050 77 6F 72 6C 64 21 20 24 world! $

Save exp2.txt, and observe the following items on the edit window.

Observations-2:

1- data3 db 45, 4Chdata3 db 45, 4Chdata3 db 45, 4Chdata3 db 45, 4Ch is expressed in lst file memory listing by 2D 4C (45=2Dh).
2- data4 dw 0123, 0123hdata4 dw 0123, 0123hdata4 dw 0123, 0123hdata4 dw 0123, 0123h is converted to 007B 0123007B 0123007B 0123007B 0123 in the lst file, but it is written
in little endian convention into the memory area as 7B 00 23 01 (shown in
circles).

3- data5 dd 3, 2 dup(5)data5 dd 3, 2 dup(5)data5 dd 3, 2 dup(5)data5 dd 3, 2 dup(5) is expressed in lst file by 00000003 02*(00000005) 00000003 02*(00000005) 00000003 02*(00000005) 00000003 02*(00000005), but
it is filled into memory as 03 00 00 00 05 00 00 00 05 00 00 0003 00 00 00 05 00 00 00 05 00 00 0003 00 00 00 05 00 00 00 05 00 00 0003 00 00 00 05 00 00 00 05 00 00 00 (in little-
endian double-words, and 5 repeated twice.)

2.3.2. ALU Operations and Flags

Objective is to observe the changes of flags with the add, sub, cmp, inc, dec, and, or,
neg, mov instructions.

Procedure:

- In this experiment you will use Emu8086 emulator.
- Take your list of instructions from your assistant. The list will contain add, sub,

cmp, inc, dec, and, or, neg, and mov instructions with immediate and register
addressing modes.

- Start Emu8086 emulator. Close the welcome window. Open the file
exp2p1.asm. Use Save-as to save it with the name exp2p2.asm.

- Emu8086 does not allow some data directives. Place a semicolon before data6
and data7 to get rid of dq and dt directives.

- Insert the code you’ve taken from your assistant after the mov ds,ax line.
- Emulate the assembler code by clicking on Emulate toolbar-button.
- In the emulator window, click on flags-button to open the flags-window.

14 Assemblers and Development Tools for 8086 and 8051 Microprocessors

 Reporting: Use single-step button to execute each instruction. For each executed
instruction in your list, fill in the flag status into the report file exp2.txt, i.e.,

Part 2
 AX CZSOPA
 mov ax,08803h 8803 000000
 add ax,07654h FE57 001000
 sub ax,0F803h 0654 000000
 or ax,0F000h F654 001000
 and ax,0000Fh 0004 000000
 mov ax,0FFFFh FFFF 000000
 inc ax 0000 010011
 dec ax FFFF 001011
 add ax,1 0000 110011
 sub ax,1 FFFF 101011
 sub ax,08000h 7FFF 000010
 cmp ax,07000h 7FFF 000010
 cmp ax,09000h 7FFF 101110

You shall observe
1- mov instructions never change any flags,
2- inc, and dec never change carry flag,
3- an immediate sub can do same job with inc, but it effects carry, and its code
takes 2-bytes longer than dec.

4- The flags changed by each instruction is given in the 80386 instruction sheet.
 add, sub, neg, cmp determine flags CZSOPA ;
 inc, dec determine flags ZSOPA ;
 and, or determine flags CZSOP ;
 mov does not change any flag (it is not an ALU operation)

 The flags affected by each instruction is listed in 80x86-instruction-set table.

After you complete the procedures, please save and close exp2.txt file, and e-mail it using
your student e-mail account to cmpe323lab@gmail.com with the subject line “exp2”
within the same day before the midnight.

Late and early deliveries will have 20% discount in grading. No excuse acceptable.

Free time practice:

Modify the program exp2p1.asm to replace mov dx,offset data8mov dx,offset data8mov dx,offset data8mov dx,offset data8 with the instruction
mov dx,offset data1mov dx,offset data1mov dx,offset data1mov dx,offset data1.

What do you expect to be printed on the display?
What does it display when you run the assembled exe file?
What shall you do to display only your name-surname?

AX and Flags you read after
the instruction is executed.

 Assemblers and Development Tools for 8086 and 8051 Microprocessors 15

33333333........

Simple Simple Simple Simple Virtual Virtual Virtual Virtual 8086 8086 8086 8086
Development BoardDevelopment BoardDevelopment BoardDevelopment Board

3.1 Objective

This experiment includes introduction to design of a virtual simple educational 8086
development board (VSED board) with simple digital i/o ports, and a UART-terminal
connection. Our experimental part aims to give concepts of input and output ports with a
hands on practice for verification of an executable code on a virtual simple educational
8086 system.

3.2 Introduction

3.2.1. 8086 and main memory

Virtual Simulation Model (VSM) samples in ISIS provide 8086 simulation that loads exe
files to its internal memory. The executable files may be produced using any 8086
compiler including C or 8086 Assembler tools.

3.2.2. 8086 Processor Bus

ISIS provides a virtual simulation model (VSM) of 8086 including the 8086 processor bus.
The simulation model provided by ISIS contains configurable internal memory which
simplifies simulation of 8086 systems.

Figure 1. 8086 processor of Prosis 7.7. It contains internal memory which is configured by

properties.

Bus is suitable for memory and IO interfacing. In this experiment, we plan to use it for IO
interfacing.

16 Assemblers and Development Tools for 8086 and 8051 Microprocessors

3.2.3. Address Latching

8086 has AD0-AD15 multiplexed address lines which transfers both data and address
signals. Address is valid while ALE is high, and data is valid while ALE is low and either
~RD or ~WR line is low. 74237 octal latches are suitable for address latching purpose.

Figure 2. Address Latching Circuit for 8086 system.

CLK lines of U2, U3 and U4 are connected to ~ALE, which is obtained by inverting the
ALE output (pin25) of the 8086 processor. MR is clear input of 74273 (memory reset) and
all MR inputs are connected to high (Vss). The latch outputs A0 … A19 are the buffered
address bus of the system. AD0 … AD15 are the unbuffered data lines of the 8086 system,
and directly connected to the IO ports.

3.2.4. System Configuration

SED system has internal 64 k byte memory integrated into the 8086 device, starting from
address 0x00800. The executable file shall be compiled in small model, and include its
stack, data and code within the 64k memory range. The data, control and buffered address
bus of 8086 is utilized to access to an 8-bit output port, two 8-bit input ports, and a
universal serial asynchronous receiver transmitter (USART) unit.

3.2.5. IO Address decoding

A 74HC138 provides address decoding for the chip select signals of these IO devices.

 Assemblers and Development Tools for 8086 and 8051 Microprocessors 17

Figure 3. The IO address decoder of Small Educational Development System

The ~E3 input of 74138 (3 to 8 line decoder) gets enabled only during IO-read an IO-write
bus cycles of the 8086 processor. The buffered address lines A6, A5, A4, A3, and A2 are
used for enable and select inputs of the decoder. Consequently the decoding map of the
decoder is obtained in Table 1.

Table 1. Address decoding map for 74138 decoder.
A9 A8 A7 A6 A5 A4 A3 A2
E3 E2 E1 C B A ~Y0 … ~Y7 Enabled output

X X X X 0 X X X H H H H H H H H none
X X X 1 X X X X H H H H H H H H none
X X 1 X X X X X H H H H H H H H none
0 X X X X X X X H H H H H H H H none
X 0 X X X X X X H H H H H H H H none
1 1 0 0 1 0 0 0 L H H H H H H H ~Y0 – not connected
1 1 0 0 1 0 0 1 H L H H H H H H ~Y1 – output port UL
1 1 0 0 1 0 1 0 H H L H H H H H ~Y2 – input port – UA
1 1 0 0 1 0 1 1 H H H L H H H H ~Y3 – input port – UB
1 1 1 0 1 1 0 0 H H H H L H H H ~Y4 – USART
1 1 1 0 1 1 0 1 H H H H H L H H ~Y5 – not connected
1 1 1 0 1 1 1 0 H H H H H H L H ~Y6 – not connected
1 1 1 0 1 1 1 1 H H H H H H H L ~Y7 – not connected
1 1 X 1 X X X X H H H H H H H H none

Thus, the 8-bit address map of Enable signals are given in Table 2.

Table 2. IO Port Addresses

A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 hex port
1 1 0 0 1 0 0 1 X X 324h – 327h UL
1 1 0 0 1 0 1 0 X X 328h – 32Bh UA
1 1 0 0 1 0 1 1 X X 32Ch – 32Fh UB
1 1 0 0 1 1 0 0 X X 330h – 333h USART

For each IO device the first address of the address ranges are used to address the device
conveniently. Simply, 324h is the address of UL, 328h and 32C are the addresses for UA

18 Assemblers and Development Tools for 8086 and 8051 Microprocessors

 and UB. We will consider the USART address later since it has two internal registers
namely control and data.

3.2.6. Simple Output Port UL

The output port UL is constructed using 74273 octal D-flip-flops with common clear
(~MR) and common clock (CLK) inputs. ~MR is permanently disabled by connecting it to
high. The active low enable output ~Y1 of the address decoder and the active low write
output of 8086 are connected to the CLK input of the port through a NOR gate to enable
the clock (with a high) when both ~WR and ~Y1 are low.
In the program we use the instructions

 mov DX,324h
out DX,AL

to output the contents of AL to output port UL.

Figure 4. Simple isolated output port at address 24h installed with LED displays.

The outputs of the 74273 D-flip-flops are connected to digital LED array to display the
output status in a convenient form. Note that the LED indicators glow while the latch
outputs are high. For example, with the instructions
 mov DX,324h
 mov AL, 03h
 out DX, AL

After the execution of the code LEDs of Q0 and Q1 shall remain dark, and Q3, Q4, Q5,
Q6, and Q7 shall start to glow.

3.2.7. Simple Input Ports UA and UB

Input Ports UA and UB are designed to read the 8-bit dip-switch status into register AL.
The instructions

 mov DX,328h
 in AL,DX

and

 mov DX,32Ch
 in AL,DX

read the status of the switches SW1 and SW2 into AL.

~Y1 of
decoder

 Assemblers and Development Tools for 8086 and 8051 Microprocessors 19

Figure 5. Simple isolated input port at address 328h and 32Ch installed with switch array.

For example, if the switch positions of SW1 were set to On, On, On, Off, On, On, Off, On
(in the order from 1 to 8) and the instruction in AL,28h was executed the corresponding
bit of AL for On position contains 0, and for Off position it will be 1, resulting in AL=12h.

3.2.8. Serial Communication Device

The USART 8251A is enabled by ~Y4 of the address decoder, and additionally it has a
Control/~Data select line which is connected to A1. Moreover, the ~RD and ~WR lines
provide reading and writing to control and data registers

Consequently it has the following address mapping

A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 In/Out hex address addressed port

1 1 0 0 1 1 0 0 0 X Out 330h – 331h USART data out

1 1 0 0 1 1 0 0 0 X In 330h – 331h USART data in

1 1 0 0 1 1 0 0 1 X Out 332h – 333h USART control

1 1 0 0 1 1 0 0 1 X In 332h – 333h USART status

USART has configuration registers which needs initialization. The Reset sequence of the
USART provides safe reset of the device under the control of program.

 xor AL, AL

from decoder:
~Y2 for UA,
~Y3 for UB

from decoder:
~Y4

20 Assemblers and Development Tools for 8086 and 8051 Microprocessors

 mov DX, 332h
out DX, AL

 out DX, AL
 out DX, AL
 mov AL, 40h
 out DX, AL
; After reset sequence, USART expects the mode control,
; 8251 Mode=sdppbbmm,
; async mode << sd=00,
; no parity << pp=00;
; data-bits: 5<<bb=00; 6<<bb=01; 7<<bb=10; 8<<bb=11;
; baud rate factor: x1<<mm=01; x16<<mm=10; x64<<mm=11;
 mov AL, 0Dh ; mode8251 8-bit, no parity, baud=clock x1
 out DX, AL
; Next, USART waits command control
; 8251 Command = hmrtRdT
; search SYN char: disable<<h=0 (async mode); enable<<h=1
; internal reset: reset (expects mode) << m=1; command << m=0;
; request to send: forces RTS low << r=1;
; error reset : resets all error flags << r=1;
; send break: forces TxD low << t=1;
; receive enable: enable << R=1;
; data terminal ready: forces DTR low << d=1
; transmit enable: enable << T=1;
 mov AL, 37h ; comd8251 both RC & TX, reset errors, RTS, DTR
active
 out DX, AL

After this initialization code, USART is ready to transmit characters by putting them into
data-out register. It is possible to poll the status register to check the data-out and data-in
registers are full or empty. User may get the received character from data-in register when
bit-1 of status register is high, and may write the character to be transmitted into the data-
out if bit-0 of the status register is high.
; This code reads received character into AL.
; If no character received then AL returns zero.
 mov DX,332h ; status/control address

in AL, DX ; read status register
 test AL,01h ; zero flag is set if AL .AND. 01h is nonzero
 jz NotReceived
 mov DX,330h ; data-in/data-out address
 in AL, DX ; read received bits from data-in into AL.
 shr AL,1 ; Purge out the start bit, remaining bits are data.
NotReceived:
; Any code that process the received character shall be placed here.

Data transmission through USART is obtained by writing character into data-out register
after USART unit is ready for transmission of a character
; this code transmits the contents of AH register to USART.
WaitReady:
 mov DX,332h ; status/control address
 in AL, DX ; read status register
 test AL,02h ; zero flag is set if AL .AND. 02h is nonzero
 jz WaitReady ; Wait until flag is set
 mov AL,AH
 mov DX,330h ; data-in/data-out address
 out DX,AL ; received character transferred into AL.

 Assemblers and Development Tools for 8086 and 8051 Microprocessors 21

In most applications serial io is managed through an input and an output buffer. USART
generates an interrupt request whenever a character is received or transmission of data-out
buffer is over. The related interrupt service routine transfers the received character from
the data-in register to the input buffer, and it transfers any characters from the output buffer
to the data-out register.

3.3 Experimental Part

In this experiment you will write and assemble short programs using 8086 instructions in,
out, mov, add, jmp, test, jz, jnz instructions, and you will use EMU8086
assembler/emulator to obtain its executable code. Next, you will verify the executable code
by PROSIS simulation of a virtual simple 8086 educational development system.

At the first part of the experiment we will write a code to display either num1 or num2 on
the LED array depending on the bit-0 switch status of port UA. At the second part, we will
display the sum of the two numbers switch status

3.3.1. Execution of a code on a virtual 8086 system

Procedure:
-Start Emu8086, and close the welcome window. Write the following program into the
new-source window of the Emu8086 editor.

; Your Student Number, Name, Surname
; CMPE323 Lab-1 Simple I/O port with 8-bit addressing
.MODEL SMALL
.8086
.CODE
 mov ax,@DATA
 mov DS,ax
W1:
 mov dx,328h
 in al,dx
 test al,01h
 mov al,num1
 jz W2
 mov al,num2
W2:
 mov dx,324h
 out dx,al
 jmp W1
.stack
.data
num1 db 20
num2 db 30
END

-Save the file to your work-folder with the file name exp3A.asm
-Use the taskbar-button “compile” to assemble your source to exp3A.exe into your
working folder.

-Start ISIS and load the design file VSED_WA.dsn (drag and drop it into ISIS window).
- R-click (right click) on 8086 processor on the system diagram. 8086 will be selected
and turned to red, and a pop-up menu will appear. L-click (left-click) mouse on Edit
Properties to open Edit Component window. Change the program file browsing
exp3A.exe. R-click mouse on OK to close Edit Component window. R-click mouse
on any empty part of the diagram window to unselect the processor.

22 Assemblers and Development Tools for 8086 and 8051 Microprocessors

 -From ISIS simulation bar L-click on step button (2nd button) to
start debugging. From the ISIS menu-bar L-click on debug >> 8086 >> registers to
open register window. On the register window R-click >> set font >> Lucida
Console / Bold / 12 to make the font readable. L-clicking on step button will execute
each instruction and update the registers accordingly. Trace the program while PORT
UA A0 switch is at on position and at off position. On your report sheet write the
instruction pointer contents and the instructions for each step of execution until IP
becomes 0005 for the second time.

Reporting:

 1- Start a text file with the name exp3.txt.
 2- Write the Report Title in the following format

CMPE328 Experiment 3, Report file by <name surname studentnr> CMPE328 Experiment 3, Report file by <name surname studentnr> CMPE328 Experiment 3, Report file by <name surname studentnr> CMPE328 Experiment 3, Report file by <name surname studentnr>
Part 1Part 1Part 1Part 1

 3- Open the list file exp3A.exe.list and use copy-and-paste to copy it into your
report file.

 4- Save exp3.txt to report the coming report item.

3.3.2. Adding Port UA and Port UB

This experiment uses a different board, VSED_BA.dsn, with an 8-bit IO address decoder
for port addresses

It may be obtained from the 16-bit IO addressed
VSED_WA.dsn circuit by removing the AND
and OR gates which are connected to ~E2 and
~E3 of 74HC138, and connecting A6 and A6 to
~E2 and ~E3 lines so that decoder is enabled
when (A7A6A5A4) is (001x).

A7 A6 A5 A4 A3 A2 A1 A0 hex port

0 0 1 0 0 1 X X 24h – 27h UL
0 0 1 0 1 0 X X 28h – 2Bh UA
0 0 1 0 1 1 X X 2Ch – 2Fh UB
0 0 1 1 0 0 X X 30h – 33h USART

Procedure:
-Start Emu8086, and close the welcome window. Write the following program into the
new-source window of the Emu8086 editor.

; Your Student Number, Name, Surname
; CMPE323 Lab-1B Simple I/O port with 8-bit addressing
.MODEL SMALL
.8086
.CODE
 mov ax,@data
 mov ds,ax
W1:
 in al,28h ; first number from UA
 mov ah,al
 in al,2Ch ; second number from UB
 add al,ah
 out 24h,al
 jmp W1
.stack
.data

UL

UA

UB
USART

 Assemblers and Development Tools for 8086 and 8051 Microprocessors 23

 END

-Save the file to your work-folder with the file name exp1B.asm
-Use the taskbar-button “compile” to assemble your source to exp1B.exe into your
working folder.

-Start ISIS and load the design file (simply drag and drop it into ISIS window.
- R-click (right click) on 8086 processor on the system diagram. 8086 will be selected
and turned to red, and a pop-up menu will appear. L-click (left-click) on Edit
Properties to open Edit Component window. Change the program file browsing
exp1B.exe. R-click on OK to close Edit Component window. R-click on any empty
part of the diagram window to de-select the processor.

-From ISIS simulation bar L-click on step button (2nd button) to
start debugging. From the ISIS menu-bar L-click on debug >> 8086 >> registers to
open register window. If the font is too small to read then R-click on the register
window, select set font >> Lucida Console / Bold / 12 to make the font readable.
L-clicking on step button will execute each instruction and update the registers
accordingly. Trace the program to add the last two digit of your student number to
the third&fourth digits in hexadecimal format. For example if your student number is
123456, then you shall write 34h to port UA, and 56h to port UB. Read the result
from the LEDs of port UL.

Reporting

Write your observations into PART2PART2PART2PART2 of your report file in full sentences. (i.e., “I set I set I set I set
pppport UA to 34h by making (AD7..AD4)=0011, (AD3..AD2)=0100,ort UA to 34h by making (AD7..AD4)=0011, (AD3..AD2)=0100,ort UA to 34h by making (AD7..AD4)=0011, (AD3..AD2)=0100,ort UA to 34h by making (AD7..AD4)=0011, (AD3..AD2)=0100, and port UB to and port UB to and port UB to and port UB to
56h56h56h56h by making (AD7..AD4)=0101, (AD3..AD2)=0110.by making (AD7..AD4)=0101, (AD3..AD2)=0110.by making (AD7..AD4)=0101, (AD3..AD2)=0110.by making (AD7..AD4)=0101, (AD3..AD2)=0110. Then, IThen, IThen, IThen, I read from read from read from read from port port port port UL UL UL UL
Q0=0, Q1=1, Q2=0, QQ0=0, Q1=1, Q2=0, QQ0=0, Q1=1, Q2=0, QQ0=0, Q1=1, Q2=0, Q3=1,Q4=0,Q5=0,Q6=0, Q7=1, 3=1,Q4=0,Q5=0,Q6=0, Q7=1, 3=1,Q4=0,Q5=0,Q6=0, Q7=1, 3=1,Q4=0,Q5=0,Q6=0, Q7=1, which which which which makmakmakmakes in binaryes in binaryes in binaryes in binary 10001010 10001010 10001010 10001010

= 8Ah.= 8Ah.= 8Ah.= 8Ah.”)

3.3.3. USART and Capitalization

Procedure:
-Start Emu8086, and close the welcome window. Write the following program into the
new-source window of the Emu8086 editor.

; Your Student Number, Name, Surname
; CMPE323 Lab-1C Serial Communication
.MODEL SMALL
.8086
.CODE
 mov AX,@data
 mov DS,AX
 call InitUSART
 ; Convert all characters to Upper Case
MainLoop:
 mov BX,offset inbfr
 mov CX,0
Recv:
 call RecvChar ; character is in AL
 cmp AL,0
 jz Recv ; no character
 mov [BX],AL ; put chr into buffer
 inc BX ; point empty byte in buffer
 inc CX ; keep number of received chars
 mov DX,324h ; LED-display
 out DX,AL
 cmp AL,0Dh ; is the character line feed
 jnz Recv ; if not line feed receive next char.

24 Assemblers and Development Tools for 8086 and 8051 Microprocessors

 ; transmit the buffer after making upper case
 mov BX,offset inbfr
Txmt:
 mov AH,[BX] ; character from the buffer
 inc BX ; point next char.
 cmp AH,'a' ; is it lower case alphabetic
 jb transmitchar
 cmp AH,'z'
 ja transmitchar
 and AH,0DFh ; now the character is uppercase
transmitchar:
 call XmitChar ; Transmit the processed character.
 mov AX,200
delay:
 dec AX
 jnz delay
 loop Txmt
 jmp MainLoop

InitUSART proc
 xor AL, AL
 mov DX, 332h
 out DX, AL
 out DX, AL
 out DX, AL
 mov AL, 40h
 out DX, AL
 mov AL, 04Dh ; 8-bit, no parity, baud=clock x1
 out DX, AL
 mov AL, 05h ; start both receive and transmit
 out DX, AL
 ret
 endp

RecvChar proc
; reads received character into AL.
; If no character received then AL returns zero.
 push DX
 mov DX,332h ; status/control address
 in AL,DX ; read status register
 and AL,02h ; zero flag is set if AL .AND. 01h is nonzero
 jz NotReceived
 mov DX,330h ; data-in/data-out address
 in AL,DX ; received character transferred from data-in into AL.
 shr AL,1
NotReceived:
 pop DX
 ret
 endp

XmitChar proc
; transmits the contents of AH register to USART.
 push DX
 mov DX,332h ; status/control address
 in AL,DX ; read status register
 and AL,01h ; zero flag is set if AL .AND. 02h is nonzero
 jz XmitChar ; Wait until flag is set
 mov AL,AH
 mov DX,330h ; data-in/data-out address

 Assemblers and Development Tools for 8086 and 8051 Microprocessors 25

 out DX,AL ; received character transferred into AL.
 pop DX
 ret
 endp
.data
bptr dw 0102h
inbfr db 0 dup(32)
.stack 32

 END

-Save the file to your work-folder with the file name exp1C.asm
-Use the taskbar-button “compile” to assemble your source to exp1C.exe into your
working folder.

-Start ISIS and load the design file VSED_WA.dsn (drag and drop it into ISIS window).
- Rclick (right click) on 8086 processor on the system diagram. 8086 will be selected
and turned to red, and a pop-up menu will appear. Lclick (left-click) on Edit
Properties to open Edit Component window. Change the program file browsing
exp1B.exe. Rclick on OK to close Edit Component window. Right-click on any
empty part of the diagram window to de-select the processor.

-From ISIS simulation bar Lclick on run button (1nd button) to start
execution.
-If the terminal page does not appear on the screen then Lclick on ISIS-menu-bar-
debug >> virtual terminal to open terminal monitor window. Right-Click into the
terminal window and check “Echo typed characters”. -If the font is too small to read
then right-click on the terminal window, select set font >> Lucida Console / Bold /
12 to make the font readable.
- Click on terminal window, and then use keyboard to write Hello, and end the line
with return (enter-key). You shall see
Hello
HELLO

on the monitor. The first character of each character pair is what you entered from
keyboard echoed on the monitor, and the second character is the character sent from
8086 code.
- If you have the oscilloscope settings horizontal (sweep-time) at 1ms/div, Channel-
A and Channel-B at DC 2V/div, trigger at DC with source A, at level 20, negative
edge, and Auto-mode then you may observe the received and transmitted waveform
of serial signal on the scope window.

Write your name in lower-case characters, set the trigger of scope to one-shot, and then
send the return character to catch the transmitted string from USART to terminal.

Reporting:
Use Oscilloscope to measure the total time period to transmit your name, and
write it in full sentence into PART3 of your report (i.e., I entered my name I entered my name I entered my name I entered my name
“Ali Veli” and set the oscilloscope to one“Ali Veli” and set the oscilloscope to one“Ali Veli” and set the oscilloscope to one“Ali Veli” and set the oscilloscope to one----shot trigger mode. After I shot trigger mode. After I shot trigger mode. After I shot trigger mode. After I
sent a return character I used cursor to measure total transmission sent a return character I used cursor to measure total transmission sent a return character I used cursor to measure total transmission sent a return character I used cursor to measure total transmission

time T=34.25ms at timetime T=34.25ms at timetime T=34.25ms at timetime T=34.25ms at time----base setting 5ms/divbase setting 5ms/divbase setting 5ms/divbase setting 5ms/div).

After you complete the procedures, please save and close exp3.txt file, and e-mail
it using your student e-mail account to cmpe323lab@gmail.com with the
subject line “exp3” within the same day before the midnight.

 27

 29

44444444........
BIOS and DOS ServicesBIOS and DOS ServicesBIOS and DOS ServicesBIOS and DOS Services

4.1 Objective

The aim of this experiment consists of
i- Exercising keyboard and screen related BIOS and DOS interrupt services.
ii- Coding with macros and procedures
iii- Using include files.

4.2 Preliminary Study

Before attending the lab, study from Mazidi&Mazidi textbook
- Section 2.3 and 2.4 to understand Control Transfer Instructions.
- Section 3.4 to understand BCD, packed-BCD, ASCII-decimal, representation of
numbers.

- Section 4.1 BIOS interrupt service to clear the screen.
- Section 4.2 DOS interrupt services to display a single character, to display a string, to
input a single character, and to display a string.

- Section 4.3 DOS Keyboard interrupt service to test the keyboard buffer, and return the
pressed key.

- Section 5.1 MACRO definitions, and include files

4.3 Experimental Part

4.3.1. DOS services for String Display and Input

Objective: to observe the coding of several data types in various formats.

Procedure-1:
 - Organize a folder exp4 under your asm folder.

 - In exp4 folder, create and edit exp4p1.asm to contain the following source text

(please use copy and paste, but correct all mistakes in the code. Do not forget
to fill in your student number to the first line of the source code).
---file exp4p1.asm------
; exp; exp; exp; exp4444p1 student nr:p1 student nr:p1 student nr:p1 student nr:
.model small.model small.model small.model small
.stack 64.stack 64.stack 64.stack 64
.data.data.data.data
msg1 db msg1 db msg1 db msg1 db 13,10,"I will add two numbers."13,10,"I will add two numbers."13,10,"I will add two numbers."13,10,"I will add two numbers."
msg2 db 13,10," Give me one number:$"msg2 db 13,10," Give me one number:$"msg2 db 13,10," Give me one number:$"msg2 db 13,10," Give me one number:$"
msg3 db 13,10," Give me second one:$"msg3 db 13,10," Give me second one:$"msg3 db 13,10," Give me second one:$"msg3 db 13,10," Give me second one:$"
msg4 db 13,10," The sum is "msg4 db 13,10," The sum is "msg4 db 13,10," The sum is "msg4 db 13,10," The sum is "
sum db " $"sum db " $"sum db " $"sum db " $"
buf1 db 10,0," "buf1 db 10,0," "buf1 db 10,0," "buf1 db 10,0," "
buf2 db 10,0," "buf2 db 10,0," "buf2 db 10,0," "buf2 db 10,0," "
.code.code.code.code
start:start:start:start:
 mov ax,@data mov ax,@data mov ax,@data mov ax,@data
 mov mov mov mov ds,ax ds,ax ds,ax ds,ax
;display msg1 and msg2;display msg1 and msg2;display msg1 and msg2;display msg1 and msg2
 mov ah, 09h mov ah, 09h mov ah, 09h mov ah, 09h
 mov dx, offset msg1 mov dx, offset msg1 mov dx, offset msg1 mov dx, offset msg1
 int 21h int 21h int 21h int 21h
;input the first number;input the first number;input the first number;input the first number
 mov ah, 0Ah mov ah, 0Ah mov ah, 0Ah mov ah, 0Ah

30 Assemblers and Development Tools for 8086 and 8051 Microprocessors

 mov dx, offset buf1 mov dx, offset buf1 mov dx, offset buf1 mov dx, offset buf1
 int 21h int 21h int 21h int 21h
;display msg3;display msg3;display msg3;display msg3
 mov ah, 09h mov ah, 09h mov ah, 09h mov ah, 09h
 mov dx, offset msg3 mov dx, offset msg3 mov dx, offset msg3 mov dx, offset msg3
 int 21h int 21h int 21h int 21h
;input the second number;input the second number;input the second number;input the second number
 mov ah, 0Ah mov ah, 0Ah mov ah, 0Ah mov ah, 0Ah
 mov dx, mov dx, mov dx, mov dx, offset buf2offset buf2offset buf2offset buf2
 int 21h int 21h int 21h int 21h
; align the numbers; align the numbers; align the numbers; align the numbers
 mov di, offset buf1+1 mov di, offset buf1+1 mov di, offset buf1+1 mov di, offset buf1+1
 mov si, offset buf2+1 mov si, offset buf2+1 mov si, offset buf2+1 mov si, offset buf2+1
 cmplengths: cmplengths: cmplengths: cmplengths:
 mov al, [di] mov al, [di] mov al, [di] mov al, [di]
 cmp al, [si] cmp al, [si] cmp al, [si] cmp al, [si]
 je aligned je aligned je aligned je aligned
 jb shiftbuf1 jb shiftbuf1 jb shiftbuf1 jb shiftbuf1
 ;swap buffers ;swap buffers ;swap buffers ;swap buffers
 mov ax,di mov ax,di mov ax,di mov ax,di
 mov di, si mov di, si mov di, si mov di, si
 mov si,ax mov si,ax mov si,ax mov si,ax
 shiftbuf1: shiftbuf1: shiftbuf1: shiftbuf1:
 xor bh,b xor bh,b xor bh,b xor bh,bhhhh
 mov bl,[di] mov bl,[di] mov bl,[di] mov bl,[di]
 shiftloop: shiftloop: shiftloop: shiftloop:
 mov al,[bx][di] mov al,[bx][di] mov al,[bx][di] mov al,[bx][di]
 mov [bx][di]+1,al mov [bx][di]+1,al mov [bx][di]+1,al mov [bx][di]+1,al
 dec bl dec bl dec bl dec bl
 js endloop js endloop js endloop js endloop
 jnz shiftloop jnz shiftloop jnz shiftloop jnz shiftloop
 endloop: endloop: endloop: endloop:
 mov [di]+1,'0' mov [di]+1,'0' mov [di]+1,'0' mov [di]+1,'0'
 inc [di] inc [di] inc [di] inc [di]
 jmp cmplengths jmp cmplengths jmp cmplengths jmp cmplengths
aligned:aligned:aligned:aligned:
 mov bx,offset sum mov bx,offset sum mov bx,offset sum mov bx,offset sum
 xor ch,ch xor ch,ch xor ch,ch xor ch,ch
 mov cl,[di] mov cl,[di] mov cl,[di] mov cl,[di]
 add di,cx add di,cx add di,cx add di,cx
 add si,cx add si,cx add si,cx add si,cx
 add bx,cx add bx,cx add bx,cx add bx,cx
 clc clc clc clc
 addloop: addloop: addloop: addloop:
 mov al,[di] mov al,[di] mov al,[di] mov al,[di]
 adc al,[si] adc al,[si] adc al,[si] adc al,[si]
 aaa aaa aaa aaa
 pushf ; save flags pushf ; save flags pushf ; save flags pushf ; save flags
 or al,30h ; make it ASCII or al,30h ; make it ASCII or al,30h ; make it ASCII or al,30h ; make it ASCII
 mov [bx],al mov [bx],al mov [bx],al mov [bx],al
 dec si dec si dec si dec si
 dec di dec di dec di dec di
 dec bx dec bx dec bx dec bx
 popf ; restore flags popf ; restore flags popf ; restore flags popf ; restore flags
 loop addloop loop addloop loop addloop loop addloop
 mov mov mov mov ah,09h ah,09h ah,09h ah,09h
 mov dx,offset msg4 mov dx,offset msg4 mov dx,offset msg4 mov dx,offset msg4
 int 21h int 21h int 21h int 21h

 mov ah,4ch mov ah,4ch mov ah,4ch mov ah,4ch
 int 21h int 21h int 21h int 21h
 end end end end

------end of file----------

In this program buf1 and buf2 are input string buffers. An input-string buffer
consists of three fields.

 The first byte of the buffer is single byte buffer-size field.
 The second byte is single-byte input-string-length field.
 The remaining bytes are reserved for the ASCII-coded-input-string.

- You will use EMU8086 in tracing the assembly code. Open exp4p1.asm in
EMU8086.

start

buf1[1] = buf2[1]
Yes Aligned

buf=buf2

bx = buf[1] , (length of the number)

(shift the digit one byte up)
buf[bx+1] = buf[bx]

(point to next digit)

bx = bx −−−− 1

bx≠≠≠≠0
(some digits are not

processed)

No

Yes

(fill “0” to leftmost digit)
buf[2] = “0”

(increment length of number in buf)

buf[1]= buf[1] + 1

buf= buf1, (di=buf)

buf1[1] < buf2[1]

length of number in buf1

Yes

No

No

 Assemblers and Development Tools for 8086 and 8051 Microprocessors 31

- Ask to your Lab-assistant the first and second numbers to be used in tracing the
code. Start the emulation, and go in single steps until you will get the message
“waiting for input” on the emulator window.

- Switch to the screen by clicking the screen-button on the emulator window.
Then write the first number, and press enter-key to complete the string-input
service. In the emulator window “waiting …” message will disappear.

- Continue to single step emulation and enter the second number.

- Now, open variables window (by clicking the var button).

- In the variables window, click on buf1, and make its size qword. Then make
both buf2 and sum qword as well.

- Write the qword values of buf1 and buf2 into the report file exp4.txt, as shown
below:

 CMPE328 Experiment CMPE328 Experiment CMPE328 Experiment CMPE328 Experiment 4444 Report Report Report Report file by <Namefile by <Namefile by <Namefile by <Name----Surname> <Surname> <Surname> <Surname> <numbernumbernumbernumber>>>>
 Part Part Part Part----1111
 buf1: 0A……………… hbuf1: 0A……………… hbuf1: 0A……………… hbuf1: 0A……………… h
 buf2: 0A……………… hbuf2: 0A……………… hbuf2: 0A……………… hbuf2: 0A……………… h

- Continue to tracing until it reaches to JB instruction. Does it execute “mov mov mov mov

ax,diax,diax,diax,di”, or “xor bh,bh”“xor bh,bh”“xor bh,bh”“xor bh,bh” after the jbjbjbjb instruction. Write this first instruction
that is executed after jbjbjbjb to the exp3.txt file (either mov, or xor).

 after jb ……… after jb ……… after jb ……… after jb ……… is executed.is executed.is executed.is executed.

- Continue to tracing until it reaches to “xor ch,chxor ch,chxor ch,chxor ch,ch”””” instruction. Open the
variables window, and write the new qword values of buf1 and buf2 to the
exp3.txt file.

 aftaftaftafter aligned:er aligned:er aligned:er aligned:
 buf1: 0A……………… hbuf1: 0A……………… hbuf1: 0A……………… hbuf1: 0A……………… h
 buf2: 0A……………… hbuf2: 0A……………… hbuf2: 0A……………… hbuf2: 0A……………… h

- Run the code to the end (use run button). Then, in the variable window find the
qword value of sum, and write it into exp4.txt.

 sum: sum: sum: sum: ………………………………………………………………………… h h h h

4.3.2. Subroutines and Include files.

Objectives:
 -to observe usage of macros in improving the readability of the assembly sources.
 -to make and use an include file for the subroutines.

Procedure-1:
-The following assembly code finds the maximum and the minimum of an array
of two digit decimal numbers (i.e., numbers between 0 and 99). Write it into
exp4p2.asm in the exp4 folder. Don’t forget to fill your name and number into
the first line of the file.

; exp; exp; exp; exp4444p2.asm student name and number :p2.asm student name and number :p2.asm student name and number :p2.asm student name and number :
.MODEL SMALL.MODEL SMALL.MODEL SMALL.MODEL SMALL
.STACK 100h.STACK 100h.STACK 100h.STACK 100h
.DATA.DATA.DATA.DATA
MESSAGE1 DB 13,10,' The smallest iMESSAGE1 DB 13,10,' The smallest iMESSAGE1 DB 13,10,' The smallest iMESSAGE1 DB 13,10,' The smallest is: 's: 's: 's: '
SMALLEST DB ' 'SMALLEST DB ' 'SMALLEST DB ' 'SMALLEST DB ' '
MESSAGE2 DB 13,10," The biggest is: "MESSAGE2 DB 13,10," The biggest is: "MESSAGE2 DB 13,10," The biggest is: "MESSAGE2 DB 13,10," The biggest is: "
BIGGEST DB ' $'BIGGEST DB ' $'BIGGEST DB ' $'BIGGEST DB ' $'
MESSAGE3 DBMESSAGE3 DBMESSAGE3 DBMESSAGE3 DB ????

32 Assemblers and Development Tools for 8086 and 8051 Microprocessors

 NUMCOUNT EQU 6NUMCOUNT EQU 6NUMCOUNT EQU 6NUMCOUNT EQU 6
NUMBERS DB 51,98,2,18,11,40NUMBERS DB 51,98,2,18,11,40NUMBERS DB 51,98,2,18,11,40NUMBERS DB 51,98,2,18,11,40
ROW EQU 08ROW EQU 08ROW EQU 08ROW EQU 08
COLUMN EQU 05COLUMN EQU 05COLUMN EQU 05COLUMN EQU 05
.CODE.CODE.CODE.CODE
MAIN PROC FARMAIN PROC FARMAIN PROC FARMAIN PROC FAR
 MOV AX,@DATA MOV AX,@DATA MOV AX,@DATA MOV AX,@DATA
 MOV DS,AX MOV DS,AX MOV DS,AX MOV DS,AX
 MOV SI,OFFSET MES MOV SI,OFFSET MES MOV SI,OFFSET MES MOV SI,OFFSET MESSAGE3SAGE3SAGE3SAGE3
 CALL CLEAR CALL CLEAR CALL CLEAR CALL CLEAR
 MOV DL,COLUMN MOV DL,COLUMN MOV DL,COLUMN MOV DL,COLUMN
 MOV DH,ROW MOV DH,ROW MOV DH,ROW MOV DH,ROW
 CALL CURSOR CALL CURSOR CALL CURSOR CALL CURSOR

 MOV CX, NUMCOUNT MOV CX, NUMCOUNT MOV CX, NUMCOUNT MOV CX, NUMCOUNT----1111

 MOV DI, OFFSET NUMBERS MOV DI, OFFSET NUMBERS MOV DI, OFFSET NUMBERS MOV DI, OFFSET NUMBERS
 MOV SI, DI ; [SI] is smallest MOV SI, DI ; [SI] is smallest MOV SI, DI ; [SI] is smallest MOV SI, DI ; [SI] is smallest
 MOV BX, DI ; [BX] is biggest MOV BX, DI ; [BX] is biggest MOV BX, DI ; [BX] is biggest MOV BX, DI ; [BX] is biggest
BACK: INC DI BACK: INC DI BACK: INC DI BACK: INC DI
; is [DI]<[SI]; is [DI]<[SI]; is [DI]<[SI]; is [DI]<[SI]
 MOV MOV MOV MOV AL,[DI]AL,[DI]AL,[DI]AL,[DI]
 CMP AL,[SI] CMP AL,[SI] CMP AL,[SI] CMP AL,[SI]
 JAE BIG ; skip if big JAE BIG ; skip if big JAE BIG ; skip if big JAE BIG ; skip if big
 MOV SI, DI ; update if small MOV SI, DI ; update if small MOV SI, DI ; update if small MOV SI, DI ; update if small
 JMP SML JMP SML JMP SML JMP SML
; is [DI]>[BX] ; is [DI]>[BX] ; is [DI]>[BX] ; is [DI]>[BX]
BIG: MOV AL,[DI]BIG: MOV AL,[DI]BIG: MOV AL,[DI]BIG: MOV AL,[DI]
 CMP AL,[BX] CMP AL,[BX] CMP AL,[BX] CMP AL,[BX]
 JB SML JB SML JB SML JB SML
 MOV BX, DI MOV BX, DI MOV BX, DI MOV BX, DI
SML: LOOP BACKSML: LOOP BACKSML: LOOP BACKSML: LOOP BACK
 mov AL,[SI] mov AL,[SI] mov AL,[SI] mov AL,[SI]
 mov AH,0 mov AH,0 mov AH,0 mov AH,0
 call HE call HE call HE call HEX2ASCIIX2ASCIIX2ASCIIX2ASCII
 xchg AH,AL ; ascii strings big xchg AH,AL ; ascii strings big xchg AH,AL ; ascii strings big xchg AH,AL ; ascii strings big----endianendianendianendian
 mov WORD PTR SMALLEST,ax mov WORD PTR SMALLEST,ax mov WORD PTR SMALLEST,ax mov WORD PTR SMALLEST,ax
 mov AL,[BX] mov AL,[BX] mov AL,[BX] mov AL,[BX]
 mov AH,0 mov AH,0 mov AH,0 mov AH,0
 call HEX2ASCII call HEX2ASCII call HEX2ASCII call HEX2ASCII
 xchg AH,AL ; ascii strings big xchg AH,AL ; ascii strings big xchg AH,AL ; ascii strings big xchg AH,AL ; ascii strings big----endianendianendianendian
 mov WORD PTR BIGGEST,ax mov WORD PTR BIGGEST,ax mov WORD PTR BIGGEST,ax mov WORD PTR BIGGEST,ax

 mov DX, OFFSET MESSAGE1 mov DX, OFFSET MESSAGE1 mov DX, OFFSET MESSAGE1 mov DX, OFFSET MESSAGE1
 CA CA CA CALL SCREEN LL SCREEN LL SCREEN LL SCREEN
 MOV AH,4CH MOV AH,4CH MOV AH,4CH MOV AH,4CH
 INT 21H INT 21H INT 21H INT 21H
MAIN ENDPMAIN ENDPMAIN ENDPMAIN ENDP
;;;;--
HEX2ASCII PROC HEX2ASCII PROC HEX2ASCII PROC HEX2ASCII PROC
; converts ah=0, al=binary_number to ax=ascii number ; converts ah=0, al=binary_number to ax=ascii number ; converts ah=0, al=binary_number to ax=ascii number ; converts ah=0, al=binary_number to ax=ascii number
AGAIN:AGAIN:AGAIN:AGAIN:
 CMP AL,10 CMP AL,10 CMP AL,10 CMP AL,10
 JB CONVERTED JB CONVERTED JB CONVERTED JB CONVERTED
 sub al,10 sub al,10 sub al,10 sub al,10
 inc AH inc AH inc AH inc AH
 jmp AGAINjmp AGAINjmp AGAINjmp AGAIN
CONVERTED:CONVERTED:CONVERTED:CONVERTED:
 or ax,3030h or ax,3030h or ax,3030h or ax,3030h
 ret ret ret ret
HEX2ASCII endp HEX2ASCII endp HEX2ASCII endp HEX2ASCII endp
;;;;--
CLEAR PROCCLEAR PROCCLEAR PROCCLEAR PROC
; clears 25rows,80cols screen; clears 25rows,80cols screen; clears 25rows,80cols screen; clears 25rows,80cols screen
 MOV MOV MOV MOV AX,0600H AX,0600H AX,0600H AX,0600H ;scroll the entire page ;scroll the entire page ;scroll the entire page ;scroll the entire page
 MOV MOV MOV MOV BH,0F0hBH,0F0hBH,0F0hBH,0F0h ;normal attribute ;normal attribute ;normal attribute ;normal attribute
 MOV MOV MOV MOV CX,0000CX,0000CX,0000CX,0000 ;row and column of top left ;row and column of top left ;row and column of top left ;row and column of top left
 MOV MOV MOV MOV DX,184FHDX,184FHDX,184FHDX,184FH ;row and column of bottom right ;row and column of bottom right ;row and column of bottom right ;row and column of bottom right
 INT INT INT INT 10H10H10H10H ;invoke the video BIOS service ;invoke the video BIOS service ;invoke the video BIOS service ;invoke the video BIOS service
 RET RET RET RET
CLEARCLEARCLEARCLEAR ENDPENDPENDPENDP
;;;;--
CURSORCURSORCURSORCURSOR PROCPROCPROCPROC ;SET CURSOR;SET CURSOR;SET CURSOR;SET CURSOR POSITION POSITION POSITION POSITION
; sets cursor to DH=row,DL=col. ; sets cursor to DH=row,DL=col. ; sets cursor to DH=row,DL=col. ; sets cursor to DH=row,DL=col.
 MOV MOV MOV MOV AH,02AH,02AH,02AH,02
 MOV MOV MOV MOV BH,00BH,00BH,00BH,00
 INT INT INT INT 10H10H10H10H

 Assemblers and Development Tools for 8086 and 8051 Microprocessors 33

 RET RET RET RET
CURSORCURSORCURSORCURSOR ENDP ENDP ENDP ENDP
;;;;--
SCREEN PROCSCREEN PROCSCREEN PROCSCREEN PROC
; displays a $; displays a $; displays a $; displays a $----terminated string pointed by DH. terminated string pointed by DH. terminated string pointed by DH. terminated string pointed by DH.
 MOV MOV MOV MOV AH,09AH,09AH,09AH,09
 INT INT INT INT 21H21H21H21H
 RET RET RET RET
SCREEN ENDPSCREEN ENDPSCREEN ENDPSCREEN ENDP
END MAINEND MAINEND MAINEND MAIN

- You will use Emu8086 to trace this assembly code. Open exp4p2.asm in the
Emu8086, and replace the data entries NUMCOUNTNUMCOUNTNUMCOUNTNUMCOUNT and NUMBERSNUMBERSNUMBERSNUMBERS with the data
supplied to you by your lab instructor.

- Click the emulate button to start emulation. Then click the aux button and select
listing to open the list file. debug button in the emulator windows to open the
debug listing. Use Ctrl-A, and then Ctrl-C to copy the debug listing into
clipboard. Then paste them to the end of the reporting file exp4.txt. The added
text will look like the following text.

EMU8086 GENERATED LISTING. MACHINE CODE <EMU8086 GENERATED LISTING. MACHINE CODE <EMU8086 GENERATED LISTING. MACHINE CODE <EMU8086 GENERATED LISTING. MACHINE CODE <---- SOURCE. SOURCE. SOURCE. SOURCE.

expexpexpexp4p4p4p4p2.exe_ 2.exe_ 2.exe_ 2.exe_ -------- emu8086 assembler version: 4.05 emu8086 assembler version: 4.05 emu8086 assembler version: 4.05 emu8086 assembler version: 4.05

[3/23/2008 [3/23/2008 [3/23/2008 [3/23/2008 -------- 23:18:53] 23:18:53] 23:18:53] 23:18:53]

==
[LINE] LOC: MACHINE CODE SOURCE[LINE] LOC: MACHINE CODE SOURCE[LINE] LOC: MACHINE CODE SOURCE[LINE] LOC: MACHINE CODE SOURCE
==

[1] : .MODEL SMALL[1] : .MODEL SMALL[1] : .MODEL SMALL[1] : .MODEL SMALL
[[[[2] : .ST2] : .ST2] : .ST2] : .STACK 100hACK 100hACK 100hACK 100h
[[[[3] : .DATA3] : .DATA3] : .DATA3] : .DATA
[4] 0100: 0D 0A 20 20 20 54 68 65 20 73 6D 61 MESSAGE1 DB 13,10,' The smallest is: '[4] 0100: 0D 0A 20 20 20 54 68 65 20 73 6D 61 MESSAGE1 DB 13,10,' The smallest is: '[4] 0100: 0D 0A 20 20 20 54 68 65 20 73 6D 61 MESSAGE1 DB 13,10,' The smallest is: '[4] 0100: 0D 0A 20 20 20 54 68 65 20 73 6D 61 MESSAGE1 DB 13,10,' The smallest is: '
 6C 6C 65 73 74 20 69 73 3A 20 6C 6C 65 73 74 20 69 73 3A 20 6C 6C 65 73 74 20 69 73 3A 20 6C 6C 65 73 74 20 69 73 3A 20

- Now, you shall build an include file with the name “exp4p2b.asm”.
 First save the file exp4p2.asm twice with the new names exp4p2a.asm and
exp4p2b.asm.

 In exp4p2a.asm, delete the procedures HEX2ASCII, CLEAR, CURSORHEX2ASCII, CLEAR, CURSORHEX2ASCII, CLEAR, CURSORHEX2ASCII, CLEAR, CURSOR, SCREENSCREENSCREENSCREEN
and insert a line after MAIN ENDPMAIN ENDPMAIN ENDPMAIN ENDP that contains ininininclude expclude expclude expclude exp4444p2b.asmp2b.asmp2b.asmp2b.asm , i.e.,

 … …
 MOV AH,4CH
 INT 21H
 MAIN ENDP
include myproc.asminclude myproc.asminclude myproc.asminclude myproc.asm

END MAIN

 In exp4p2b.asm leave only the procedures HEX2ASCII, CLEAR, CURSORHEX2ASCII, CLEAR, CURSORHEX2ASCII, CLEAR, CURSORHEX2ASCII, CLEAR, CURSOR,
SCREENSCREENSCREENSCREEN, so that it will look like
;;;;--
HEX2ASCII PROC HEX2ASCII PROC HEX2ASCII PROC HEX2ASCII PROC
; converts ah=0, al=binary_number to ax=ascii number ; converts ah=0, al=binary_number to ax=ascii number ; converts ah=0, al=binary_number to ax=ascii number ; converts ah=0, al=binary_number to ax=ascii number
AGAIN:AGAIN:AGAIN:AGAIN:
 CMP AL,10 CMP AL,10 CMP AL,10 CMP AL,10

.
 RET RET RET RET
CURSORCURSORCURSORCURSOR ENDP ENDP ENDP ENDP
;;;;--
SCREEN PROCSCREEN PROCSCREEN PROCSCREEN PROC
; displays a $; displays a $; displays a $; displays a $----terminated string pointedterminated string pointedterminated string pointedterminated string pointed by DH. by DH. by DH. by DH.
 MOV MOV MOV MOV AH,09AH,09AH,09AH,09
 INT INT INT INT 21H21H21H21H
 RET RET RET RET

 SCREEN ENDPSCREEN ENDPSCREEN ENDPSCREEN ENDP

34 Assemblers and Development Tools for 8086 and 8051 Microprocessors

- Now open exp4p2a.asm in Emu8086, emulate and run. You will observe that it
runs the same as the single-file source code. In the listing of exp4p2a.asm, the
included code will appear missing. Copy all listing to exp4.txt.

Reporting:
After you complete the procedures, please save and close exp4.txt file, and e-mail
it using your student e-mail account to cmpe323lab@gmail.com with the
subject line “exp4” within the same day before the midnight.

Late and early deliveries will have 20% discount in grading. No excuse acceptable.

Free time practice-1:

In your free time, convert the code exp4p2.asm to two files: File exp4p2c.asm that
contains source code invoking macros, and file exp4p2c.mac that contains
macro definitions. Instead of converting the procedures into parameterless
macros, try to include necessary calling parameters as well into the definition
of macro i.e.,

Table-1 Converting subroutines to macros with parameters.

CURSORCURSORCURSORCURSOR PROPROPROPROCCCC ;SET CURSOR POSITION ;SET CURSOR POSITION ;SET CURSOR POSITION ;SET CURSOR POSITION
 MOV MOV MOV MOV AH,02HAH,02HAH,02HAH,02H
 MOV MOV MOV MOV BH,00BH,00BH,00BH,00
 INT INT INT INT 10H10H10H10H
 RET RET RET RET
CURSORCURSORCURSORCURSOR ENDP ENDP ENDP ENDP

CURSORCURSORCURSORCURSOR MACRO ROW, COLMACRO ROW, COLMACRO ROW, COLMACRO ROW, COL
;SET CURSOR POSITION ;SET CURSOR POSITION ;SET CURSOR POSITION ;SET CURSOR POSITION
 MOV DH, ROW MOV DH, ROW MOV DH, ROW MOV DH, ROW
 MOV DL, COL MOV DL, COL MOV DL, COL MOV DL, COL
 MOV MOV MOV MOV AH,02HAH,02HAH,02HAH,02H
 MOV MOV MOV MOV BH,00BH,00BH,00BH,00
 INT INT INT INT 10H10H10H10H
CURSORCURSORCURSORCURSOR ENDM ENDM ENDM ENDM

SCREEN PROCSCREEN PROCSCREEN PROCSCREEN PROC
 MOV MOV MOV MOV AH,09AH,09AH,09AH,09
 INTINTINTINT 21H21H21H21H
 RET RET RET RET
SCREEN ENDPSCREEN ENDPSCREEN ENDPSCREEN ENDP

 SCREEN MACRO STROFFSETSCREEN MACRO STROFFSETSCREEN MACRO STROFFSETSCREEN MACRO STROFFSET
 MOV DX,offset STROFFSETMOV DX,offset STROFFSETMOV DX,offset STROFFSETMOV DX,offset STROFFSET
 MOV AH,09MOV AH,09MOV AH,09MOV AH,09
 INT 21HINT 21HINT 21HINT 21H
 SCREEN ENDMSCREEN ENDMSCREEN ENDMSCREEN ENDM

 Then, you need also modifications in exp4p2c.asm for invoking the macros

Table-2 Invoking macros with parameters instead of parameters passed in register.

 MOV DL,COLUMNMOV DL,COLUMNMOV DL,COLUMNMOV DL,COLUMN
 MOV DH,ROW MOV DH,ROW MOV DH,ROW MOV DH,ROW
 CALL CURSOR CALL CURSOR CALL CURSOR CALL CURSOR

 CURSOR ROW,COLUMN CURSOR ROW,COLUMN CURSOR ROW,COLUMN CURSOR ROW,COLUMN

 mov DX, OFFSET MESSAGE1mov DX, OFFSET MESSAGE1mov DX, OFFSET MESSAGE1mov DX, OFFSET MESSAGE1
 CALL SCREEN CALL SCREEN CALL SCREEN CALL SCREEN

 SCREEN MESSAGE1SCREEN MESSAGE1SCREEN MESSAGE1SCREEN MESSAGE1

 35

55555555........
Using Signed Numbers Using Signed Numbers Using Signed Numbers Using Signed Numbers

and and and and
LookLookLookLook----up Tablesup Tablesup Tablesup Tables

5.1 Objective

The aim of this experiment is
i- Coding with macro and procedure libraries
ii- Using signed numbers in calculations.
iii- Using Look-Up Tables.

5.2 Preliminary Study

Before attending the lab, study from Mazidi&Mazidi textbook
- Section 2.3 and 2.4 to understand Control Transfer Instructions.
- Section 4.1 BIOS interrupt service to clear the screen.
- Section 4.2 DOS interrupt services to display a single character, to display a string, to
input a single character, and to display a string.

- Section 4.3 DOS Keyboard interrupt service to test the keyboard buffer, and return the
pressed key.

- Section 5.1 MACRO definitions, and include files
- Section 6.1 For signed integer arithmetic operations

5.3 Experimental Part

5.3.1. Macro Library for BIOS and DOS Services

Objective: to use a macro library for BIOS and DOS service.

Procedure-1:
 - Organize a folder exp5 under your asm folder.
 - In exp5 folder, create and edit exp5.inc to contain the following source text

(please use copy and paste, but correct all mistakes in the code. Do not forget
to fill in your student numbers to the first line of the source code).

-----file exp5.inc------ Exp5.inc
; MACRO Library exp; MACRO Library exp; MACRO Library exp; MACRO Library exp5555
; student nr1:; student nr1:; student nr1:; student nr1:
; student nr2:; student nr2:; student nr2:; student nr2:

; ASCII code for carriage return; ASCII code for carriage return; ASCII code for carriage return; ASCII code for carriage return
CR equ 0Dh CR equ 0Dh CR equ 0Dh CR equ 0Dh
; ASCII code for line feed; ASCII code for line feed; ASCII code for line feed; ASCII code for line feed
LF equ 0Ah LF equ 0Ah LF equ 0Ah LF equ 0Ah

al2aal2aal2aal2asc macro buffersc macro buffersc macro buffersc macro buffer
; al to ; al to ; al to ; al to asciiasciiasciiascii----decimaldecimaldecimaldecimal conversion conversion conversion conversion
 xor ah,ah xor ah,ah xor ah,ah xor ah,ah
 mov cx,100*256+10 mov cx,100*256+10 mov cx,100*256+10 mov cx,100*256+10
 div ch div ch div ch div ch
 mov buffer,al mov buffer,al mov buffer,al mov buffer,al
 or buffer,30h or buffer,30h or buffer,30h or buffer,30h
 mov al,ah mov al,ah mov al,ah mov al,ah
 xor ah,ah xor ah,ah xor ah,ah xor ah,ah
 div cl div cl div cl div cl

36 Assemblers and Development Tools for 8086 and 8051 Microprocessors

 mov buffer+1,al mov buffer+1,al mov buffer+1,al mov buffer+1,al
 or buffer+1,30h or buffer+1,30h or buffer+1,30h or buffer+1,30h
 mov buffer+2,ah mov buffer+2,ah mov buffer+2,ah mov buffer+2,ah
 or buffer+2,30h or buffer+2,30h or buffer+2,30h or buffer+2,30h
 mov buffer mov buffer mov buffer mov buffer+3,’$’+3,’$’+3,’$’+3,’$’
al2asc endm al2asc endm al2asc endm al2asc endm

asc2al macro bufasc2al macro bufasc2al macro bufasc2al macro buf
;converts ascii str to number in al;converts ascii str to number in al;converts ascii str to number in al;converts ascii str to number in al
 local hexnumber,numer1,numer2,negative,completed local hexnumber,numer1,numer2,negative,completed local hexnumber,numer1,numer2,negative,completed local hexnumber,numer1,numer2,negative,completed
 mov bl,byte ptr buf+1 ; size of the string mov bl,byte ptr buf+1 ; size of the string mov bl,byte ptr buf+1 ; size of the string mov bl,byte ptr buf+1 ; size of the string
 mov bh,0 mov bh,0 mov bh,0 mov bh,0
 mov al,[bx + offset buf+1] mov al,[bx + offset buf+1] mov al,[bx + offset buf+1] mov al,[bx + offset buf+1]
 or al,20h ; lowercased or al,20h ; lowercased or al,20h ; lowercased or al,20h ; lowercased
 cmp al,'h cmp al,'h cmp al,'h cmp al,'h''''
 je hexnumber je hexnumber je hexnumber je hexnumber
;number is decimal;number is decimal;number is decimal;number is decimal
 and al,0Fh and al,0Fh and al,0Fh and al,0Fh
 mov cl,al mov cl,al mov cl,al mov cl,al
 dec bx dec bx dec bx dec bx
 je completed je completed je completed je completed
 mov al,[bx + offset buf+1] mov al,[bx + offset buf+1] mov al,[bx + offset buf+1] mov al,[bx + offset buf+1]
 cmp al,' cmp al,' cmp al,' cmp al,'----''''
 je negative je negative je negative je negative
 and al,0Fh and al,0Fh and al,0Fh and al,0Fh
 mov ch,10 mov ch,10 mov ch,10 mov ch,10
 mul ch mul ch mul ch mul ch
 add cl,al add cl,al add cl,al add cl,al
 dec bx dec bx dec bx dec bx
 je completed je completed je completed je completed
 mov al,[bx + o mov al,[bx + o mov al,[bx + o mov al,[bx + offset buf+1]ffset buf+1]ffset buf+1]ffset buf+1]
 cmp al,' cmp al,' cmp al,' cmp al,'----''''
 je negative je negative je negative je negative
 and al,0Fh and al,0Fh and al,0Fh and al,0Fh
 mov ch,100 mov ch,100 mov ch,100 mov ch,100
 mul ch mul ch mul ch mul ch
 add cl,al add cl,al add cl,al add cl,al
 dec bx dec bx dec bx dec bx
 je completed je completed je completed je completed
 mov al,[bx + offset buf+1] mov al,[bx + offset buf+1] mov al,[bx + offset buf+1] mov al,[bx + offset buf+1]
 cmp al,' cmp al,' cmp al,' cmp al,'----''''
 je negative je negative je negative je negative
 jmp completed jmp completed jmp completed jmp completed
hexnumber:hexnumber:hexnumber:hexnumber:
 dec bx dec bx dec bx dec bx
 je completed je completed je completed je completed
 mov al,[mov al,[mov al,[mov al,[bx + offset buf+1]bx + offset buf+1]bx + offset buf+1]bx + offset buf+1]
 cmp al,'9' cmp al,'9' cmp al,'9' cmp al,'9'
 jna numer1 jna numer1 jna numer1 jna numer1
 add al,9 ; letter correction add al,9 ; letter correction add al,9 ; letter correction add al,9 ; letter correction
numer1:numer1:numer1:numer1:
 and al,0Fh and al,0Fh and al,0Fh and al,0Fh
 mov cl,al mov cl,al mov cl,al mov cl,al
 dec bx dec bx dec bx dec bx
 je completed je completed je completed je completed
 mov al,[bx + offset buf+1] mov al,[bx + offset buf+1] mov al,[bx + offset buf+1] mov al,[bx + offset buf+1]
 cmp al,' cmp al,' cmp al,' cmp al,'----''''
 je negative je negative je negative je negative
 cmp al,'9' cmp al,'9' cmp al,'9' cmp al,'9'
 jna numer2 jna numer2 jna numer2 jna numer2
 add al,9 ; letter correc add al,9 ; letter correc add al,9 ; letter correc add al,9 ; letter correctiontiontiontion
numer2:numer2:numer2:numer2:
 and al,0Fh and al,0Fh and al,0Fh and al,0Fh
 mov ch,16 mov ch,16 mov ch,16 mov ch,16
 mul ch mul ch mul ch mul ch
 add cl,al add cl,al add cl,al add cl,al
 dec bx dec bx dec bx dec bx
 je completed je completed je completed je completed
 mov al,[bx + offset buf+1] mov al,[bx + offset buf+1] mov al,[bx + offset buf+1] mov al,[bx + offset buf+1]
 cmp al,' cmp al,' cmp al,' cmp al,'----''''
 je negative je negative je negative je negative
 jmp completed jmp completed jmp completed jmp completed
negative:negative:negative:negative:
 neg cl neg cl neg cl neg cl
completed:completed:completed:completed:
 mov al,cl mov al,cl mov al,cl mov al,cl
asc2al endmasc2al endmasc2al endmasc2al endm

dispclr macrodispclr macrodispclr macrodispclr macro
 mov mov mov mov ax,0600hax,0600hax,0600hax,0600h
 mov mov mov mov bh,0F0hbh,0F0hbh,0F0hbh,0F0h
 mov mov mov mov cx,0000cx,0000cx,0000cx,0000
 mov mov mov mov dx,184Fhdx,184Fhdx,184Fhdx,184Fh
 int int int int 10h10h10h10h
dispclr endmdispclr endmdispclr endmdispclr endm

 Assemblers and Development Tools for 8086 and 8051 Microprocessors 37

dispstr macro stringdispstr macro stringdispstr macro stringdispstr macro string
 mov ah, 09h mov ah, 09h mov ah, 09h mov ah, 09h
 mov dx, offset string mov dx, offset string mov dx, offset string mov dx, offset string
 int 21h int 21h int 21h int 21h
dispstr endmdispstr endmdispstr endmdispstr endm

imultx macro prod,op1,op2imultx macro prod,op1,op2imultx macro prod,op1,op2imultx macro prod,op1,op2
 mov ax,op1 mov ax,op1 mov ax,op1 mov ax,op1
 cwd cwd cwd cwd
 mov cx,op2 mov cx,op2 mov cx,op2 mov cx,op2
 imul cx imul cx imul cx imul cx
 mov prod,ax mov prod,ax mov prod,ax mov prod,ax
imultx endmimultx endmimultx endmimultx endm

idivxidivxidivxidivx macro quot,num,denom macro quot,num,denom macro quot,num,denom macro quot,num,denom
; remainder returns in dx; remainder returns in dx; remainder returns in dx; remainder returns in dx
 mov ax,num mov ax,num mov ax,num mov ax,num
 cwd cwd cwd cwd
 mov cx,denom mov cx,denom mov cx,denom mov cx,denom
 idiv cx idiv cx idiv cx idiv cx
 mov quot,ax mov quot,ax mov quot,ax mov quot,ax
idivx endmidivx endmidivx endmidivx endm

getstr macro buffergetstr macro buffergetstr macro buffergetstr macro buffer
 mov ah, 0Ah mov ah, 0Ah mov ah, 0Ah mov ah, 0Ah
 mov dx, offset buffer mov dx, offset buffer mov dx, offset buffer mov dx, offset buffer
 int 21h int 21h int 21h int 21h
getstr endmgetstr endmgetstr endmgetstr endm

keybch macro keybch macro keybch macro keybch macro
 mov ah, 01h mov ah, 01h mov ah, 01h mov ah, 01h
 int 16h int 16h int 16h int 16h
keybch endmkeybch endmkeybch endmkeybch endm

setcsetcsetcsetcurs macro row, colurs macro row, colurs macro row, colurs macro row, col
 mov mov mov mov ah,02ah,02ah,02ah,02
 mov mov mov mov bh,00bh,00bh,00bh,00
 mov mov mov mov dl,coldl,coldl,coldl,col
 mov mov mov mov DH,rowDH,rowDH,rowDH,row
 int int int int 10H10H10H10H
setcurs endmsetcurs endmsetcurs endmsetcurs endm

exitdos macroexitdos macroexitdos macroexitdos macro
 mov ah,4ch mov ah,4ch mov ah,4ch mov ah,4ch
 int 21h int 21h int 21h int 21h
exitdos endmexitdos endmexitdos endmexitdos endm

------end of file---------
 - In exp5 folder, create and edit exp5p1.asm to contain the following source text

; ; ; ; SourceSourceSourceSource exp exp exp exp5555p1p1p1p1
; student nr1:; student nr1:; student nr1:; student nr1:
; student nr2:; student nr2:; student nr2:; student nr2:

 include exp include exp include exp include exp5555.inc.inc.inc.inc
 .model small .model small .model small .model small
 .stack 100h .stack 100h .stack 100h .stack 100h
 .data .data .data .data
rownorownorownorowno equ 08equ 08equ 08equ 08
colnocolnocolnocolno equ 05equ 05equ 05equ 05
Message1 db 'What is your last name? ','$'Message1 db 'What is your last name? ','$'Message1 db 'What is your last name? ','$'Message1 db 'What is your last name? ','$'
Buffer1 db 24,?,24 DUP (0)Buffer1 db 24,?,24 DUP (0)Buffer1 db 24,?,24 DUP (0)Buffer1 db 24,?,24 DUP (0)
Message2 db CR, LF,'LetterMessage2 db CR, LF,'LetterMessage2 db CR, LF,'LetterMessage2 db CR, LF,'Letter----count of your last namcount of your last namcount of your last namcount of your last name is: 'e is: 'e is: 'e is: '
Message3 db ' $'Message3 db ' $'Message3 db ' $'Message3 db ' $'

 .code .code .code .code
 mov ax,@data mov ax,@data mov ax,@data mov ax,@data
 mov ds,ax mov ds,ax mov ds,ax mov ds,ax
 dispclr dispclr dispclr dispclr

 setcurs rowno,colno setcurs rowno,colno setcurs rowno,colno setcurs rowno,colno
 dispstr Message1 dispstr Message1 dispstr Message1 dispstr Message1
 getstr buffer1 getstr buffer1 getstr buffer1 getstr buffer1
 ; Mem[buffer1+1] contains the stringlength ; Mem[buffer1+1] contains the stringlength ; Mem[buffer1+1] contains the stringlength ; Mem[buffer1+1] contains the stringlength
 mov al,Buffer1+1 mov al,Buffer1+1 mov al,Buffer1+1 mov al,Buffer1+1
 al2asc Message3 al2asc Message3 al2asc Message3 al2asc Message3
 dispstr Message2 dispstr Message2 dispstr Message2 dispstr Message2
waitkey:waitkey:waitkey:waitkey:
 keyb keyb keyb keybchchchch
 jz waitkey jz waitkey jz waitkey jz waitkey
 exitdos exitdos exitdos exitdos
 end end end end

- You will use EMU8086 in tracing the assembly code. Open exp5p1.asm in
EMU8086.

38 Assemblers and Development Tools for 8086 and 8051 Microprocessors

 - Click on Emulate to start the emulator.
- In the emulator window, click on menu-bar item view -> listing . You will get
the list file opened.
Reporting: Start a text file with the name exp5.txt. Write the Report Title in
the following format

 CMPE328 Experiment 5, Report file by <name surname studentnr> CMPE328 Experiment 5, Report file by <name surname studentnr> CMPE328 Experiment 5, Report file by <name surname studentnr> CMPE328 Experiment 5, Report file by <name surname studentnr>
 Part 1Part 1Part 1Part 1

- Copy the listing lines corresponding to the code segment (starting from .code)
into your report file exp5.txt, as shown below:

 CMPE328 Experiment CMPE328 Experiment CMPE328 Experiment CMPE328 Experiment 5555 Report file Report file Report file Report file
 by <Nameby <Nameby <Nameby <Name----Surname> <number> and <NameSurname> <number> and <NameSurname> <number> and <NameSurname> <number> and <Name----Surname> <number>Surname> <number>Surname> <number>Surname> <number>
 PartPartPartPart----1111

[16] : .code[16] : .code[16] : .code[16] : .code
[17] 0160: B8 10 00 [17] 0160: B8 10 00 [17] 0160: B8 10 00 [17] 0160: B8 10 00 mov ax,@data mov ax,@data mov ax,@data mov ax,@data
[18] 0163: 8E D8 mov ds,ax[18] 0163: 8E D8 mov ds,ax[18] 0163: 8E D8 mov ds,ax[18] 0163: 8E D8 mov ds,ax
[19] 0165: B8 00 06 B7 F0 B9 00 00 BA 4F 18 CD dispclr[19] 0165: B8 00 06 B7 F0 B9 00 00 BA 4F 18 CD dispclr[19] 0165: B8 00 06 B7 F0 B9 00 00 BA 4F 18 CD dispclr[19] 0165: B8 00 06 B7 F0 B9 00 00 BA 4F 18 CD dispclr
 10 10 10 10
[20] : [20] : [20] : [20] :

- Inspect carefully the first and the second occurance of invoking dispstr macro.
Are there any difference? Why are they different?
Reporting: Write your answer to report file

 Dispstr macros are different because . . . Dispstr macros are different because . . . Dispstr macros are different because . . . Dispstr macros are different because

- Close the listing, and trace the execution using single-step. When the emulator
warns you to enter the string, write your surname on the DOS window.

- Open “vars” window (click on vars button), and click on “buffer1”. Then fill in
to “elements” box 20.
Reporting: Write the array of bytes in the buffer1 to your report file exp5.txt
including the first zero byte.

 BUFFER1: 18 05 62 . . . 75 72 0D 00BUFFER1: 18 05 62 . . . 75 72 0D 00BUFFER1: 18 05 62 . . . 75 72 0D 00BUFFER1: 18 05 62 . . . 75 72 0D 00

- Can you understand the length of the string from the second byte in buffer1? Is
it consistent with the remaining bytes?

- Close the emulator window. On the edit window, click on “compile”. A “file-
save browser” will get opened to save the exe file. Save the exp5p1.exe file
into your exp5 folder. Then, execute the exp5p1.exe to observe how it works.

- Reporting: Save the report file, and start to the second part of the experiment.

5.3.2. Average by Signed Arithmetic Operations .

Objectives:
-to demonstrate signed arithmetic operations on a code finding the average of
signed numbers.

Procedure:
-The following assembly code finds the average of an array of bytes. Write it into
exp5p2.asm in the exp5 folder. Don’t forget to fill your name and number into
the file.

; exp; exp; exp; exp5555p2.asmp2.asmp2.asmp2.asm
; Student name and number 1:; Student name and number 1:; Student name and number 1:; Student name and number 1:
; Student name and number 2: ; Student name and number 2: ; Student name and number 2: ; Student name and number 2:
 include expinclude expinclude expinclude exp5555....incincincinc
 .model small .model small .model small .model small
 .stack 100h.stack 100h.stack 100h.stack 100h
 .data.data.data.data
snum dw snum dw snum dw snum dw 4444
sdata db sdata db sdata db sdata db ----3, 3, 3, 3, ----12, 5, 212, 5, 212, 5, 212, 5, 2
aver dw ?aver dw ?aver dw ?aver dw ?
remn dw ? remn dw ? remn dw ? remn dw ?
MessageA db "Average is $" MessageA db "Average is $" MessageA db "Average is $" MessageA db "Average is $"
MessageR db "Remainder is $"MessageR db "Remainder is $"MessageR db "Remainder is $"MessageR db "Remainder is $"
NextLine db 13,10,"$"NextLine db 13,10,"$"NextLine db 13,10,"$"NextLine db 13,10,"$"
dstr db 10 dup(20h),'$'dstr db 10 dup(20h),'$'dstr db 10 dup(20h),'$'dstr db 10 dup(20h),'$'
 .code.code.code.code
 mov ax,@datamov ax,@datamov ax,@datamov ax,@data
 mov ds,axmov ds,axmov ds,axmov ds,ax

 Assemblers and Development Tools for 8086 and 8051 Microprocessors 39

 mov cx, snummov cx, snummov cx, snummov cx, snum
 mov bx, omov bx, omov bx, omov bx, offset sdataffset sdataffset sdataffset sdata
 mov dx,0mov dx,0mov dx,0mov dx,0
addloop:addloop:addloop:addloop:
 mov ax,[bx]mov ax,[bx]mov ax,[bx]mov ax,[bx]
 cbwcbwcbwcbw
 add dx,axadd dx,axadd dx,axadd dx,ax
 inc bxinc bxinc bxinc bx
 loop addlooploop addlooploop addlooploop addloop
 mov ax,dxmov ax,dxmov ax,dxmov ax,dx
 cwdcwdcwdcwd
 mov cx,snummov cx,snummov cx,snummov cx,snum
 idiv cxidiv cxidiv cxidiv cx
 mov aver,axmov aver,axmov aver,axmov aver,ax
 mov remn,dxmov remn,dxmov remn,dxmov remn,dx
 mov ax,aver mov ax,aver mov ax,aver mov ax,aver
 cmp ax,0cmp ax,0cmp ax,0cmp ax,0
 jge positivejge positivejge positivejge positive
 mov dstr,'mov dstr,'mov dstr,'mov dstr,'----''''
 neg axneg axneg axneg ax
positive:positive:positive:positive:
 al2asc dstr+1al2asc dstr+1al2asc dstr+1al2asc dstr+1
 dispstr NextLinedispstr NextLinedispstr NextLinedispstr NextLine
 dispstr MessageAdispstr MessageAdispstr MessageAdispstr MessageA
 dispstr dstrdispstr dstrdispstr dstrdispstr dstr
 mov ax,remnmov ax,remnmov ax,remnmov ax,remn
 al2asc dstral2asc dstral2asc dstral2asc dstr
 dispstr NextLinedispstr NextLinedispstr NextLinedispstr NextLine
 dispstr MessageRdispstr MessageRdispstr MessageRdispstr MessageR
 dispstr dstr dispstr dstr dispstr dstr dispstr dstr
waitch:waitch:waitch:waitch:
 keybchkeybchkeybchkeybch
 jz waitchjz waitchjz waitchjz waitch
 exitdosexitdosexitdosexitdos
 endendendend

- You will use Emu8086 to trace this assembly code. Open exp5p2.asm in the
Emu8086.

- Click the emulate button to start emulation. Observe carefully how the addition
and division operations are performed, how the result is converted to ascii, and
how it is written to display.

-Compile the executable file of the exp5p2.asm file. Execute and observe its
operation.

 Reporting: In PART2PART2PART2PART2 of your report file fill in the screen output to your report
after the program stops.

5.3.3. Look-Up Table for the Square Root of an Integer.

Objectives:
-to demonstrate the input value search, and the output access for a Look Up table.

Procedure:
-The following assembly code finds the average of an array of bytes. Write it into
exp5p3.asm in the exp5 folder. Don’t forget to fill your name and number into
the file.

; exp; exp; exp; exp5555p3.asmp3.asmp3.asmp3.asm
; Student name and number 1:; Student name and number 1:; Student name and number 1:; Student name and number 1:
; Student name and number 2: ; Student name and number 2: ; Student name and number 2: ; Student name and number 2:
 include exp include exp include exp include exp5555.inc.inc.inc.inc
 .model small .model small .model small .model small
 .data .data .data .data
Msg1 db 'I''ll find the square root using 'Msg1 db 'I''ll find the square root using 'Msg1 db 'I''ll find the square root using 'Msg1 db 'I''ll find the square root using '
 db 'a look db 'a look db 'a look db 'a look----up table.',13,10up table.',13,10up table.',13,10up table.',13,10
 db ' Give me a number in the range [0, 255]: $' db ' Give me a number in the range [0, 255]: $' db ' Give me a number in the range [0, 255]: $' db ' Give me a number in the range [0, 255]: $'
Msg2 db 13,10,' SquareMsg2 db 13,10,' SquareMsg2 db 13,10,' SquareMsg2 db 13,10,' Square----root is $'root is $'root is $'root is $'
lutcnt dw 15lutcnt dw 15lutcnt dw 15lutcnt dw 15
lutin db 0, 1, lutin db 0, 1, lutin db 0, 1, lutin db 0, 1, 4, 9, 16, 25, 36, 49, 64 4, 9, 16, 25, 36, 49, 64 4, 9, 16, 25, 36, 49, 64 4, 9, 16, 25, 36, 49, 64
 db 81, 100, 121, 144,169,196, 225db 81, 100, 121, 144,169,196, 225db 81, 100, 121, 144,169,196, 225db 81, 100, 121, 144,169,196, 225
lutout db lutout db lutout db lutout db 0, 1, 2, 3, 4, 5, 6, 7, 8, 0, 1, 2, 3, 4, 5, 6, 7, 8, 0, 1, 2, 3, 4, 5, 6, 7, 8, 0, 1, 2, 3, 4, 5, 6, 7, 8,
 db 9, 10, 11, 12, 13, 14, 15 db 9, 10, 11, 12, 13, 14, 15 db 9, 10, 11, 12, 13, 14, 15 db 9, 10, 11, 12, 13, 14, 15
buf buf buf buf db 10h,?,10h dup(' ');db 10h,?,10h dup(' ');db 10h,?,10h dup(' ');db 10h,?,10h dup(' ');
output db 5 dup(' '), '$'output db 5 dup(' '), '$'output db 5 dup(' '), '$'output db 5 dup(' '), '$'
 .code .code .code .code
 mov ax, @data mov ax, @data mov ax, @data mov ax, @data
 mov ds,ax mov ds,ax mov ds,ax mov ds,ax
 dispstr Msg1 dispstr Msg1 dispstr Msg1 dispstr Msg1
 getstr buf getstr buf getstr buf getstr buf
 asc2al buf asc2al buf asc2al buf asc2al buf
 ; find index ; find index ; find index ; find index
 mov cx,lutcnt mov cx,lutcnt mov cx,lutcnt mov cx,lutcnt
lutlp:lutlp:lutlp:lutlp:
 mov bx,cx mov bx,cx mov bx,cx mov bx,cx

40 Assemblers and Development Tools for 8086 and 8051 Microprocessors

 cmp al,[bx + offset lutin] cmp al,[bx + offset lutin] cmp al,[bx + offset lutin] cmp al,[bx + offset lutin]
 jae lutexit jae lutexit jae lutexit jae lutexit
 loop lutlp loop lutlp loop lutlp loop lutlp
lutexit:lutexit:lutexit:lutexit:
 ; read output ; read output ; read output ; read output
 mov al,[bx + offset lutout] mov al,[bx + offset lutout] mov al,[bx + offset lutout] mov al,[bx + offset lutout]
 al2asc ou al2asc ou al2asc ou al2asc outputtputtputtput
 dispstr Msg2 dispstr Msg2 dispstr Msg2 dispstr Msg2
 dispstr output dispstr output dispstr output dispstr output
waitch:waitch:waitch:waitch:
 keybch keybch keybch keybch
 jz waitch jz waitch jz waitch jz waitch
 exitdos exitdos exitdos exitdos
 end end end end

- You will use Emu8086 to trace this assembly code. Open exp5p3.asm in the
Emu8086.

- Click the emulate button to start emulation.
- During the single-step emulation
- Enter string “200” when the emulator asks an input value.
- Observe carefully how the ascii input string is converted to 8-bit value by
asc2al macro.

- Observe carefully how the input array is searched from the last down to the
first until an entry is found smaller than the input value.

- Observe carefully how the output value is accessed once the index
corresponding to the input value is obtained.

- Generate the executable file (use compile), and run it to see the operation of the
program. Use input values 1, 5, 42, 64, 4Dh and 182 to see how it works.

 Reporting: In PART3PART3PART3PART3 of your report write what happens for each input.
- Hide the lines containing keybch and jz waitch. behind semicolons. Then
generate its executable and observe the difference in operation.

5.3.4. Simple Look-Up Table for Fibonacci Numbers.

Objectives:
-to demonstrate the input value search, and the output access for a Look Up table.

Fibonacci Numbers:
According to Wikipedia pages, the Fibonacci numbers first appeared, under the name mātrāmeru (mountain

of cadence), in the work of the Sanskrit grammarian Pingala (Chandah-shāstra, the Art of Prosody, 450
or 200 BC). Prosody was important in ancient Indian ritual because of an emphasis on the purity of
utterance.

In the West, the sequence was first studied by Leonardo of Pisa, known as Fibonacci, in his Liber Abaci
(1202). He considers the growth of an idealised (biologically unrealistic) rabbit population, assuming
that:

in the first month there is just one newly-born pair,
new-born pairs become fertile from after their second month
each month every fertile pair begets a new pair, and
the rabbits never die

Let the population at month n be F(n). At this time, only rabbits who were alive at month n−2 are fertile and
produce offspring, so F(n−2) pairs are added to the current population of F(n−1). Thus the total is
F(n) = F(n−1) + F(n−2).

Procedure:
-The following assembly code finds the i-th Fibonacci number. Write it into
exp5p4.asm in the exp5 folder. Fill your name and number into the file.

; exp; exp; exp; exp5555p4.asmp4.asmp4.asmp4.asm
; Student name and number 1:; Student name and number 1:; Student name and number 1:; Student name and number 1:
; Student name and number 2: ; Student name and number 2: ; Student name and number 2: ; Student name and number 2:
 include exp include exp include exp include exp5555.inc.inc.inc.inc
 .model small.model small.model small.model small
 .data.data.data.data
luacnt luacnt luacnt luacnt dw 12dw 12dw 12dw 12
lualualualua db 1,1,2,3,5,8,13,21,34,55,89,144,233 db 1,1,2,3,5,8,13,21,34,55,89,144,233 db 1,1,2,3,5,8,13,21,34,55,89,144,233 db 1,1,2,3,5,8,13,21,34,55,89,144,233
fibnr db ' $'fibnr db ' $'fibnr db ' $'fibnr db ' $'
buf db 20,?, 2buf db 20,?, 2buf db 20,?, 2buf db 20,?, 20 dup(' ')0 dup(' ')0 dup(' ')0 dup(' ')
msga db 'I have a lookmsga db 'I have a lookmsga db 'I have a lookmsga db 'I have a look----up table to get'up table to get'up table to get'up table to get'

 Assemblers and Development Tools for 8086 and 8051 Microprocessors 41

 db ' the n db ' the n db ' the n db ' the n----th Fibbonachi number.$'th Fibbonachi number.$'th Fibbonachi number.$'th Fibbonachi number.$'
msgb db cr,lf,'Give me a number in the range [0,12] : $'msgb db cr,lf,'Give me a number in the range [0,12] : $'msgb db cr,lf,'Give me a number in the range [0,12] : $'msgb db cr,lf,'Give me a number in the range [0,12] : $'
msgc db cr,lf,'Your Fibonachi number is : $'msgc db cr,lf,'Your Fibonachi number is : $'msgc db cr,lf,'Your Fibonachi number is : $'msgc db cr,lf,'Your Fibonachi number is : $'
 .code.code.code.code
 mov ax,@datamov ax,@datamov ax,@datamov ax,@data
 mov ds,axmov ds,axmov ds,axmov ds,ax
 dispstr msgadispstr msgadispstr msgadispstr msga
again:again:again:again:
 dispstr mdispstr mdispstr mdispstr msgbsgbsgbsgb
 getstr bufgetstr bufgetstr bufgetstr buf
 mov al,byte ptr buf+1mov al,byte ptr buf+1mov al,byte ptr buf+1mov al,byte ptr buf+1
 cmp al,0cmp al,0cmp al,0cmp al,0
 jz emptystrjz emptystrjz emptystrjz emptystr
 asc2al buf asc2al buf asc2al buf asc2al buf
 xor ah,ah ; zero extend to axxor ah,ah ; zero extend to axxor ah,ah ; zero extend to axxor ah,ah ; zero extend to ax
 mov bx,axmov bx,axmov bx,axmov bx,ax
 mov al, [bx + offset lua]mov al, [bx + offset lua]mov al, [bx + offset lua]mov al, [bx + offset lua]
 al2asc fibnral2asc fibnral2asc fibnral2asc fibnr
 dispstr msgcdispstr msgcdispstr msgcdispstr msgc
 dispstr fibnrdispstr fibnrdispstr fibnrdispstr fibnr
 jmp again jmp again jmp again jmp again
emptystr:emptystr:emptystr:emptystr:
 exitdosexitdosexitdosexitdos
 endendendend

- Use Emu8086 to trace this assembly code. Open exp5p4.asm in the Emu8086
and start single-step emulation.

- Generate the executable file (use compile), and run it to see the operation of the
program. Use input values “3”, “6”, “Ah”, “12” to see how it works.

 Reporting:
After you complete the procedures, please save and close exp5.txt file, and e-mail
it using your student e-mail account to cmpe323lab@gmail.com with the
subject line “exp5” within the same day before the midnight.

Late and early deliveries will have 20% discount in grading. No excuse acceptable.

Free time practice-1:
In your free time, write assembly code of a program to return 255 sin(180 i /32)
from a simple look-up table of 32 elements. (i.e., using a look-up table like
this one)
lutcnt db 32
lutout db 0, 25, 50, 74, … , 0

Your program shall
write an explanation that it will return 255 sin(180 i/32), and that the user shall
enter the number i.

If the entered number i is out of limits, program shall write wrong number.
Else, it will read the table, and print the result to the display with a reasonable
message.

After printing the result it shall give a message and wait the next i in a loop
until an empty string is entered in.

 43

 45

66666666........
I/OI/OI/OI/O andandandand External Memory External Memory External Memory External Memory InterfaceInterfaceInterfaceInterface

for for for for 8888051051051051

6.1 Objective

The aim of this experiment is
i- An introduction to microcontroller architecture and instruction set of 8051.
ii- An introduction to the hardware-software simulation of 8051 in Prosys.
iii- An introduction of LED indicator output and switch input circuits.

6.2 Introduction

A microprocessor on a single integrated circuit intended to operate as an embedded
system. As well as a CPU, a microcontroller typically includes small amounts of RAM and
PROM and timers and I/O ports.
Intel introduced the first 8-bit microcontroller family MCS-48 in 1976. After four years

development, Intel upgraded the MCS-48 family to 8051, an 8-bit microcontroller with on-
board EPROM memory in 1980. Intel’s 8051 is used in almost all embedded control areas
including the car engine control.

6.2.1. Typical features

A typical 8051 family member, 80C51 has the following features:
 4K Bytes of In-System Reprogrammable Flash Memory;
 Fully Static Operation: 0 Hz to 16MHz;
 128 × 8-bit Internal RAM ;
 32 Programmable I/O Lines;
 Two 16-bit Timer/Counters;
 Six Interrupt Sources;
 Programmable Serial Channel
The 8051 microcontroller is available in 40 pin DIP package

with the pin layout given in Fig.1. This section will provide
short information on the register-memory architecture, and the
instruction set of 8051 microcontroller.

6.2.2. Registers

The 8051 microcontroller has two accumulator registers A and
B, and eight general-purpose-data registers numbered from R0
to R7. The following is a list of predefined assembler labels
corresponding to special function registers associated with
direct memory access. Although they can be used with any immediate data evaluation.
Associated label values are given in hexadecimal notation.

Fig. 1. Pin Layout of 40-pin

DIP 8051 package

46 Assemblers and Development Tools for 8086 and 8051 Microprocessors

 Table 1.1 Special Function Register definitions of 8051 microcontroller
SFR definitions (Alphabetic Order)

Label Value Description
A E0 Accumulator

ACC E0 Accumulator
B F0 B register
DPL 82 Data Pointer Low byte
DPH 83 Data Pointer High byte
IE A8
IP B8
P0 80 Port 0
P1 90 Port 1
P2 A0 Port 2
P3 B0 Port 3

PCON 87
PSW D0 Program Status Word

RCAP2L CA
RCAP2H CB
SCON 98
SBUF 99
SP 81 Stack Pointer

T2CON C8
TCON 88
TH0 8C Timer/Counter 0 High byte
TL0 8A Timer/Counter 0 Low byte
TH1 8D Timer/Counter 1 High byte
TL1 8B Timer/Counter 1 Low byte
TH2 CD Timer/Counter 2 High byte
TL2 CC Timer/Counter 2 Low byte
TMOD 89

SFR definitions (Direct Mem. Addr. Order)
Label Value Description
P0 80 Port 0
SP 81 Stack Pointer
DPL 82 Data Pointer Low byte
DPH 83 Data Pointer High byte
PCON 87
TCON 88
TMOD 89
TL0 8A Timer/Counter 0 Low byte
TL1 8B Timer/Counter 1 Low byte
TH0 8C Timer/Counter 0 High byte
TH1 8D Timer/Counter 1 High byte
P1 90 Port 1

SCON 98
SBUF 99
P2 A0 Port 2
IE A8
P3 B0 Port 3
IP B8

T2CON C8
RCAP2L CA
RCAP2H CB
TL2 CC Timer/Counter 2 Low byte
TH2 CD Timer/Counter 2 High byte
PSW D0 Program Status Word
A E0 Accumulator

ACC E0 Accumulator
B F0 B register

The predefined labels for bit addressable memory locations are limited by 8051
architecture. In Table 1.2, .x represents a value in the range of 0 to 7. For example P0.x
is short hand to represent P0.0, P0.1, P0.2, P0.3, P0.4, P0.5, P0.6P0.0, P0.1, P0.2, P0.3, P0.4, P0.5, P0.6P0.0, P0.1, P0.2, P0.3, P0.4, P0.5, P0.6P0.0, P0.1, P0.2, P0.3, P0.4, P0.5, P0.6 and P0.7P0.7P0.7P0.7.
With P0.0P0.0P0.0P0.0 = 80h80h80h80h, P0.1 P0.1 P0.1 P0.1 equal to 81h81h81h81h, etc. Associated label values are given in
hexadecimal notation.

Table 1.2 Predefined Bit Labels

LabelLabelLabelLabel Value Description
ACC.xACC.xACC.xACC.x E0 - E7 Accumulator (bits 0 through 7)
B.xB.xB.xB.x F0 - F7 B register (bits 0 through 7)
P0.xP0.xP0.xP0.x 80 - 87 Port 0 (bits 0 through 7)
P1.xP1.xP1.xP1.x 90 - 97 Port 1 (bits 0 through 7)
P2.xP2.xP2.xP2.x A0 - A7 Port 2 (bits 0 through 7)
P3.xP3.xP3.xP3.x B0 - B7 Port 3 (bits 0 through 7)
PSW.xPSW.xPSW.xPSW.x D0 - D7 Program Status Word (bits 0 through 7)
SCON.xSCON.xSCON.xSCON.x 98 - 9F Serial Control register (bits 0 through 7)
IE.xIE.xIE.xIE.x A8 - AF
IP.xIP.xIP.xIP.x B8 - BF
TCON.xTCON.xTCON.xTCON.x 88 - 8F Timer Control register (bits 0 through 7)
T2CON.xT2CON.xT2CON.xT2CON.x C8 - CF Timer 2 Control register (bits 0 through 7)
IT0IT0IT0IT0 88
IE0IE0IE0IE0 89
IT1IT1IT1IT1 8A
IE1IE1IE1IE1 8B
TR0TR0TR0TR0 8C
TF0TF0TF0TF0 8D
TR1TR1TR1TR1 8E
TF1TF1TF1TF1 8F
RIRIRIRI 98 Receive Interrupt flag
TITITITI 99 Transmit Interrupt flag
RB8RB8RB8RB8 9A
TB8TB8TB8TB8 9B

RENRENRENREN 9C
SM2SM2SM2SM2 9D
SM1SM1SM1SM1 9E
SM0SM0SM0SM0 9F
EX0EX0EX0EX0 A8
ET0ET0ET0ET0 A9
EX1EX1EX1EX1 AA
ET1ET1ET1ET1 AB
ESESESES AC
ET2ET2ET2ET2 AD
EAEAEAEA AF
PX0PX0PX0PX0 B8
PT0PT0PT0PT0 B9
PX1PX1PX1PX1 BA
PT1PT1PT1PT1 BB
PSPSPSPS BC
PT2PT2PT2PT2 BD
PPPP D0 Parity flag
OVOVOVOV D2 Overflow flag
RS0RS0RS0RS0 D3 Register Select (bit 0)
RS1RS1RS1RS1 D4 Register Select (bit 1)
F0F0F0F0 D5
ACACACAC D6 Auxiliary Carry flag
CYCYCYCY D7 Carry flag

 Assemblers and Development Tools for 8086 and 8051 Microprocessors 47

6.2.3. Instruction Set

The 8051 instruction set contains data-transfer, ALU, bit-manipulation, and program
branching instructions. The complete instruction set is given in the following table.

Instruction Set of 8051.
Key: direct : direct memory address Ri : registers i=0,..,7

 Arithmetic Operations

Mnemonic Description Size Cyc

ADD A,Rn Add register to Accumulator (ACC). 1 1

ADD A,direct Add direct byte to ACC. 2 1

ADD A,@Ri Add indirect RAM to ACC. 1 1

ADD A,#data Add immediate data to ACC. 2 1

ADDC A,Rn Add register to ACC with carry. 1 1

ADDC A,direct Add direct byte to ACC with carry. 2 1

ADDC A,@Ri Add indirect RAM to ACC with carry. 1 1

ADDC A,#data Add immediate data to ACC with carry. 2 1

SUBB A,Rn Subtract register from ACC with borrow. 1 1

SUBB A,direct Subtract direct byte from ACC with borrow 2 1

SUBB A,@Ri
Subtract indirect RAM from ACC with
borrow.

1 1

SUBB A,#data Subtract imm. data from ACC with borrow. 2 1

INC A Increment ACC. 1 1

INC Rn Increment register. 1 1

INC direct Increment direct byte. 2 1

INC @Ri Increment indirect RAM. 1 1

DEC A Decrement ACC. 1 1

DEC Rn Decrement register. 1 1

DEC direct Decrement direct byte. 2 1

DEC @Ri Decrement indirect RAM. 1 1

INC DPTR Increment data pointer. 1 2

MUL AB result is 16-bit B:A � A x B ; 1 4

DIV AB A � A / B (int.result); , B <- A%B (remainder) 1 4

DA A Decimal adjust ACC. 1 1

 Logical Operations

Mnemonic Description Size Cyc

ANL A,Rn AND Register to ACC. 1 1

ANL A,direct AND direct byte to ACC. 2 1

ANL A,@Ri AND indirect RAM to ACC. 1 1

ANL A,#data AND immediate data to ACC. 2 1

ANL direct,A AND ACC to direct byte. 2 1

ANL direct,#data AND immediate data to direct byte. 3 2

ORL A,Rn OR Register to ACC. 1 1

ORL A,direct OR direct byte to ACC. 2 1

ORL A,@Ri OR indirect RAM to ACC. 1 1

ORL A,#data OR immediate data to ACC. 2 1

ORL direct,A OR ACC to direct byte. 2 1

ORL direct,#data OR immediate data to direct byte. 3 2

XRL A,Rn Exclusive OR Register to ACC. 1 1

XRL A,direct Exclusive OR direct byte to ACC. 2 1

XRL A,@Ri Exclusive OR indirect RAM to ACC. 1 1

XRL A,#data Exclusive OR immediate data to ACC. 2 1

XRL direct,A Exclusive OR ACC to direct byte. 2 1

XRL direct,#data XOR immediate data to direct byte. 3 2

CLR A Clear ACC (set all bits to zero). 1 1

CPL A Compliment ACC. 1 1

RL A Rotate ACC left. 1 1

RLC A Rotate ACC left through carry. 1 1

RR A Rotate ACC right. 1 1

RRC A Rotate ACC right through carry. 1 1

SWAP A Swap nibbles within ACC. 1 1

 Other Instructions

Mnemonic Description Size Cyc

XCH A,Rn Exchange register with ACC. 1 1

XCH A,direct Exchange direct byte with ACC. 2 1

XCH A,@Ri Exchange indirect RAM with ACC. 1 1

XCHD A,@Ri
Exchange low nibble of indirect RAM
with lower nibble of ACC.

1 1

NOP No operation. 1 1

 Data Transfer

Mnemonic Description Size Cyc

MOV A,Rn Move register to ACC. 1 1

MOV A,direct Move direct byte to ACC. 2 1

MOV A,@Ri Move indirect RAM to ACC. 1 1

MOV A,#data Move immediate data to ACC. 2 1

MOV Rn,A Move ACC to register. 1 1

MOV Rn,direct Move direct byte to register. 2 2

MOV Rn,#data Move immediate data to register. 2 1

MOV direct,A Move ACC to direct byte. 2 1

MOV direct,Rn Move register to direct byte. 2 2

MOV direct,direct Move direct byte to direct byte. 3 2

MOV direct,@Ri Move indirect RAM to direct byte. 2 2

MOV direct,#data Move immediate data to direct byte. 3 2

MOV @Ri,A Move ACC to indirect RAM. 1 1

MOV @Ri,direct Move direct byte to indirect RAM. 2 2

MOV @Ri,#data Move immediate data to indirect RAM. 2 1

MOV DPTR,#data16 Move immediate 16 bit data to data pointer register. 3 2

MOVC
A,@A+DPTR

Move code byte rel. to DPTR to ACC (16 bit
address).

1 2

MOVC A,@A+PC Move code byte rel. to PC to ACC (16 bit address). 1 2

MOVX A,@Ri Move external RAM to ACC (8 bit address). 1 2

MOVX A,@DPTR Move external RAM to ACC (16 bit address). 1 2

MOVX @Ri,A Move ACC to external RAM (8 bit address). 1 2

MOVX @DPTR,A Move ACC to external RAM (16 bit address). 1 2

PUSH direct Push direct byte onto stack. 2 2

POP direct Pop direct byte from stack. 2 2

 Boolean Variable Manipulation

Mnemonic Description Size Cyc

CLR C Clear carry flag. 1 1

CLR bit Clear direct bit. 2 1

SETB C Set carry flag. 1 1

SETB bit Set direct bit. 2 1

CPL C Compliment carry flag. 1 1

CPL bit Compliment direct bit. 2 1

ANL C,bit AND direct bit to carry flag. 2 2

ANL C,/bit AND compliment of direct bit to carry. 2 2

ORL C,bit OR direct bit to carry flag. 2 2

ORL C,/bit OR compliment of direct bit to carry. 2 2

MOV C,bit Move direct bit to carry flag. 2 1

MOV bit,C Move carry to direct bit. 2 2

 Program Branching

Mnemonic Description Size Cyc

ACALL addr11 Absolute subroutine call. 2 2

LCALL addr16 Long subroutine call. 3 2

RET Return from subroutine. 1 2

RETI Return from interrupt. 1 2

AJMP addr11 Absolute jump. 2 2

LJMP addr16 Long jump. 3 2

SJMP rel Short jump (relative address). 2 2

JMP @A+DPTR Jump indirect relative to the DPTR. 1 2

JC rel Jump if carry is set. 2 2

JNC rel Jump if carry is not set. 2 2

JB bit,rel Jump if direct bit is set. 3 2

JNB bit,rel Jump if direct bit is not set. 3 2

JBC bit,rel Jump if direct bit is set & clear bit. 3 2

JZ rel Jump relative if ACC is zero. 2 2

JNZ rel Jump relative if ACC is not zero. 2 2

CJNE A,direct,rel Comp. direct byte to ACC and jump if not equal. 3 2

CJNE A,#data,rel Comp. imm. byte to ACC and jump if not equal. 3 2

CJNE Rn,#data,rel Comp. imm. byte to reg. and jump if not equal. 3 2

CJNE
@Ri,#data,rel

Comp. imm. byte to ind. and jump if not equal. 3 2

DJNZ Rn,rel Decrement register and jump if not zero. 2 2

DJNZ direct,rel Decrement direct byte and jump if not zero. 3 2

48 Assemblers and Development Tools for 8086 and 8051 Microprocessors

 8051 can access the program code ROM or Flash memory by MOVCMOVCMOVCMOVC instructions. External
RAM by MOVXMOVXMOVXMOVX instructions, and the internal RAM memory (locations 0 … 128 for MCS51,
0…256 for MCS52) by MOVMOVMOVMOV instructions.

6.2.4. The 8051 Ports

The 8051 microcontroller provides three ports for the users, denoted by symbols P0P0P0P0, P1P1P1P1, P2P2P2P2
and P3P3P3P3. 8051 i/o ports are memory mapped registers with input/output connection to the
external circuits. The addresses of these ports are available in Table 1.1.
The ports are bit addressable as seen in Table 1.2. Ports P1P1P1P1, P2P2P2P2 and P3P3P3P3 have weak

internal pull-up resistors, while the pins of P0P0P0P0 has no internal pull-ups, because it is also
used as AD0AD0AD0AD0----AD7AD7AD7AD7 lines for external memory access. Therefore external pull ups are
necessary to interface a switch to a P0P0P0P0 pin, similar to resistors R00 and R01 in Fig. 2.
An i/o pin of the ports is suitable for

input only when it is set to high. For
example: CLR P1.3CLR P1.3CLR P1.3CLR P1.3 makes P1.3P1.3P1.3P1.3 pin 0V,
and it is not suitable for input, since P1.3P1.3P1.3P1.3

will sink external current strongly to the
ground. SET P1.3 SET P1.3 SET P1.3 SET P1.3 makes P1.3P1.3P1.3P1.3 pin 5V
with a weak current source. The external
circuit can easily drive P1.3P1.3P1.3P1.3 below the
logic-threshold voltage, and make it read
0. A reset (RST high) starts the ports with
P0P0P0P0=P1P1P1P1=P2P2P2P2=P3P3P3P3=0x0FF0x0FF0x0FF0x0FF, suitable for input.
An output pin can drive a LED

indicator in the common-cathode mode. In
Fig.2, the component pair {R30, DB1}
connected to P3.0 P3.0 P3.0 P3.0 pin is a typical LED
indicator. DB1 gets lighted when the
output pin P3.0P3.0P3.0P3.0 delivers low (=0V, or logic-0), and DB1 stays dark while P3.0P3.0P3.0P3.0 stays at
high (=5V, or logic “1”).
In Fig.2, S1-RD1 forms a pull-up biased switch circuit. It gives high to the input PPPP0000....1111

while switch is open (open-circuit = off), and makes PPPP0000....1111 low while switch is closed
(closed circuit = on). In summary, PPPP0000....1111 reads 0 if switch is turned on, and it reads 1
otherwise.

6.2.5. Command line Assembler for 8051

Keil products supplies professional integrated development tools for 8051 family devices.
The currently available Keil student version can code up to 2-kBytes of hexadecimal
coding for any 8051 device. Keil-C (C51) and assembler (A51) are usually called by its
development environment UV3. However, we will use them calling in DOS-Command
environment through a batch file. Keil C is an almost-ANSI C compatible C-compiler for
writing programs in tiny-os operating system. Compiler C51 and assembler A51 produce
an object file, which needs linking into an absolute code using BL51. Absolute code is
further converted to INTEL HEX format by the code converter Oh51. The following listing
is the compile.bat batch file .

echo off
PATH=.\8051\C51\BIN
SET TMP=.\8051\TMP
del exp6.hex

Figure 2 . Switch and LED interfacing configurations.

Fig. 2 . Switch and LED interfacing configurations.

 Assemblers and Development Tools for 8086 and 8051 Microprocessors 49

a51 exp6.a51 debug object(p.obj)
bl51 p.obj
oh51 p hexfile(exp6.hex)

pause
del p.*
del exp6.lst

The environment settings of the batch file is valid only if the folder 8052 is under the work
folder of the experiment. It works on desktop folder, or on the root folder of a flash disk.

6.2.6. IDE Tool for Coding of 8051

 Keil products supplies professional integrated development tools for 8051 family
devices. The currently available Keil IDE mvision-3 (uv3), and a limited capacity trial
version can code up to 2-kBytes of hexadecimal coding for any 8051 device. UV3 is Keil-
C (C51) and assembler (A51) compatible. Keil C is an almost-ANSI C compatible C
compiler environment for writing programs in Tiny-OS operating system. Keil IDE
produces the hex file to transfer the program code into the target 8051 device. The free trial
version of Keil-IDE does not require any registration into Windows operating system. Its
initialization parameters are stored in tools.ini file, and can be edited by a text editor. The
software pack can be easily installed by copying the KC51 folder at the root of any drive,
and correcting the drive name in the tools.ini file.
 UV3 environment does not need installation other than modification of the C51 path in
tools.ini file. A copy of KC51 is available on the C-drive, and you may use it also on your
flash-disk drive (about 50Mbytes).
 Installation and starting a C or Assembly project with Keil-C51 are quite simple. If KC51
is not yet installed on your computer follow the steps to install it on your hard disk (C:) or
your floppy disk (E:).
 - Installing KC51: Download the rarred KC51 IDE folder from the coarse web side, open
the rar-archive, and copy the folder KC51 to the root of your drive (C:) or (E:), so that
E:\KC51\ folder contains folders C51, UV3 and the file TOOLS.INI. Then edit path
statement of tools.ini to E:\KC51\C51. Your KC51 is ready for execution.

 - Making a Work Folder: Start a working folder similar to E:\323\012345\ExpXX .
Copy all necessary C (-.C , -.H . and -.C51 files) and Assembler (-.ASM and -.A51
files) source files together with Proteus Circuit Simulation files (-.DSN) into your work
folder.

 - Opening an existing Project: If a KC51project definition file (-.UV2) is available in the
work folder use (Project � Open Project) to start the project with its settings.

 - Starting a New Project: Start KC51\UV3\UV3.exe file. Close the initially opened
project file using menu (Project � Close Project) . Start a new project by (Project �

New uVision Project) browsing your work folder, and entering project name, let’s say
“proj”. From the popped CPU-dialog-box, select “Generic – 8052 (all variants)”. Click
“No” if it asks to “copy 8051 startup code to project folder …” . Click on to
select it, and with right-click open the “Options for Target-1” dialog window. Check
that Device is Generic 8052 and Linker is BL51. Set Target Xtal(MHz) as required for
the application, Memory Model Small, Code Rom Size Small, Operating System None,
and put check for Use On-chip ROM (0x0-0x1FFF).

50 Assemblers and Development Tools for 8086 and 8051 Microprocessors

Set Output to create both executable and hex file with debug information. You may
change the name of the executable and Hex-file by entering it into Name of Executable
box

- Generating a list file: List file contains debug messages and symbol tables. You can
generate -.lst file by putting a check into the Assembler Listing box in Listing window
of Options dialog.

After setting all of the above options click OK to close the Options dialog.
- Adding Assembly files to the project: Open the dependents list of by clicking
on plus sign next to it. Right-click on “Source Group 1” to get the quick menu for
“adding source files to Group 1”. Click it to start the file browser to add your source
file. First set the folder to your work folder that contains your -.asm file. Then set “Files
of type” field to “asm source file”. Your -.a51 file will appear in the browser window.
Select the file and click on “add”.

- Adding C files to the project: Apply the same procedure, but set “Files of type” field to
“C source file”. Your -.C file will appear in the browser window. Select the file and
click on “add”.

- Building the project: On the toolbar use the icons (build and rebuild) to build the
project and generate the executable and -.hex file.

6.2.7. Simulation in ISIS

Simulation is the best methodology to verify operation of the circuit and the program code
in a time-efficient manner. It is always a good idea to simulate the circuits and codes using
convenient simulation software instead of rushing to build the circuit and code the chip for
a real-life test.
ISIS is able to simulate many microcontrollers with their peripheral circuits. The circuit

diagrams are composed of components, and connections between the component terminals.
A component that needs a program code is linked to the program code file writing the code
folder and file name (.hex file name) into its configuration window. ISIS can simulate this
graphical circuit representation and update the appearance of the display elements in
regular periods of about 50ms.

6.3 Experimental Part

6.3.1. Installation of A51 to your work folder

Objective: preparation of a work folder for A51 IDE.

Procedure-1:

 Assemblers and Development Tools for 8086 and 8051 Microprocessors 51

1- Download the exp6.rar file which contains all necessary files and folders to a
convenient place i.e. onto the desktop. Extract and open the work folder Exp6.

2- Open the source file Exp6.a51. The file shall contain the following lines
; Exp6.a51 test file
; (c) 2008, Dr. Mehmet Bodur
xtal equ 16 ; Crystal frequency in MHz

; power-on reset starts execution from address 0
 org 0

 mov P0,#00000011b ; make P0.1 and P0.0 suitable for input
 mov P3,#10000000b ; prepare P3.7 for input

back:
; copy port0 switch B1,S1 states to acc
 mov a,P0
 anl a,#00000011b ; P0.1 and P0.0 are selected
 orl a,#10000000b ; prepare P3.7 for input

; copy bit P3.7 to bit P2.2
 mov C, p3.7 ; copy P3.7 to Carry Flag
 mov acc.2, C ; copy Carry to acc.2
 mov P3,a ; apply result to P3

; increment P1
 inc P1

; delay for 25ms delay
 mov A,#250
 acall dly100u
 sjmp back

dly100u:
; delay loop takes A*100u
 mov r1,A
dlylp1: mov r0,#(xtal*62/10)
dlylp2: djnz r0,dlylp2
 djnz r1,dlylp1
 ret
 end

3- Double-click on compile.bat to start assembling of the source file exp6.a51 .
Batch file will stop on pause waiting a key press. Before you press any key check
your work folder and find the generated exp6.lst file.

 Reporting:

 Open exp6.lst file in a text editor, and copy the first page (up to symbol table) to
your reporting file. After you close the text editor activate batch file window and
press the space-bar to end the batch session.

4- In your work folder you will find the file “exp6.hex” which is generated by the
batch operation as a product of assembly, link, and conversion processes.

 Reporting:

- Open the exp6.hex file in a text editor, and copy the contents to your report file.
The hex file contains the machine code to be coded into the micro-controllers
program memory. This file will be used in the next section of the experiment.

- Save your reporting file for other report deliverables.

52 Assemblers and Development Tools for 8086 and 8051 Microprocessors

 6.3.2. Simulation of a Microcontroller Circuit

ISIS release 6.9 of Labcenter Electronics can successfully simulate the digital-analog
hybrid circuits including the PIC16, PIC18, 68HC11 and MCS51 family micro controllers.

Objective:
 Our objective is getting familiar with the ISIS simulation environment.

Procedure
1- Start Proteus Professional�ISIS 6 Professional in windows.
2- Use File�Load design to open the file-browser, navigate to Exp6A folder, and load

Exp6A.DSN file to ISIS. You will get the design window seen in Fig.3.
3- Right click once on the 8051 processor. The processor will turn to red, indicating
that it is selected. Left click once on 8051 to open the “edit component” window of
8051 seen in Fig.4. The Program File shall contain the file name Exp5A.hex,
which is generated in Section 3.1. You can link a file using the file browser icon,
or directly by editing the file name. Do not forget to OK the new file name.

4- Close the edit-window, and right-click on the empty part of the design window to
deselect components. All red components will take their original colors.

5- Two kind of switches are shown in Fig.5 . These switches are active circuit
elements changing state by clicking on their control buttons.

6- Click on button to start the component insertion mode. This mode supports
interaction to the active components (switches, buttons, and logic-states) using the
mouse.

Fig.5. Circuit symbos of Pushbutton and SPST switches

7- Click on start button to start simulation. Turn the toggle and button switches
on and off, and observe the logic status at the port inputs P0.0, and P0.1.

Reporting:

 Write your observations into the report file Exp6.txt as seen below filling the
question marks with your observations.

single pole
single throw
switch

push
button
switch

control buttons
to turn the
switch on-off

Fig. 3. Design window of Exp5A.DSN

Fig. 4. Edit component window of 8051

 Assemblers and Development Tools for 8086 and 8051 Microprocessors 53

 3.2 Simulation section:3.2 Simulation section:3.2 Simulation section:3.2 Simulation section:
 B1= Pressed, P0.0 = “B1= Pressed, P0.0 = “B1= Pressed, P0.0 = “B1= Pressed, P0.0 = “low/high ?”; P3.0 = “; P3.0 = “; P3.0 = “; P3.0 = “low/high ?”

B1= Released, P0.0 = “B1= Released, P0.0 = “B1= Released, P0.0 = “B1= Released, P0.0 = “low/high ?”; P3.0 = “; P3.0 = “; P3.0 = “; P3.0 = “low/high ?”
S1= On, P0.1 = “S1= On, P0.1 = “S1= On, P0.1 = “S1= On, P0.1 = “low/high ?”; P3.1 = “; P3.1 = “; P3.1 = “; P3.1 = “low/high ?”
S1= Off, P0.1 = “S1= Off, P0.1 = “S1= Off, P0.1 = “S1= Off, P0.1 = “low/high ?”; P3.1 = “; P3.1 = “; P3.1 = “; P3.1 = “low/high ?”

 B2= Pressed, P3.7 = “B2= Pressed, P3.7 = “B2= Pressed, P3.7 = “B2= Pressed, P3.7 = “low/high ?”; P3.2 = “; P3.2 = “; P3.2 = “; P3.2 = “low/high ?”
B2= RB2= RB2= RB2= Released, P3.7 = “eleased, P3.7 = “eleased, P3.7 = “eleased, P3.7 = “low/high ?”; P3.2 = “; P3.2 = “; P3.2 = “; P3.2 = “low/high ?”

9- Click on stop button to stop simulation. Right-click on DB1, and make its
full drive current 20 mA (nominal current of the old low-efficiency LED). Then
start the simulation, push on B1. LED DB1 will glow. Then push on B2 to glow
DB2. Report any difference between the LED illumination levels in your reporting
file.

Explanations:

 The code Exp6A.a51 executed in 8051 makes pins P0.0, P0.1 and P3.7 input pin.
 mov P0,#00000011b ; make P0.1 and P0.0 suitable for input
 mov P3,#10000000b ; prepare P3.7 for input

All other bits initially start giving low output (near 0V). Then, a loop starts with the
label “back”,

back:

 In the loop, P0 is copied to accumulator. An and-mask keeps bit-0 and bit-1, and
clears all other bits. Then, an or-mask sets bit-7.

; copy port0 switch B1,S1 states to acc
 mov a,P0
 anl a,#00000011b ; P0.1 and P0.0 are selected
 orl a,#10000000b ; prepare P3.7 for input

 Next, bit-7 (button B2 status) is copied to bit-2 of the acc register. Acc is copied to
P3 to display the new status on LED indicators.

; copy bit P3.7 to bit P2.2
 mov C, p3.7 ; copy P3.7 to Carry Flag
 mov acc.2, C ; copy Carry to acc.2
 mov P3,a ; apply result to P3

 There after, port P1 is incremented by one,
; increment P1
 inc P1

 Finally, a delay of approximately 25 ms is called to slow down the counting on
P1,

; delay for 25ms delay
 mov A,#250
 acall dly100u

And the code in the back loop is repeated forever.
 sjmp back

 The delay is obtained by looping idle a preset amount of cycles depending on
crystal frequency.

dly100u:
; delay loop takes A*100u

54 Assemblers and Development Tools for 8086 and 8051 Microprocessors

 mov r1,A
dlylp1: mov r0,#(xtal*62/10)
dlylp2: djnz r0,dlylp2
 djnz r1,dlylp1
 ret
 end

Reporting:
After you complete the procedures, please save and close exp6.txt file, and e-mail
it using your student e-mail account to cmpe323lab@gmail.com with the
subject line “exp6” within the same day before the midnight.

Late and early deliveries will have 20% discount in grading. No excuse acceptable.

Free time practice:

Write a 8051 assembler source (file name Exp6P.a51) for the circuit of Exp6A, that
- initially turn off all three LED, and make P0.0, P0.l, and P3.7 input pins.
Clear R3 and R4.

- in the mainloop
 call dly100u with acc=100 (for 10ms delay)
 increment R3,

if R3 exceeds 10, reset R3=0, and increment R4.
turn off all LEDs
if R4=1, turn on the LED connected to P3.2 .
if R4=2, turn on the LED connected to P3.1 .
if R4=3, turn on the LED connected to P3.0 .
if R4=4, turn on all of LEDs, connected to P3.0, P3.1, and P3.2,
if R4=5, make R3=0; R4=0.
continue looping forever.

Assemble your source, and execute your code in ISIS. You shall edit compile.bat
file with a text editor to change exp6.a51 and exp6.lst to exp6P.a51 and
exp6P.lst.
After these changes compile.bat will generate exp6.hex file by assembling the
source file exp6P.a51.

Start execution of the code in ISIS and observe the LEDs.

Does it light the LEDs in a sequence at every 1 second?

 55

77777777........
8051 Memory Decoders and 8051 Memory Decoders and 8051 Memory Decoders and 8051 Memory Decoders and

Memory InterfaceMemory InterfaceMemory InterfaceMemory Interface

7.1 Objective

The aim of this experiment is to observe the operation of a memory address decoder on a
8051 external memory circuit on the ISIS external memory interfacing simulation.

7.2 8051 Memory Interfacing

The 8051 microcontroller instruction set includes an external memory dedicated data
transfer instruction: MOVX, and the processor supports up to 64 kbytes external memory
addressing through the ports P0, P2 and P3. Accessing external memory occupies P0 to
carry AD[0..7] address-data lines, P2 to carry A[8..15] high address byte, and the pins
P3.6 and P3.7 to carry ~RD and ~WR control signals. The address latch enable ~ALE pin
supplies a negative-edge to trigger the D-FF register while 8051 delivers the lower address
byte A[0..7] through AD[0..7] lines, similar to the 8088 local bus. Total 16 address lines
provide 64kbytes address space for external memory. This address space is usable for
external code or data memory, and also for memory mapped i/o devices.
 ISIS6.9 provides simulation of external memory addressing of the 8051 microcontroller,
which serves in this experiment for observing the operation of a 74LS138 decoder, 6116
RAM devices, and 2764 EPROM devices. The simulation power of ISIS is restricted to
only 8051bus devices with a limited memory options.
 ISIS simulates a 2764 EPROM chip with its programmed contents by linking the contents
filename (.hex format) to its properties. In this experiment, we will have two program
projects: Exp7Bus.Uv2 to generate the program code file Exp7Bus.hex that runs in 8051
processor, and Exp7_2764.Uv2 to generate the data code file 2764.hex for the 2764 EPROM
chip.

7.3 Experimental Part

7.3.1. Installation of KC51 and preparation of -.HEX files

Objective: preparation of a workfolder for KC51 IDE and generation of -.hex files for the
simulation. If KC51 is already installed on the computer skip steps 1 to 3 of Procedure-1.

Procedure-1:
1- Download the rarred KC51 IDE folder from the coarse web side, open the rar-
archive, and copy the folder KC51 to the desktop or to a flash-disk.

2- In the explorer, open M51 folder under the KC51 folder. Copy the folder address
“…\KC51\C51” to the clipboard.

3- Open “tools.ini” in notepad. Paste the folder address into PATH= “…\” at the
[C51] section of the ini file.
- If you plan to work on flashdisk (let’s say drive E:\) then copy KC51 folder to
the root folder so that E:\KC51\ folder contains folders C51, UV3 and the file
TOOLS.INI. Then edit path statement of tools.ini to E:\KC51\C51.

56 Assemblers and Development Tools for 8086 and 8051 Microprocessors

 4- On the root folder create folder x:\323\012345\exp7\, where 012345 stands for
your student number. In the folder …\exp7\ start a txt file with the name
“Exp7.txt” for reporting. Write your student name and number on the first line of
the file similar to.

 CMPE 328 Exp7 Report file by <your-name, surname, student
number>

5- Start UV3.exe (Keil-IDE) by clicking on the shortcut. Close the projects
(menu�project� close project) if any project is open.

6- Open the project file “Exp7_2764.Uv2” in the “KC51/Exp6A” folder. In the
Project-Workspace window, click on the target, and the source-group-1 folders to
turn on the project source file list. There must be “2764.a51” in your projects
sources. If the file is not yet open, open it by clicking on this item.

7- The file shall contain the following lines
; 2764 EPROM contents source file.
; 2008 (c) Mehmet Bodur
 org 0
 db 0xE0,0xE1,0xE2,0xE3,'Hello World. '
 end

8- Build the project by clicking to Build-Target button (). You shall see the
following messages in the “Build” message window if the installation is
successful.

Build target 'Target 1'
assembling 2764.a51...
linking...
Program Size: data=8.0 xdata=0 code=17
creating hex file from "2764"...
"2764" - 0 Error(s), 0 Warning(s).

9- Open the project folder “Exp7A” in the explorer. From the date and time marks of
the files, you will see the following files created recently.

Reporting:

- Open the -.lst file in a text editor, and copy the first page (up to the “end” in the
source code) to your reporting file.

- Check whether the -.hex file in a text editor is generated. This file will be used for
the contents of the external EPROM chip.

- Save your reporting file for other report deliverables.
10- Open the project file “Exp7Bus.Uv2” in Keil-IDE. You will find the following
source file in the project with the filename “extmemread.a51” .

; Exp.7 8051 External Memory
; (c) 2008 Mehmet Bodur
;
 org 0
 mov p0,#0
start:
 mov dptr,#0001h
 mov a,#0x23
 movx @dptr,a
 mov p1,a

 mov dptr,#2001h
 mov a,#0x45
 movx @dptr,a
 mov p1,a

 Assemblers and Development Tools for 8086 and 8051 Microprocessors 57

 mov dptr,#0001h
 movx a,@dptr
 mov p1,a

 mov dptr,#2001h
 movx a,@dptr
 mov p1,a

 sjmp start
 end

This program code writes two bytes to external memory locations, first 0x23 to
0x0001, then 0x45 to 0x2000. Next, it reads these two data bytes from the same
locations: 0x0001 and 0x2001. This program code displays on port-1 data bytes
after a read or write operation.

10- Build the project by clicking to Build-Target button (). You shall see the
following messages in the “Build” message window if the installation is
successful.

Build target 'Target 1'
assembling extmemread.a51...
linking...
Program Size: data=8.0 xdata=0 code=33
creating hex file from "Exp7Bus"...
"Exp7Bus" - 0 Error(s), 0 Warning(s).

11- In the project folder “Exp7A” check the -.hex and -.lst files to be sure that they are
generated. Copy the first page (upto the end line of assembly) into your reporting
file.

7.3.2. Simulation of 8051 with External Memory

Labcenter Electronics Portable Proteus 7.6 ISIS will simulate the extended memory of an
8051 micro controller.

Objective:
 Our objective is getting familiar to the ISIS simulation environment.

Procedure
1- Start Proteus 7 Portable�ISIS …
in windows.

2- Use File�Load design to open
the file-browser, navigate to
Exp7A folder, and load
Exp7Bus.DSN file to ISIS.
You will get the design
window seen in Fig.3.

3- Right click, and then left
click once on the 8051
processor. The Program File
in the “edit component” window
of 8051 shall contain the file
name Exp7Bus.hex, which is generated in Section 3.1. Check that its clock
frequency is 40. This frequency is selected because the animation display rate of
ISIS is frames per second, and it executes in 50ms steps at every click on the
button. Close the edit-window.

Fig. 2. Design window of Exp5A.DSN

58 Assemblers and Development Tools for 8086 and 8051 Microprocessors

 4- Apply the same procedure described in (3) on 2764 EPROM chip to link
“2764.hex” to this EPROM device. After this process close the edit-window.

6- Click on button to start the component insertion mode. Click on step button
 to start simulation. Start of

simulation will enable the memory
windows in the debug menu. Open
the memory windows, and observe
the initial contents of U3 (=2764)
and U4 (=6116) memory chips.

Reporting:

 Write the first 8 bytes of each memory contents to your reporting file.
 3.2 Simulation section:
 initial contents of U3: E0 E1 E2 E3 48 65 6C 6C
 initial contents of U4: 00 00 00 00 00 00 00 00

7- Click on execute button to execute the code for a couple of seconds. Then
pause the simulation by clicking on button. Observe the contents of U3,
2764 and U4, 6116 memory chips.

Reporting:

 Write the first 8 bytes of each memory contents to your reporting file.
 after 10s contents of U3: E0 … … …
 after 10s contents of U4: 00 … … …

Explanations:

You shall expect that EPROM is non-volatile, and it is a read-only memory.
Therefore the written bytes shall not change the contents of the EPROM memory.
On contrary, 6116 RAM will change the contents of the locations whenever a data
is written on its locations.

8- Click on the graph title “Transient Analysis”. A graph window will get opened.

The control buttons are for EditWindow, AddTrace,
Execute, NavigateLeft, NavigateRight, ZoomIn, ZoomOut, ZoomAll, ZoomManuel,
and ViewLogFile. Clicking on Execute, and then ZoomAll will display the following
graph.

 zoom in range

Fig.4. ZoomAll view of the memory write and read cycles.

Explanations:

CLK frequency is too high to display the clock pulses individually. ~RD, ~WR, ALE,
A[8..15] are microcontroller outputs. AD[0..7] is multiplexed address-data
lines. A 74374 positive edge-triggered D-Latch stores address value A[0..7]
given from AD[0..7] lines at the positive . ~CE0 and ~CE1 are address decoder
outputs.

Fig. 3. The initial contents of

the memory chips.

 Assemblers and Development Tools for 8086 and 8051 Microprocessors 59

9- Use ManualZoom to zoom in to the first write cycle of the graph, as seen below.

Fig.4. Zoom in [1.35 , 1.75] seconds view showing the write 0x23

to the external memory location 0x0001.

Reporting:

Attach the blue start line to the start of the AD[0..7] valid period by left-clicking at
that point while you press the control-key. Now, measure the duration of the
AD[0..7]=0x01 and =0x23. Write the durations both in total number of clock
cycles and time in seconds.

 Duration of AD[0..7]=0x01 is … cc , = … … seconds
 Duration of AD[0..7]=0x23 is … cc , = … … seconds

Explanations:

One external memory write bus cycle starts from valid address on AD[0..7] , and
ends when AD[0..7] becomes floating.

10- Use manual zoom to display the first read bus cycle on the graph. This is a read
from 2764 EPROM device. An Intel 8051 external memory read bus cycle takes
exactly 12 clock cycles.

Reporting:

Explain in your report how you conclude that the memory cycle is a read cycle from
the EPROM (Use the status of ~WR, ~RD, and ~CE# lines). Explain what is value of
the data byte sent from the EPROM to the processor.

11- Use manual zoom to display the second read bus cycle. This is a read from 6116
RAM device. An Intel 8051 external memory read bus cycle takes exactly 12
clock cycles.

Fig.4. Zoom in [6.15 , 6.5] seconds view showing the read from the external memory location

0x2001.

Reporting:

Explain in your report how you conclude that the memory cycle is a read cycle from
the RAM (Use the status of ~WR, ~RD, and ~CE# lines). Explain what is value of the
data byte sent from the RAM to the processor. Is the data byte value the same
with the written data value?

60 Assemblers and Development Tools for 8086 and 8051 Microprocessors

 Reporting:
After you complete the procedures, please save and close exp7.txt file, and e-mail
it using your student e-mail account to cmpe323lab@gmail.com with the
subject line “exp7” within the same day before the midnight.

Late and early deliveries will have 20% discount in grading. No excuse acceptable.

 61

88888888........
8051 Memory Mapped I/O8051 Memory Mapped I/O8051 Memory Mapped I/O8051 Memory Mapped I/O

and and and and
8255A Interfacing8255A Interfacing8255A Interfacing8255A Interfacing

8.1 Objective

The aim of the first part of this experiment is to observe
a- an I/O address decoder for memory mapped i/o system of an 8051 processor.
b- a simple output port implemented with a 74 LS374 latch,
c- a simple input port implemented with a 74S244 three-state buffer.
d- interfacing button switches to an input port
e- interfacing a 7-segment LED display to an output port
The aim of the second part consists of
a- interfacing an 8255 to a 8051 processor,
b- interfacing a 6-digit multiplexed 7-segment display to an 8255.
The aim of the third part is to demonstrate how the rotation of a stepper motor is controlled
with 80x86 code.

8.2 8051 External IO Interfacing

The MOVX instruction of 8051 microcontroller offers a method to interface memory mapped
io devices using the ports P0, P2 and P3 for external memory addressing. P0 carries AD[0..7]
address-data lines, P2 carries A[8..15] high address byte, and the pins P3.6 and P3.7 provide
~RD and ~WR control signals. In contrast to external memory interfacing, we do not need to
latch A[0..7] since A[8..15] is sufficient to address up to 256 io devices.
 In this experiment we will construct simple input and output ports using AD[0..7] lines
for only data transfer, and A[8..15] lines only for addressing the io devices. The address
will be decoded by an address decoder made of 74LS138 and 74LS139 decoders.

8.3 Experimental Part

8.3.1. Memory Mapped I/O interfacing

Objective:
To prepare a workfolder for KC51 IDE and generation of -.hex files for the simulation.
To observe the simulated circuit while it executes the assembled program code on 8051
with a memory mapped output and input interfacing to drive a 7-segment LED and to read
four switches.

Procedure-1.a : Preparation of the -.hex file
1- If C:\KC51\ folder is not available download KC51 from the course web page and
copy it on hard disk or your flash disk (let’s say E:). Correct the PATH statement
on the file E:\KC51\TOOLS.INI to PATH="E:\KC51\C51". Download and extract
EXP8A.rar into folder E:\323\012345\EXP8A.

62 Assemblers and Development Tools for 8086 and 8051 Microprocessors

 2- Start a -.txt file with the name “E:\323\012345\Exp8.txt” for reporting. Write
your student name and number on the first line of the file similar to.

 CMPE328 Exp8 Report file by <your-name, surname, student number>

3- Find and start “…/KC51/UV3/UV3.exe”. Close the projects (menu�project� close

project) if any project is open. Open the project file “E:\323\012345\Exp8A.Uv2”
. In the Project-Workspace window, click on the target, and the source-group-1
folders to turn on the project source file list. There must be “Exp8A1.a51” in your
projects sources. If the file is not yet open, open it by clicking on this item.

4- The file shall start with the following lines. Fill in your name and number.
; Exp8A1.a51
; Student Name:
; Student Number:
;
; (c) 2008 Mehmet Bodur
;$ge

; Display value in RAM memory
; Old keys to detect negative edge.
; Hide/Display flag
Disp equ R0

5- Build the project by clicking to Build-Target button (). You shall see the
following messages in the “Build” message window if the installation is
successful.

Build target 'Target 1'
assembling Exp8A1.a51...
linking...
Program Size: data=8.0 xdata=0 code=107
creating hex file from "Exp8A1"...
"Exp8A1" - 0 Error(s), 0 Warning(s).

 This project contains macros. In the target options, it needs the extended linker
and Ax51 instead of A51 assembler; and the output shall be set to create hex file.
The list file expands the macros only if listing is set to all-expansions. The macros
in this experiment can be handled both by standard and MPL macro processor.

6- Open the project folder “Exp8” in the explorer. From the date and time marks of the
files, you will see the most recently created -.hex and -.lst files.

Reporting:

- Open the -.lst file in a text editor, and copy the first 35 lines (including “main:”) to
your reporting file.

A51 MACRO ASSEMBLER EXPA51 MACRO ASSEMBLER EXPA51 MACRO ASSEMBLER EXPA51 MACRO ASSEMBLER EXP8888AAAA1111 05/07/2008 18:32:16 PAGE 1 05/07/2008 18:32:16 PAGE 1 05/07/2008 18:32:16 PAGE 1 05/07/2008 18:32:16 PAGE 1

MACRO ASSEMBLER A51 V8.01MACRO ASSEMBLER A51 V8.01MACRO ASSEMBLER A51 V8.01MACRO ASSEMBLER A51 V8.01
OBJECT MODULE PLACED IN ExpOBJECT MODULE PLACED IN ExpOBJECT MODULE PLACED IN ExpOBJECT MODULE PLACED IN Exp8888AAAA1111.OBJ.OBJ.OBJ.OBJ
ASSEMBLER INVOKED BY: H:ASSEMBLER INVOKED BY: H:ASSEMBLER INVOKED BY: H:ASSEMBLER INVOKED BY: H:\\\\KC51KC51KC51KC51\\\\C51C51C51C51\\\\BINBINBINBIN\\\\A51.EXE ExpA51.EXE ExpA51.EXE ExpA51.EXE Exp8888AAAA1111.a51 SET(SMALL) DEBUG EP.a51 SET(SMALL) DEBUG EP.a51 SET(SMALL) DEBUG EP.a51 SET(SMALL) DEBUG EP

LOC OBJ LINE SOURCELOC OBJ LINE SOURCELOC OBJ LINE SOURCELOC OBJ LINE SOURCE

 1 1 1 1 ; Exp ; Exp ; Exp ; Exp8888A1.a51 A1.a51 A1.a51 A1.a51
 2 ; Student Name: 2 ; Student Name: 2 ; Student Name: 2 ; Student Name:
 3 ; Student Number: 3 ; Student Number: 3 ; Student Number: 3 ; Student Number:
 4 ; 4 ; 4 ; 4 ;
 5 ; (c) 2008 Mehmet Bodur 5 ; (c) 2008 Mehmet Bodur 5 ; (c) 2008 Mehmet Bodur 5 ; (c) 2008 Mehmet Bodur
 6 ;$ge 6 ;$ge 6 ;$ge 6 ;$ge
 7 7 7 7
 8 ; Display value in RAM memory 8 ; Display value in RAM memory 8 ; Display value in RAM memory 8 ; Display value in RAM memory
 9 ; Old keys to detect negative edge. 9 ; Old keys to detect negative edge. 9 ; Old keys to detect negative edge. 9 ; Old keys to detect negative edge.
 10 ; Hide/Display flag 10 ; Hide/Display flag 10 ; Hide/Display flag 10 ; Hide/Display flag
 REG 11 Disp equ R0 REG 11 Disp equ R0 REG 11 Disp equ R0 REG 11 Disp equ R0
 REG 12 Key REG 12 Key REG 12 Key REG 12 Keys equ R1s equ R1s equ R1s equ R1
 REG 13 OldKeys equ R2 REG 13 OldKeys equ R2 REG 13 OldKeys equ R2 REG 13 OldKeys equ R2
 REG 14 Hide equ R3 REG 14 Hide equ R3 REG 14 Hide equ R3 REG 14 Hide equ R3
 REG 15 Tmr equ R4 REG 15 Tmr equ R4 REG 15 Tmr equ R4 REG 15 Tmr equ R4
 16 16 16 16
 17 ; simple output port 17 ; simple output port 17 ; simple output port 17 ; simple output port
 0080 18 PA 0080 18 PA 0080 18 PA 0080 18 PA equ 80h equ 80h equ 80h equ 80h
 19 ; simple input port 19 ; simple input port 19 ; simple input port 19 ; simple input port
 0081 20 PB equ 81h 0081 20 PB equ 81h 0081 20 PB equ 81h 0081 20 PB equ 81h
 21 ; port 21 ; port 21 ; port 21 ; port----1 for debug1 for debug1 for debug1 for debug

 Assemblers and Development Tools for 8086 and 8051 Microprocessors 63

 22 ;P1 equ 90h 22 ;P1 equ 90h 22 ;P1 equ 90h 22 ;P1 equ 90h
 23 ; reset vector 23 ; reset vector 23 ; reset vector 23 ; reset vector
0000 0000 0000 0000 24 org 0 24 org 0 24 org 0 24 org 0
0000 010C 25 ajmp main0000 010C 25 ajmp main0000 010C 25 ajmp main0000 010C 25 ajmp main
 26 26 26 26
0002 27 lutcode:0002 27 lutcode:0002 27 lutcode:0002 27 lutcode:
 28 ; gfedcba gfedcba 28 ; gfedcba gfedcba 28 ; gfedcba gfedcba 28 ; gfedcba gfedcba
0002 3F06 29 db 00111111b, 00000110b0002 3F06 29 db 00111111b, 00000110b0002 3F06 29 db 00111111b, 00000110b0002 3F06 29 db 00111111b, 00000110b
0004 5B4F 0004 5B4F 0004 5B4F 0004 5B4F 30 db 01011011b, 01001111b 30 db 01011011b, 01001111b 30 db 01011011b, 01001111b 30 db 01011011b, 01001111b
0006 666D 31 db 01100110b, 01101101b0006 666D 31 db 01100110b, 01101101b0006 666D 31 db 01100110b, 01101101b0006 666D 31 db 01100110b, 01101101b
0008 7D07 32 db 01111101b, 00000111b0008 7D07 32 db 01111101b, 00000111b0008 7D07 32 db 01111101b, 00000111b0008 7D07 32 db 01111101b, 00000111b
000A 7F6F 33 db 01111111b, 01101111b000A 7F6F 33 db 01111111b, 01101111b000A 7F6F 33 db 01111111b, 01101111b000A 7F6F 33 db 01111111b, 01101111b
 34 34 34 34
000C 000C 000C 000C 35 main: 35 main: 35 main: 35 main:

- Save your reporting file for other report deliverables.

Procedure-1.b : Execution of the -.hex file on 8051 simulated in ISIS
1- Start Portable Proteus 7.6 ���� ISIS in windows.
2- Use File����Load design to open the file-browser, navigate to Exp8 folder, and
load Exp8A1.DSN file to ISIS. You will get the design window seen in Fig.1.

3- Right click, and then left click once on the 8051 processor. The Program File in
the “edit component” window of 8051 shall contain the file name Exp8A1.hex, which
is generated in Section 3.1. Close the edit-window.

6- Click on button to start the component insertion mode. Click on start button
 to start simulation.

 While the simulation works, a number will appear on the 7-seg-LED display.
Click on UP and DN push-button switches to change the number as you wish.
Click on Hide to make the 7-seg-LED off.
Click on Disp to make the number reappear.
You may observe the bus timing for input and output port using the digital
analyzer.

Fig. 1. Experimental Circuit Exp7A0.DSN in ISIS.

Fig.2 Modified display connections.

lutcode:lutcode:lutcode:lutcode:
; egfcbda egfcbda; egfcbda egfcbda; egfcbda egfcbda; egfcbda egfcbda
db 01011111b, 00001100bdb 01011111b, 00001100bdb 01011111b, 00001100bdb 01011111b, 00001100b
db 01100111b, 00101111bdb 01100111b, 00101111bdb 01100111b, 00101111bdb 01100111b, 00101111b
db 00111100b, 00111011bdb 00111100b, 00111011bdb 00111100b, 00111011bdb 00111100b, 00111011b
db 01111011b, 00001101bdb 01111011b, 00001101bdb 01111011b, 00001101bdb 01111011b, 00001101b
db 01111111b, 00111111bdb 01111111b, 00111111bdb 01111111b, 00111111bdb 01111111b, 00111111b

Fig.3 Modified lookup table

7- Get from your lab assistant a new combination of connections between port pins
and display pins (i.e., Q0 � a, Q1� d, Q2�b, Q3�c, Q4�f, Q5�g, Q6�e).
You shall modify the connections between the 74LS374 and the display
accordingly as you see in Fig.2 . Then modify the display-code look-up table in
the assembly source for the correct display of the numbers on the display as
shown in Fig.3 .

Reporting:

 Write the combination given to you by your assistant in a table form like
 Q: 7 6 5 4 3 2 1 0Q: 7 6 5 4 3 2 1 0Q: 7 6 5 4 3 2 1 0Q: 7 6 5 4 3 2 1 0
 D: D: D: D: ---- e g f c b d a e g f c b d a e g f c b d a e g f c b d a

 Thereafter copy the first 35 lines of -.lst file obtained with your modified code i.e.
AX51 MACRO ASSEMBLER EXP7B 05/07/08 18:34:01 PAGE 1AX51 MACRO ASSEMBLER EXP7B 05/07/08 18:34:01 PAGE 1AX51 MACRO ASSEMBLER EXP7B 05/07/08 18:34:01 PAGE 1AX51 MACRO ASSEMBLER EXP7B 05/07/08 18:34:01 PAGE 1

64 Assemblers and Development Tools for 8086 and 8051 Microprocessors

MACRO ASSEMBLER AX51 V3.03cMACRO ASSEMBLER AX51 V3.03cMACRO ASSEMBLER AX51 V3.03cMACRO ASSEMBLER AX51 V3.03c
OBJECT MODULE PLACED IN Exp7B.OBJOBJECT MODULE PLACED IN Exp7B.OBJOBJECT MODULE PLACED IN Exp7B.OBJOBJECT MODULE PLACED IN Exp7B.OBJ
ASSASSASSASSEMBLER INVOKED BY: H:EMBLER INVOKED BY: H:EMBLER INVOKED BY: H:EMBLER INVOKED BY: H:\\\\KC51KC51KC51KC51\\\\C51C51C51C51\\\\BINBINBINBIN\\\\AX51.EXE Exp7B.a51 SET(SMALL) DEBUG EPAX51.EXE Exp7B.a51 SET(SMALL) DEBUG EPAX51.EXE Exp7B.a51 SET(SMALL) DEBUG EPAX51.EXE Exp7B.a51 SET(SMALL) DEBUG EP

LOC OBJ LINE SOURCELOC OBJ LINE SOURCELOC OBJ LINE SOURCELOC OBJ LINE SOURCE

 1 ; (c) 2008 Mehmet Bodur 1 ; (c) 2008 Mehmet Bodur 1 ; (c) 2008 Mehmet Bodur 1 ; (c) 2008 Mehmet Bodur
 2 ; Macro Definitions for 8088 style io 2 ; Macro Definitions for 8088 style io 2 ; Macro Definitions for 8088 style io 2 ; Macro Definitions for 8088 style io
 3 $ge 3 $ge 3 $ge 3 $ge
 4 4 4 4
 5 in macro al,p8 5 in macro al,p8 5 in macro al,p8 5 in macro al,p8
 6 mov DPH,#p8 6 mov DPH,#p8 6 mov DPH,#p8 6 mov DPH,#p8
 7 movx al,@DPTR 7 movx al,@DPTR 7 movx al,@DPTR 7 movx al,@DPTR
 8 endm 8 endm 8 endm 8 endm
 9 9 9 9
 10 out macro p8,al 10 out macro p8,al 10 out macro p8,al 10 out macro p8,al
 11 mov A,al 11 mov A,al 11 mov A,al 11 mov A,al
 12 mov DPH,p8 12 mov DPH,p8 12 mov DPH,p8 12 mov DPH,p8
 13 movx @DPTR,A 13 movx @DPTR,A 13 movx @DPTR,A 13 movx @DPTR,A
 14 endm 14 endm 14 endm 14 endm
 15 15 15 15
 0083 16 ComR equ 83h 0083 16 ComR equ 83h 0083 16 ComR equ 83h 0083 16 ComR equ 83h
 0080 17 PA equ 80h 0080 17 PA equ 80h 0080 17 PA equ 80h 0080 17 PA equ 80h
 0081 18 PB equ 81h 0081 18 PB equ 81h 0081 18 PB equ 81h 0081 18 PB equ 81h
 19 ; start PPI in all output mode. 19 ; start PPI in all output mode. 19 ; start PPI in all output mode. 19 ; start PPI in all output mode.
 20 20 20 20
000000 000000 000000 000000 21 org 0 21 org 0 21 org 0 21 org 0
000000 0100 F 22 ajmp main000000 0100 F 22 ajmp main000000 0100 F 22 ajmp main000000 0100 F 22 ajmp main
 23 23 23 23
000002 24 lutseg:000002 24 lutseg:000002 24 lutseg:000002 24 lutseg:
 25 ; gfedcba gfedcba 25 ; gfedcba gfedcba 25 ; gfedcba gfedcba 25 ; gfedcba gfedcba
000002 3F06 26 db 00111111b, 000002 3F06 26 db 00111111b, 000002 3F06 26 db 00111111b, 000002 3F06 26 db 00111111b, 00000110b00000110b00000110b00000110b
000004 5B4F 27 db 01011011b, 01001111b000004 5B4F 27 db 01011011b, 01001111b000004 5B4F 27 db 01011011b, 01001111b000004 5B4F 27 db 01011011b, 01001111b
000006 666D 28 db 01100110b, 01101101b000006 666D 28 db 01100110b, 01101101b000006 666D 28 db 01100110b, 01101101b000006 666D 28 db 01100110b, 01101101b
000008 7D07 29 db 01111101b, 00000111b000008 7D07 29 db 01111101b, 00000111b000008 7D07 29 db 01111101b, 00000111b000008 7D07 29 db 01111101b, 00000111b
00000A 7F6F 30 db 01111111b, 01101111b00000A 7F6F 30 db 01111111b, 01101111b00000A 7F6F 30 db 01111111b, 01101111b00000A 7F6F 30 db 01111111b, 01101111b
 31 31 31 31
00000C 33323824 32 msg: db '328$' 00000C 33323824 32 msg: db '328$' 00000C 33323824 32 msg: db '328$' 00000C 33323824 32 msg: db '328$'
 0002 33 msglen equ 2 0002 33 msglen equ 2 0002 33 msglen equ 2 0002 33 msglen equ 2
 34 34 34 34
000010 35 main:000010 35 main:000010 35 main:000010 35 main:

 Show that the simulation works properly for all numbers to your assistant to get
performance points of this experiment.

8.3.2. Interfacing 8255 to 8051 Microcontroller.

Objective:
To observe the slow-motion simulation of the multiplexed 3-digit common-anode 7-
segment LED display, and to observe the simulation of a 6 digit common cathode 7-
segment LED display at full speed.

Procedure-2.a : Preparation of the -.hex file
1- Start UV3.exe . Close the projects (menu�project� close project) if any project is
open. Open the project file “Exp8B.Uv2” in the “KC51/Exp8B” folder. In the
Project-Workspace window, click on the target, and the source-group-1 folders to
turn on the project source file list. There must be “Exp8B.a51” in your projects
sources. If the file is not yet open, open it by clicking on this item.

3- The file shall start with the following lines
; Student Name:
; Student Number:
; File: Exp8B.a51
; (c) 2008 Mehmet Bodur
; Macro Definitions for 8088 style io
$ge

in macro al,p8
 mov DPH,#p8
 movx al,@DPTR
 endm

 8- Build the project by clicking to Build-Target button (). You shall see the
following messages in the “Build” message window if the installation is
successful.

Build target 'Target 1'
assembling Exp8B.a51...

 Assemblers and Development Tools for 8086 and 8051 Microprocessors 65

linking...
Program Size: data=8.0 xdata=0 const=0 code=87
creating hex file from "Exp7B"...
"Exp7B" - 0 Error(s), 0 Warning(s).

9- Open the project folder “Exp8B” in the explorer. From the date and time marks of
the files, you will see the -.hex and -.lst files created recently.

Reporting:

- Open the -.lst file in a text editor, and copy the first 11 lines (up to the line to your
reporting file.
AX51 MACRO ASSEMBLER EXP7B 05/07/08 22:01:16 PAGE 1

MACRO ASSEMBLER AX51 V3.03c
OBJECT MODULE PLACED IN Exp7B.OBJ
ASSEMBLER INVOKED BY: C:_AB\SW\KC51\C51\BIN\AX51.EXE Exp7B.a51 SET(SMALL) DEBUG EP

LOC OBJ LINE SOURCE

 1 ; Student Name:
 2 ; Student Number:
 3 ; File: Exp7B.a51
 4 ; (c) 2008 Mehmet Bodur
 5 ; Macro Definitions for 8088 style io
 6 $ge
 7
 8 in macro al,p8
 9 mov DPH,#p8
 10 movx al,@DPTR
 11 endm

- Save your reporting file for other report deliverables.

Procedure-2.b : Execution of the -.hex file on 8051 simulated in ISIS
1- Start PortableProteus ����ISIS 7 Professional in windows.
2- Use File����Load design to open the file-browser, navigate to Exp8B folder, and load
Exp8B.DSN file to ISIS. You will get the design window seen in Fig.4.

3- Right click, and then left click once on the 8051 processor. The Program File in
the “edit component” window of 8051 shall contain the file name Exp8B.hex, which is
generated in Section 3.2.a. Also check that the Clock Frequency box contains
120k instead of 12M. With this settings, simulation will work 100 times slower
than its full speed. Close “edit component” window.

4- Click on button to start the component insertion mode. Click on start button
 to start simulation. While the simulation works, numbers 8, 2 and 3 will

appear on the 7-seg-LED displays.
You may observe the bus timing for input and output port using the digital
analyzer.

Reporting:
- Look at the program code and explain in two paragraphs what shall you change in
hardware and software if you need 8 digits instead of only 3 digits.

Fig. 4. Experimental Circuit Exp7B.DSN in ISIS.

Fig. 5. Experimental Circuit Exp7C.DSN in ISIS.

66 Assemblers and Development Tools for 8086 and 8051 Microprocessors

Procedure-2.c : Common Cathode Displays running at full speed.

Explanation: In the first two experiments you worked with common anode displays.
Now, you will use a common cathode 7-segment LED array in this simulation.

1- Start “UV3.exe”. Close all projects (menu�project�close project). Open the project
file “Exp8C.Uv2” in the “Exp8C” folder. In the Project-Workspace window, click
on the target, and the source-group-1 folders to turn on the project source file list.
There must be “Exp8C.a51” in your projects sources. If the file is not yet open,
open it by clicking on this item. Build the project to generate the -.lst and -.hex
files.

Explanation: This code is almost the same with the 3-digit display code you
assembled in Procedure 2.b. The only difference is, the digit select changed to
active low (i.e., $0FE selects digit-0), and the complement instruction cpl a is
canceled because common-anode segments need active-high excitation.

3- Start Proteus7.6Portable����ISIS in windows and use File����Load design to open the file-
browser, navigate to Exp8C folder, and load Exp8C.DSN file to ISIS. You will get
the design window seen in Fig.5.

3- Right click, and then left click once on the 8051 processor to open “edit component”
window. The Program File of 8051 shall contain the file name Exp8C.hex. Also
check that the Clock Frequency box contains 12M (it is 12 Mega Hertz, do not
confuse with 12m = 12 milliHertz). With this settings, simulation will work at its
full speed. Close “edit component” window.

4- Click on button to start the component insertion mode. Click on start button
 to start simulation. While the simulation works, numbers 054321 will appear

on the 7-seg-LED displays.
5- Stop the simulation, and set the clock frequency of 8051 to 120k. Then start the
the simulation. Write your observation (how the numbers shift) into the report file.

 Section 2.cSection 2.cSection 2.cSection 2.c
 At 12M At 12M At 12M At 12M clock frequency: … …clock frequency: … …clock frequency: … …clock frequency: … …
 At 120k clock frequency: … …At 120k clock frequency: … …At 120k clock frequency: … …At 120k clock frequency: … …

6- Before you complete your lab, modify the code to write your student number on
the display (at 12M clock frequency) to get the performance grade for this part of
the experiment.

8.3.3. Interfacing 8086 to a stepper Motor.

Objective:
The aim of this part is to demonstrate the operation of a stepper motor control by 8086
assembly code.

Procedure-3:
1- Create a subfolder “E:\323\012345\Exp8D\” in the KC51 folder. Create a text
file in Exp8D folder with the name “Exp8D2.ASM”. Write the following program
into the Exp8D2.asm file:

; Your Student Number, Name, Surname
; CMPE323 Lab Stepper Motor and UART
; Stepper Motor control.
;
; in the mainloop
; read a character from UART into rchr
; if rchr="1" step forward
; else if rchr="2" step backward

 Assemblers and Development Tools for 8086 and 8051 Microprocessors 67

; else do nothing
; looping in mainloop

 .MODEL SMALL
 .8086
 .CODE
 jmp Main

; Data in the code segment
rchr db 0
step db 0
smtb db 3, 6, 12, 9 ; double coil drive

; Code starts here
Main:
 mov AX,CS
 mov DS,AX
 call InitUSART
MainLoop:
 call RecvChar
 ; reads received character into AL.
 ; If no character received then AL returns zero.
 cmp al,0
 jz Mainloop
 mov rchr,al
 cmp rchr,'1'
 jnz skipforward
; forward step
 inc step
 mov bx,0003h
 and bl,step
 mov al,[bx]+offset smtb
 mov dx,324h
 out dx,al
skipforward:
 cmp rchr,'2'
 jnz MainLoop
; backward step
 dec step
 mov bx,0003h
 and bl,step
 mov al,[bx]+offset smtb
 mov dx,324h
 out dx,al
 jmp MainLoop

InitUSART proc
 xor AL, AL
 mov DX, 332h
 out DX, AL
 out DX, AL
 out DX, AL
 mov AL, 40h
 out DX, AL
 mov AL, 04Dh ; 8-bit, no parity, baud=clock x1
 out DX, AL
 mov AL, 05h ; start both receive and transmit
 out DX, AL
 ret

68 Assemblers and Development Tools for 8086 and 8051 Microprocessors

 endp

RecvChar proc
; reads received character into AL.
; If no character received then AL returns zero.
 push DX
 mov DX,332h ; status/control address
 in AL,DX ; read status register
 and AL,02h ; zero flag is set if AL .AND. 01h is nonzero
 jz NotReceived
 mov DX,330h ; data-in/data-out address
 in AL,DX ; received character transferred from data-in into

AL.
 shr AL,1
NotReceived:
 pop DX
 ret
 endp

.data
.stack 32

 END

2- Use EMU8086 to assemble the source file to an exe file “EXP8D2.exe”. Start
Proteus-Professional 7.6 ISIS and open VSED_WA_SMOTOR.DSN in ISIS. Link the
8086 processors program file to EXP8D2.EXE file. Observe how the motor turns
when pressing to key “1” and key “2”. Write your observation into your report
file.

Your report shall contain
EXP8D2:
-With SMTB 3, 6, 12, 9
on key ”1” rotor rotates …………. (ccw or cw?)
on key ”2” rotor rotates …………. (ccw or cw?)
when PA is 00000011 the rotor alignes to …….. degrees position.
when PA is 00000110 the rotor alignes to …….. degrees position.
when PA is 00001100 the rotor alignes to …….. degrees position.
when PA is 00001001 the rotor alignes to …….. degrees position.

3- Modify the step motor look-up table SMTB to contain 1, 2, 4, 8 instead of 3, 6,
12, 9. Assemble it to EXP8D2.EXE and simulate in ISIS with the same circuit.
Observe how the motor turns when pressing to key “1” and key “2”. Write your
observation into your report file.
-With SMTB 1, 2, 4, 8
on key ”1” rotor rotates …………. (ccw or cw?)
on key ”2” rotor rotates …………. (ccw or cw?)
when PA is 00000001 the rotor alignes to …….. degrees position.
when PA is 00000010 the rotor alignes to …….. degrees position.
when PA is 00000100 the rotor alignes to …….. degrees position.
when PA is 00001000 the rotor alignes to …….. degrees position.

Reporting:
After you complete the procedures, please save and close exp8.txt file, and e-mail
it using your student e-mail account to cmpe323lab@gmail.com with the
subject line “exp8” within the same day before the midnight.

Late and early deliveries will have 20% discount in grading. No excuse acceptable.

 69

Sample Design Project Specifications and Requirements

99999999........
Design and Coding of Design and Coding of Design and Coding of Design and Coding of

an Intelligent Restaurant an Intelligent Restaurant an Intelligent Restaurant an Intelligent Restaurant
Service TerminalService TerminalService TerminalService Terminal

9.1 Objective

The aim of this project is to use an A/D converter, four switches, an LCD and the serial
output port of an 8051 to construct an intelligent terminal for the restaurant service
stations.

9.2 Introduction

The file proj09.zip contains the C code, two header files, and the circuit design file of a
8051 system. The presented system reads an analog voltage and states of four switches,
displays these readings on LCD screen, and transmits the digital value through the serial
port with 4800 baud, 8-bit, no parity, one stop bit settings. The code is written with student
version Keil C compiler. The ISIS circuit schematics design file may be executed using
ISIS of the Portable PROSIS 7.6.

9.2.1. Installing KC51 on your drive

KC51 does not support folder names longer than 32 characters. Therefore you shall copy
the proj09 folder to the root of a flash disk (E:) or to your hard disk (C:) drive. For a
trouble free operation we recommend to work in folder C:\323\012345\proj09\, where
012345 stands for your student number. Copy KC51 folder to C:\KC51\ so that the folder
C:\KC51\ contains folders C51, UV3 and the TOOLS.INI file. Edit the path line of the
TOOLS.INI file to change it to PATH="C:\KC51\C51\" so that KC51 programs can be
called while your source file is in folder C:\323\012345\proj09\. If you copy KC51
folder to another place do not forget to update the path statement accordingly. For
example, if KC51 is directly on the root of your flash disk E:, you shall make the path
statement PATH="E:\KC51\C51\".

9.2.2. Starting a 8051 or 8052 project in KC51

1. Extract proj09 folder to “C:\323\012345\”. If KC51 is not yet installed in your drive
the copy KC51 folder to file to C:\323\, and update PATH statement in the
TOOLS.INI file according to installation directives stated in previous subsection.

2 Start C:\323\KC51\UV3\Uv3.exe and start a “New uVision project” from project
menu. Use “Generic” and “8052 all variants”, and click “No” for question “Copy
standard 8052 startup code?” .

70 Assemblers and Development Tools for 8086 and 8051 Microprocessors

 3. With a right-click on Target 1 enter options
target: use on chip ROM (X);

Output

5 In C:\323\012345\proj08 the template source prog08.C is available for your use.

Add prog08.C to your project using “Add files” to “Source Group 1”. Compile it
to obtain its hex file.

6 Start ISIS, and open the design file C:\KC51_proj08\proj08\Proj.DSN, which uses a
8051 (it is also compatible to generic 8052). Link the hex file “Proj.hex” to the
properties of 8051, entry: “program file”. Then start simulation in ISIS. It displays the
ADC reading and switch readings on LCD display. It also prints the ADC reading to
the terminal window when you push SW1.

7 Write your program into the template prog08.C to satisfy the project requirements.
Debug, compile, and simulate in ISIS until you obtain stable operation of the system.

The electronic circuit of this project is available in Proj.dsn file and it is shown in Fig. 1.

Fig.1 Sample Design Template Circuit

9.2.3. LCD display

The sample code is written for LM016L (2-line by 16 column) LCD display in 4-bit data
transmission mode.
The following bit definitions assign symbols to the port pins for LCD.

 Assemblers and Development Tools for 8086 and 8051 Microprocessors 71

#include <REG51.H>#include <REG51.H>#include <REG51.H>#include <REG51.H>
#include <stdio.H>#include <stdio.H>#include <stdio.H>#include <stdio.H>
// Special Function Bits declared for LCD // Special Function Bits declared for LCD // Special Function Bits declared for LCD // Special Function Bits declared for LCD
sbit RS = P1^0; // Control signal RESET of the LCD connected to pin P2.0sbit RS = P1^0; // Control signal RESET of the LCD connected to pin P2.0sbit RS = P1^0; // Control signal RESET of the LCD connected to pin P2.0sbit RS = P1^0; // Control signal RESET of the LCD connected to pin P2.0
sbit EN = P1^1; // Enabsbit EN = P1^1; // Enabsbit EN = P1^1; // Enabsbit EN = P1^1; // Enable (EN) LCD control signal connected to pin P2.2le (EN) LCD control signal connected to pin P2.2le (EN) LCD control signal connected to pin P2.2le (EN) LCD control signal connected to pin P2.2
sbit RW = P1^2; // Write (RW) Signal pin connected to pin P2.1sbit RW = P1^2; // Write (RW) Signal pin connected to pin P2.1sbit RW = P1^2; // Write (RW) Signal pin connected to pin P2.1sbit RW = P1^2; // Write (RW) Signal pin connected to pin P2.1
bit RSF,RSC ;// RS Flag,bit RSF,RSC ;// RS Flag,bit RSF,RSC ;// RS Flag,bit RSF,RSC ;// RS Flag,

where, RSF stores the state of control mode (1) or text mode (0). RS, EN and RW declares the
symbols corresponding to RS, EN and RW pins of the LCD unit.

The following three subroutines support printing strings on LCD.

The delay(int) procedure
void delay(int dd) { // Delay function.void delay(int dd) { // Delay function.void delay(int dd) { // Delay function.void delay(int dd) { // Delay function.
int j=dd; while(jint j=dd; while(jint j=dd; while(jint j=dd; while(j--------);});});});}

provides necessary delays for LCD and mainloop. The delay time is proportional to dd, and
it gives 1 ms delay for dd=100.

The LCDChar(char) procedure sends one character to LCD display by making enable
signal EN=high, and EN=low while the higher- and lower-nibbles of the character is applied
to the data lines. It also calls sufficient delay (1ms) after sending each control character.

void LCDChar(char ch){void LCDChar(char ch){void LCDChar(char ch){void LCDChar(char ch){
 char Ct=ch; char Ct=ch; char Ct=ch; char Ct=ch;
 P1= Ct&0xF0; if(RSF&&RSC){RS=1;} P1= Ct&0xF0; if(RSF&&RSC){RS=1;} P1= Ct&0xF0; if(RSF&&RSC){RS=1;} P1= Ct&0xF0; if(RSF&&RSC){RS=1;}
 EN=0; delay(10); EN=0; delay(10); EN=0; delay(10); EN=0; delay(10);
 EN=1; delay(10); EN=1; delay(10); EN=1; delay(10); EN=1; delay(10);
 EN=0; delay(5); EN=0; delay(5); EN=0; delay(5); EN=0; delay(5);
 Ct= ch << 4 ; Ct= ch << 4 ; Ct= ch << 4 ; Ct= ch << 4 ;
 P1= Ct&0xF0; if(RSF&&RSC){RS=1;} P1= Ct&0xF0; if(RSF&&RSC){RS=1;} P1= Ct&0xF0; if(RSF&&RSC){RS=1;} P1= Ct&0xF0; if(RSF&&RSC){RS=1;}
 EN=0 EN=0 EN=0 EN=0; delay(10);; delay(10);; delay(10);; delay(10);
 EN=1; delay(10); EN=1; delay(10); EN=1; delay(10); EN=1; delay(10);
 EN=0; delay(5); EN=0; delay(5); EN=0; delay(5); EN=0; delay(5);
 if(!RSF) delay(120); if(!RSF) delay(120); if(!RSF) delay(120); if(!RSF) delay(120); //1.2ms//1.2ms//1.2ms//1.2ms
}}}}

The procedure PrintLCD(*char) sends the control and text characters to LCD. As a
feature of this procedure, printing a “\x0FF” toggles the text mode to control mode by
sending the characters with RS line high. The printed string must end with a null character
as usual in C language.

void PrintLCD(char *ch){void PrintLCD(char *ch){void PrintLCD(char *ch){void PrintLCD(char *ch){
 char Ct, n=0 ; char Ct, n=0 ; char Ct, n=0 ; char Ct, n=0 ;
 EN =0 ; RSF=1; EN =0 ; RSF=1; EN =0 ; RSF=1; EN =0 ; RSF=1;
 Ct=ch[n]; Ct=ch[n]; Ct=ch[n]; Ct=ch[n];
 while(Ct){ RSC=1; while(Ct){ RSC=1; while(Ct){ RSC=1; while(Ct){ RSC=1;
 if(Ct&0x80) {RSC= 0;} if(Ct&0x80) {RSC= 0;} if(Ct&0x80) {RSC= 0;} if(Ct&0x80) {RSC= 0;} // Ct>0x7F // Ct>0x7F // Ct>0x7F // Ct>0x7F ----> RSC=0> RSC=0> RSC=0> RSC=0
 if(~Ct==0) {RSF= 0;} if(~Ct==0) {RSF= 0;} if(~Ct==0) {RSF= 0;} if(~Ct==0) {RSF= 0;} // Ct=0xFF // Ct=0xFF // Ct=0xFF // Ct=0xFF ----> RSF=0> RSF=0> RSF=0> RSF=0
 else{ LCDChar(Ct);} else{ LCDChar(Ct);} else{ LCDChar(Ct);} else{ LCDChar(Ct);}
 n++;Ct=ch[n]; } n++;Ct=ch[n]; } n++;Ct=ch[n]; } n++;Ct=ch[n]; }
 } } } }

72 Assemblers and Development Tools for 8086 and 8051 Microprocessors

 The control characters valid for LM016L-LCD unit is given in the following Table.

Table of command codes for LCD displays
Hex Action Hex Action

01 Clear display screen 02 Return home

04 Decrement cursor (shift cursor left) 05 Shift display row right

06 Increment cursor (shift cursor right) 07 Shift display row left

0C Display on, Cursor hidden 0F Display on, cursor blinking

10 Shift cursor position to left 14 Shift cursor position to right

18 Shift the entire display left 1C Shift the entire display right

28 4-bit data, 2 lines, 5x7 matrix 38 8-bit data, 2 lines, 5x7 matrix

 Cursor Placement Commands – row-1 Cursor Placement Commands – row-2

80 Move cursor to 1st column of 1st row C0 Move cursor to 1st column of 2st row

81 Move cursor to 2nd column of 1st row C1 Move cursor to 2nd column of 2st row

… …

8F Move cursor to 16th column of 1st row C1 Move cursor to 16th column of 2st row

The placement of the cursor is achieved with the control codes { 80h, … ,8Fh } for the
first line, and with the control codes { C0h, … ,CFh } for the second line. For example,
to start the text “Hello” from the second line, third column you shall use
PrintLCD(“\x0C2Hello”), where \x0C2 sets the cursor to second line third column, and
the text Hello is written to the display. The cursor placement characters are over 0x7F,
and PrintLCD() process them as commands without needing a command mode character
\x0FF.

In the Init() procedure, PrintLCD sends a collection of commands (\xff) to LCD to
initialize it to 4-bit mode (\x02\x28), clear the display (\x01), hide the cursor (\x0c), and
with each written character shift the cursor to right (\x06).

void INIT(void){
 // Initialization of the LCD by giving proper commands
 // comm-mode,ret-home,4-bit,clr, hide-cursor, shift-cursor-right
 PrintLCD("\xff\x02\x28\x01\x0c\x06\0"); // Initialize 4-bit LCD.
 ...

9.2.4. Serial Port

The 8051 has an on-chip UART to implement serial communication with RS-232
communication protocol. RS232 communication may be useful for user interface as well as
in code development
a) to debug embedded applications, using a desktop PC;
b) to load code into flash memory for ‘in circuit programming’.
c) to transfer data from embedded data acquisition systems to a PC, or to other embedded
processors.

In our project, UART is used to transfer data to a PC at 4800 baud.

8051 UART can work in one of four modes, three of them being asynchronous and one of
them synchronous. For the simplicity of the project, we will give the receipt of how to
work in mode-1 at 4800 and 9600 baud rates.

In mode-1, the baud rate is determined by the overflow rate of Timer 1 or Timer 2. If we
use Timer 1, the baud rate is determined by the overflow rate and the value of SMOD as
follows:

 Assemblers and Development Tools for 8086 and 8051 Microprocessors 73

(SMOD+1) ⋅⋅⋅⋅ Fosc

BaudRate =
32 ⋅⋅⋅⋅ CPI ⋅⋅⋅⋅ (256 – TH1)

where SMODSMODSMODSMOD is the ‘double baud rate’ bit in the PCONPCONPCONPCON register;
Fosc is the oscillator (or resonator) frequency (in Hz);
CPI is the number of machine cycles per instruction (e.g. 12 or 6)
TH1 is the reload value for Timer 1.

With SCON=0x50, Using TH1= FAh (=250 = – 5), and oscillator frequency 11.06 MHz, the
baud rate becomes 4800. TH1=FDh (= – 3) sets the baud rate to 9800. Thus, the
initialization procedure INIT() contains
 void INIT(void){
 . . .
// Serial port initialization
 TMOD=0X20; TH1=0x0FA; // select baud rate 4800
 SCON=0x50; // set mode-1
 TR1=1; // start timer.
 TI=0;}

which sets Timer-1 to automatic load mode, and serial port to 4800 baud receive/transmit
mode so that writing a character to SBUF transmits the character. Further, the char
putchar(char) procedure in stdio.h is canceled, and then putchar is declared in the
program code as
char putchar(char ch){ // For serial output
 SBUF=ch; while(!TI); TI=0; return 0;}

so that the int printf(*char, …)int printf(*char, …)int printf(*char, …)int printf(*char, …) prints directly to the serial port by calling putcharputcharputcharputchar.

9.2.5. ADC interfacing

ADC0801 is a single channel successive approximation register (SAR) AD converter
compatible to micro processor system bus interfacing.

The Pins DB[1..7] are connected to system data bus, the control pins ~CS,~RD, ~WR, are
used for chip-select, conversion data read, and ADC start purposes as described in timing
chart given in Fig.3. The following port-bits and variables are declared to implement this
timing.
sbit ADCS = P2^0; // ADC chip select
sbit ADRD = P2^1; // ADC read enable
sbit ADWR = P2^2; // ADC write enable
sbit ADINTR = P2^3; // ADC conversion over
unsigned char ADCVAL;

The ADCRead ADC0801 conversion cycle starts by making the port P0 an input-port.
Then, the conversion starts after making ~CS low, and ~WR low. delay(2) is placed there

Fig.3. ADC0801 pin layout and control timing

74 Assemblers and Development Tools for 8086 and 8051 Microprocessors

 to observe the port easily on the digital analysis window. The code stays in a loop while
~INTR is high, which means conversion is not completed.
void ADCRead(void){ // Analog Digital Converter
 // Reads ADC into ADCVAL
 //Make the ADC port Input port
 P0=0x0FF;
 // start conversion
 ADCS =0; ADWR =0; ADWR =1;
 // wait till conversion is over
 do{}while(ADINTR);
 // read data of ADC into ADCVAL
 ADRD =0; ADCVAL =P0; P2=0x0FF; }

Then, the reading of the conversion is written to the global variable ADCVAL. Parameter
transfer in global variables is frequently seen in microcontroller programming because it is
code-efficient.

9.2.6. Switches and Operation of the System

The lower four pins of P2 port are used for ADC interfacing. ADC read procedure makes
P2 an input port after it completes ADC read operation. The higher 4 pins of P2 are
interfaced to four pushbutton switches, SW1, SW2, SW3, and SW4. The detection of the
press and release instants are obtained by reading the switch states into SW, and keeping the
old switch states in SWP. Both SW and SWP are 8-bit unsigned global integers.
 unsigned char SW, SWP;

For the consistency of operation in the mainloop P2 is read into SW only once at the
beginning of the mainloop. For coding simplicity, the lower 4-bits are purged out by the
shift operation
 SWP=SW; SW=P2>>4; // past and present value of switches

The switch readings are converted to binary sequence of “0” and “1” characters by
 j[0]=(SW>>3&1)|'0'; j[1]=(SW>>2&1)|'0';
 j[2]=(SW>>1&1)|'0'; j[3]=SW&1|'0'; j[4]=0;

You can test the switch status by an if statement
 if(SW&0x01) { … ;} // while SW1 released

to execute a block of code on switch is open, and
 if(SW&0x02^0x02) { … ;} // while SW2 pressedif(SW&0x02^0x02) { … ;} // while SW2 pressedif(SW&0x02^0x02) { … ;} // while SW2 pressedif(SW&0x02^0x02) { … ;} // while SW2 pressed

to execute the code on switch is closed.

If you need to execute a code only once when a switch is pressed or released. Then, before
reading the states of switches into SW you shall store the past value of SWSWSWSW in SWPSWPSWPSWP.
 if((if((if((if((SW&(SW^SWP)&0x0SW&(SW^SWP)&0x0SW&(SW^SWP)&0x0SW&(SW^SWP)&0x04444)))) { // once only when SW3 released{ // once only when SW3 released{ // once only when SW3 released{ // once only when SW3 released

to execute only once when switch is released (opened).
 if(if(if(if(~SW&(SW^SWP)&0~SW&(SW^SWP)&0~SW&(SW^SWP)&0~SW&(SW^SWP)&0x0x0x0x08888)))) { { { { // once only when SW4 pressed// once only when SW4 pressed// once only when SW4 pressed// once only when SW4 pressed

and the test for both pressing and releasing is
 if(if(if(if((SW^SWP)&0x0(SW^SWP)&0x0(SW^SWP)&0x0(SW^SWP)&0x01111)))) { // once whenever SW1 released or pressed{ // once whenever SW1 released or pressed{ // once whenever SW1 released or pressed{ // once whenever SW1 released or pressed

In these three cases, SW=0x0F must be initialized (all buttons are released) before the
mainloop.

The template code given for this project does the followings in its mainloop

void main (void) {
 char num[16]; int i; char j[5];
 delay(20000); // we need 200ms delay for LCD
 INIT(); // LCD initialized
 printf("Ready\r"); // This goes to UART
 while(1) {

 Assemblers and Development Tools for 8086 and 8051 Microprocessors 75

 ADCRead(); i= (unsigned) ADCVAL;
 SWP = SW; SW=P2>>4; // past and present value of switches
 if(((SW^SWP)&~SW)&0x01) // only once when sw1 is pressed
 printf(" %u \r" , i);
 j[0]=(SW>>3&1)|'0'; j[1]=(SW>>2&1)|'0';
 j[2]=(SW>>1&1)|'0'; j[3]=SW&1|'0'; j[4]=0;
 sprintf(num,"\x080ADC=%4u\x0C0SW=%s", i, j); PrintLCD(num);
 delay(20000); // 200ms delay
 }
}

1. It waits 200 ms before initializing LCD unit.
2. It initialize serial port for 4800 baudrate operation and prints Ready to the terminal.
3. in the endless while loop (mainloop)
 it reads ADC into unsigned i,
 It reads switch status into SWSWSWSW, and converts SW into binary ASCII string j[].

It displays i and j on LCD;
 Whenever SW1 is pressed, it prints i to serial port when switch is pushed (only
once).
 It updates past switch status to SWPSWPSWPSWP for next pass to detect when SW1 is pushed.
 It stays in delayloop for 200 ms.

9.3 About Keil C51 compiler

REG51.H declares the ports, special function registers, and special function bits of the 8051
processor. STDIO.H provides declarations of the procedures _getkey getchar

ungetchar putchar printf sprintf vprintf vsprintf *gets scanf sscanf

puts which are necessary to format the integer and char types into the desired strings.

The sbit type is used to declare single bits of special function registers such as EN, RS,
ADCS, ADRD. A bit variable declares bits in RAM (i.e., RSF). The char type is used for 8-
bit signed integers, int is used for 16-bit signed integers. The type qualifier unsigned
makes both char and int an unsigned number. The type qualifier const makes them
constants allocated in RAM area. They are initialized only once at the start of the program.
The qualifier code allocates the constants in ROM. For example:
 code char test[] = "This is a text string in ROM";

allocates the character string test[] in ROM, along with the program code. The type
qualifier volatile allocates them in registers, and can be used for very short term
temporary purposes.
The _at_ keyword allows you to specify the address for uninitialized variables in your C
source files. It can be used to overlap a memory location for two different data types.

Keep the conditional tests as simple as possible. Use complement (~), and (&), or (|), and
ex-or (^) for bitwise operations between the char and int variables or constants. not (!)
operation complements a single bit, or a relational result. You can test the bits of a char
variable S by using a proper and-mask, i.e., S&0x40 is nonzero if bit-6 of S is high, and
similarly ~S&0x40 is nonzero if bit-6 of S is low.

9.4 Design Requirements

You will work in Keil C51 microVision-3 environment. You shall set the target options of
your microVision project to have

device: Generic 8051
target: Xtal 11.06 MHz ; Memory Small; Code ROM Size Small; Op.Sys. None.

76 Assemblers and Development Tools for 8086 and 8051 Microprocessors

 output: Create Hex file, Name of Executable “proj”
listing: check C compiler listing, check Assembly Code.
C51: add the project folder to the include path

so that it will generate proj.hex and proj.lst files which contains complete assembler coding
of the C source using the modified stdio.h.

You will design a service terminal system for restaurants that will have a scale to weigh
one of three kinds of food labeled A, and B. The electronic scale has its own zeroing
system, with output voltage in millivolts Vsc = 5 ML , where ML is the mass on the scale in
grams. It is connected to analog input of ADC801. The restaurant uses only one kind of
dish plate, which is 100 gram in weight. The ADC801 circuit has Vref=4.8V.

In explaining the requirements, we will use the following symbols
 NPlate = ADC reading of the food plate, (unsigned char)
 GrPlate = Weight of the food plate in grams, (unsigned char)
 GrFoodPlate = Measured Weight of the plate with food (int in grams).
 GrEmptyPlate = Measured Weight of the empty plate (int in grams).
 WeightCoeff = 16*Weight coefficient to calculate weight from ADC reading.

i.e. GrPlate = NPlate*WeightCoeff/16
 GrFoodA = Weight of the food-A (integer in grams).
 GrFoodB = Weight of the food-B (integer in grams).
 KrPer10GrA = Price of 10 gram food-A (integer in kr)
 KrPer10GrB = Price of 10 gram food-B (integer in kr)
 KrPlateA = Price of food A (integer in kr)
 KrPlateB = Price of food B (integer in kr)
 KrTotal = Total price of the food in the plate (integer in kr).

NewCustomer = New Customer bit. (a flag not to delete the last transmitted
readings.)

Your software and hardware design shall satisfy the following requirements.

-The reading NPlate is not in grams. It needs to be converted to GrPlate using the voltage
steps ∆∆∆∆VA=18.75mV and the coefficient of the scale output (Vsc/ML=5), .
 GrPlate = WeightCoeff × NPlate /256 = 18.75/15 ×NPlate
 Thus,

WeightCoeff =16*16*(GrPlate/NPlate)* 1.25 =20,
 For example, the net weight of food-A can be obtained by calculating GrPlate for the
plate with food into GrFoodPlate, and then drop GrEmptyPlate from the calculated
value.
 GrFoodA = GrFoodPlate – GrEmptyPlate .
-Each food type will have a pre-determined constant (Kr (Kurus) per 10 gram) price
declared in integer form, typically A is 1.5 Kr/gram (KrPer10GrA =15) , B is 2.5 Kr/gram
(KrPer10GrB =25). The price of the plate shall be calculated depending on the food type.
For example, the food-B plate price will be
 KrPlateA = GrFoodA × KrPer10GrA /10 .
The following algorithm may be used in coding these requirements.
-Before the main loop your code shall initialize LCD print “Ready\r\r” to the terminal,
and set GrFoodA =0, GrFoodB =0, KrTotal =0.
In the main loop, it shall test the switches for the following actions:

 Assemblers and Development Tools for 8086 and 8051 Microprocessors 77

-read ADC to get NPlate , calculate GrPlate , display it on the first line of the LCD (Add
some extra blanks to clear the previously written text, and set the cursor to the beginning of the

second line).
-if SW1 is pressed (it indicates that a plate of food-A is on the scale),
-Store GrPlate into GrFoodPlateA. Calculate GrFoodA.
Display GrFoodA on LCD, set NewCustomer,

-if SW2 is pressed, it points that a plate of food B is on the scale,
-Store GrPlate into GrFoodPlateB. Calculate GrFoodB.
 Display GrFoodB on LCD, set NewCustomer,

-if SW3 is pressed, it means that the total price shall be reported to cashbox,
-Calculate KrPlateA using KrPer10GrA and GrFoodA. Also calculate KrPlateB
similarly. Find KrTotal =KrPlateA +KrPlateB , and print the following report to
the serial port

 AAAA---- #### gr #### gr #### gr #### gr
 BBBB---- #### gr #### gr #### gr #### gr
 ########## ## ## ## KKKKrrrr
 Bon Appetite.Bon Appetite.Bon Appetite.Bon Appetite.

-if SW4 is pressed, it means the empty plate will be stored,
-Store GrPlate into GrEmptyPlate, and display “Empty “ on the second
line of the LCD. (The extra space characters aim to clear that part of the LCD.)

-continue to looping in the mainloop forever.

There are some challenges in this design. You shall keep the LCD messages short and
easy to understand. Student version of Keil-C51 compiles maximum 2.06k code. The
template already consumes 1.4 k code. You shall code your program in code efficient
manner to complete the project in 2.1 k code. The followings are remedies for code
efficient programming:
1- Do not pass more than a single argument to a procedure, and do not return values from a
procedure. Instead, use all variables global, so that you can address them in the procedures
freely.
2- Write procedures for all repeating parts of the code, for example to test the switch
conditions.
3- PrintLCD, sprintf, and printf uses lots of code. Combine them to each other; i.e., instead
of
printf(“A= %u gr\r”,WFA); printf(“B= %u gr\r”,WFB); use
printf(“A= %u gr\rB= %u gr\r”,WFA,WFB);

9.5 Reporting

You shall write a very short report into the file proj.txt about :
- Goal of the developed system.
- Any difficulties you faced in writing your project code.
- Any explanations for the software coding.
- Any ideas to improve this project in hardware and in software.
- A conclusion about the contributions of each member to the project.

Enumerate the team leader and members, and denote each statement by (idea-
owner, editor) in the following manner.

 Team Leader: (1) Ibrahim Kisaparmak 012345
 Members (2) Rustem Habersiz 054321
 (3) Hanefi Hamamci 053412

78 Assemblers and Development Tools for 8086 and 8051 Microprocessors

 ………..

 ………..
 Combining the LCD messages saved large amount of code memory (231).
The calibration of the weight might create problem because the sequence of the
multiplication and division operations are critical in calculating WFP (11).

 ……….
Here, the statement “Combining … (23).” is Rustem’s idea, and Hanefi is
author or editor of the statement. Next statement “The calibr…. WFP (11)”. is
owned by Ibrahim both in idea and in wording.

After you complete the project, please pack the -.txt report file C code (-.C and -.H
files), the -.hex file, the -.lst file, and the -.DSN file of your project into a zip file
with the name proj.zip and e-mail it using your student e-mail account to
cmpe323lab@gmail.com with the subject line “proj” before the Final Exam
Day.

Last day of delivery is Final Exam Day. No excuse acceptable.

other supporters
author

 79

Sample Design Project Specifications and Requirements

1111111100000000........
Design and Coding of Design and Coding of Design and Coding of Design and Coding of

an Intelligent Human Weight Scalean Intelligent Human Weight Scalean Intelligent Human Weight Scalean Intelligent Human Weight Scale

10.1 Objective

The aim of this project is to use an A/D converter, four switches, an LCD and the serial
output port of an 8051 to construct an intelligent Body Mass Index (BMI) calculator.

10.2 Introduction

This project needs the hardware system and template files described in Chapter 9 for a
restaurant terminal design application. Please apply from Sections 9.2 to (including) 9.3 for
the preliminary of the project. The technical project specifications of the Body Mass Index
Calculator will start from Section 10.4.

10.2.1. Installing KC51 on your drive

Please see Section 9.2.1.

10.2.2. Starting a project in KC51 for 8051 or 8052 projects.

Please see Section 9.2.2.

10.2.3. LCD display

Please see Section 9.2.3.

10.2.4. Serial Port

Please see Section 9.2.4.

10.2.5. ADC interfacing

Please see Section 9.2.5.

10.2.6. Switches and Operation of the System

Please see Section 9.2.6.

10.3 About Keil C51 compiler

Please see Section 9.3.

80 Assemblers and Development Tools for 8086 and 8051 Microprocessors

10.4 Design Requirements

You shall develop a human body weight scale that shall measure the weight of a person by
the ADC reading into the 8-bit integer ADCVAL.

There are four switches (SW1, SW2, SW3, SW4) in the system hardware. The switches
SW1 SW2 and SW3 shall be used to set the 8-bit integer height Height. They shall act only
once they are pushed down. The switch S1 shall toggle an 8-bit integer StepSize between 1
and 10, that is, if switch is pressed while StepSize =1, then StepSize shall be set to 10.
Similarly if switch is pressed while StepSize =10, then StepSize shall be set to 1. The switch
SW2 shall decrement the body height setting Height, , , , StepSize amount down to 120. The
switch SW3 shall increment the body height setting Height,,,, StepSize amount up to 210.

The LCD module of the unit shall display the following information

Line1: W=120 kg BMI= 53
Line2: H=150 cm *

where, the height HHHH is the value set by switches SW1, SW2 and SW2, the weight Weight is
calculated from the ADC reading ADCVAL by the expression

Weight = (ADCVAL+80)/2 ,
which gives minimum 40 kg while ADCVAL=0, and maximum 167 kg while ADCVAL=255.
Considering the overflow of 16- bit integers, the BMI value shall be calculated as

BMI = 100*Weight /Height*100/Height;;;;
The star “****” on line 2 shall be displayed only if StepSize =10, and shall be replaced by a
dot “.” if StepSize =1.

The switch SW4 shall print a report to the mini printer which is connected to the serial
terminal. The contents of the report shall be

Date:
Name:
W=120 kg
H=150 cm
BMI = 53

where the empty entries for date and name is going to be filled by the health officer who
places the report into the medical file of the person.

There are some challenges in this design. Student version of Keil-C51 compiles maximum
2.06k code. The template already consumes 1.4 k code. You shall code your program in
code efficient manner to complete the project in 2.1 k code. The followings are remedies
for code efficient programming:
1- Do not pass more than a single argument to a procedure, and do not return values from a
procedure. Instead, use all variables global, so that you can address them in the procedures
freely.
2- Write procedures for all repeating parts of the code, for example to test the switch
conditions.
3- PrintLCD, sprintf, and printf uses lots of code. Combine them to each other; i.e., instead
of

printf(“W= %u kg\r”,WW); printf(“H= %u cm\r”,HH); use
printf(“W= %u kg\rH= %u cm\r”,WW,BB);

4- Avoid using single letter variables A, B, … since they are predefined for 8051 registers.

 Assemblers and Development Tools for 8086 and 8051 Microprocessors 81

10.5 Reporting

You shall write a short team report into the file proj.txt . Each team member shall
have at least one or two sentences in the report. The report shall start with

- Team members, and team leaders name, surname and student numbers, in
enumerated listing.

i.e: Team leader: 098760 Kevin Kostner (1),
 Members: 098761 Cameron Diaz (2),
 098762 Robert Redford (3),
 098763 Brad Pitt (4)
At the end of each sentence give the number of the author and other
supporters of that sentence, i.e.“In this project we used a pre-

designed hardware for the development of a body weight scale

that calculates the Body Mass Index, BMI (134). The software is

written in Keil C for a 8051 processor (321). …. ” . Here, the idea
of the first sentence has been proposed by Kevin (1), and supported
by Robert and Brad. Similarly, idea of the second sentence is owned
by Robert, and it is supported both by Cameron and Kevin.

The remaining part of the report shall contain
- Goal of the developed system.
- Any difficulties you faced in writing your project code.
- Any explanations for the software coding.
- Any ideas to develop this project in hardware and in software.
- A conclusion about the contributions of each member to the project.

After you complete the project,
- Please pack the report proj.txt, the C code (-.C and -.H files), the -.hex file, the -

.lst file, and the -.DSN file of your project into a zip file with the name proj.zip
and e-mail it using your student e-mail account to cmpe323lab@gmail.com
with the subject line “proj” before the June 15, 2010 midnight .

- Please submit a hardcopy of only proj.txt file (no code, only verbal report) to
your instructor, or to lab assistant.

Enjoy the project.

Last day of delivery is Final Exam Day. No excuse acceptable.

82 Assemblers and Development Tools for 8086 and 8051 Microprocessors

 83

1111111111111111........

APPENDIXAPPENDIXAPPENDIXAPPENDIX

Complete 8086 instruction set

Mnemonics

AAA
AAD
AAM
AAS
ADC
ADD
AND
CALL
CBW
CLC
CLD
CLI
CMC
CMP

CMPSB
CMPSW
CWD
DAA
DAS
DEC
DIV
HLT
IDIV
IMUL
IN
INC
INT
INTO
IRET

JA
JAE
JB
JBE
JC
JCXZ
JE
JG
JGE
JL
JLE
JMP
JNA
JNAE
JNB

JNBE
JNC
JNE
JNG
JNGE
JNL
JNLE
JNO
JNP
JNS
JNZ
JO
JP
JPE

JPO
JS
JZ
LAHF
LDS
LEA
LES
LODSB
LODSW
LOOP
LOOPE
LOOPNE
LOOPNZ
LOOPZ

MOV
MOVSB
MOVSW
MUL
NEG
NOP
NOT
OR
OUT
POP
POPA
POPF
PUSH
PUSHA
PUSHF

RCL
RCR
REP
REPE
REPNE
REPNZ
REPZ
RET
RETF
ROL
ROR
SAHF
SAL
SAR
SBB

SCASB
SCASW
SHL
SHR
STC
STD
STI
STOSB
STOSW
SUB
TEST
XCHG
XLATB
XOR

Operand types:

immediate: 5, -24, 3Fh, 10001101b, etc...
Registers REG: AX, BX, CX, DX, AH, AL, BL, BH, CH, CL, DH, DL, DI, SI, BP,
SP

Segment Registers SREG: DS, ES, SS, and only as second operand: CS.
memory: [BX], [BX+SI+7], variable, etc....

Notes:

When two operands are required for an instruction they are separated by comma, i.e.,
REG, memory

When there are two operands, both operands must have the same size (except shift and
rotate instructions). For example:
registers
 AL, DL
 DX, AX
m1 DB ?
 AL, m1
m2 DW ?
 AX, m2

Some instructions allow several operand combinations. For example:
memory, immediate
REG, immediate
memory, REG
REG, SREG

84 Assemblers and Development Tools for 8086 and 8051 Microprocessors

These marks are used to show the state of the flags:
1 - instruction sets this flag to 1.
0 - instruction sets this flag to 0.
r - flag value depends on result of the instruction.
u - flag value is undefined (maybe 1 or 0).
n – flag value is not changed.

Some instructions generate exactly the same machine code, so disassembler may have a
problem decoding to your original code. This is especially important for Conditional Jump
instructions

Instructions in alphabetical order:

|Only selected instructions are explained in detail.
AAA No operands ASCII Adjust after Addition.

Corrects result in AH and AL after addition when working with BCD
values.

if low nibble of AL > 9 or AF = 1 then
 AL = AL + 6; AH = AH + 1; AF = 1 ; CF = 1 ;
else AF = 0 ; CF = 0 endif
AL = AL & 0x0F;

 Example:
 MOV AX, 15 ; AH = 00, AL = 0Fh
 AAA ; AH = 01, AL = 05

Flags: r{C, A}
AAD No operands ASCII Adjust before Division.

Prepares two BCD values for division.
AL = (AH * 10) + AL ; AH = 0 ;

Example:
 MOV AX, 0105h ; AH = 01, AL = 05
 AAD ; AH = 00, AL = 0Fh (15)

Flags: r{Z,S,A}
AAM No operands ASCII Adjust after Multiplication.

Corrects the result of multiplication of two BCD values.
AH = AL / 10 ; AL = remainder ;

Example:
 MOV AL, 15 ; AL = 0Fh
 AAM ; AH = 01, AL = 05

Flags: r{Z,S,P}
AAS No operands ASCII Adjust after Subtraction.

Corrects result in AH and AL after subtraction when working with BCD
values.

if low nibble of AL > 9 or AF = 1 then:
 AL = AL – 6; AH = AH – 1 ; AF = 1 ; CF = 1 ;
else AF = 0 ; CF = 0 endif
AL = AL & 0x0F;

Example:
 MOV AX, 02FFh ; AH = 02, AL = 0FFh
 AAS ; AH = 01, AL = 09

Flags: r{C, A}

 Assemblers and Development Tools for 8086 and 8051 Microprocessors 85

ADC op1,op2
REG, memory
memory, REG
REG, REG
memory, immediate
REG, immediate

Add with Carry.
operand1 = operand1 + operand2 + CF

Example:
 STC ; set CF = 1
 MOV AL, 5 ; AL = 5
 ADC AL, 1 ; AL = 7

Flags: r{C,Z,S,O,P,A}

ADD op1,op2
REG, memory
memory, REG
REG, REG
memory, immediate
REG, immediate

Add.
operand1 = operand1 + operand2

Example:
 MOV AL, 5 ; AL = 5
 ADD AL, -3 ; AL = 2

Flags: r{C,Z,S,O,P,A}

AND op1,op2
REG, memory
memory, REG
REG, REG
memory, immediate
REG, immediate

Logical AND between all bits of two operands.
Result is stored in operand1.

These rules apply:
1 AND 1 = 1
1 AND 0 = 0
0 AND 1 = 0
0 AND 0 = 0

Example:
 MOV AL, 'a' ; AL = 01100001b
 AND AL, 11011111b ; AL = 01000001b ('A')

Flags: 0{C,O}, r{Z,S,P}

CALL addr
procedure name
label
4-byte address

Transfers control to procedure,

IP (return address) is pushed to stack.
For 4-byte address first value is a segment second value is an
offset (this is a far call, so CS is also pushed to stack).

Example:
 ORG 100h ; for COM file.
 CALL p1
 ADD AX, 1
 . . . ; continue to code.
p1 PROC ; procedure declaration.
 MOV AX, 1234h
 RET ; return to caller.
p1 ENDP
Flags: not changed

CBW No operands Convert byte into word.
if high bit of AL = 1 then AH = 255 (0FFh) else AH = 0 endif

Example:
 MOV AX, 0 ; AH = 0, AL = 0
 MOV AL, -5 ; AX = 000FBh (251)
 CBW ; AX = 0FFFBh (-5)

Flags: not changed
CLC No operands Clear Carry flag.

CF = 0

Flags: C=0
CLD No operands Clear Direction flag. SI and DI will be incremented by chain

instructions: CMPSB, CMPSW, LODSB, LODSW, MOVSB, MOVSW,
STOSB, STOSW.
Flags 0{D}

86 Assemblers and Development Tools for 8086 and 8051 Microprocessors

CLI No operands Clear Interrupt enable flag. This disables hardware interrupts.

Flags: 0{I}
CMC No operands Complement Carry flag. Inverts value of CF.

Flags: r{C}

CMP op1,op2
REG, memory
memory, REG
REG, REG
memory, immediate
REG, immediate

Compare.
operand1 - operand2
result is not stored anywhere, flags are set (OF, SF, ZF, AF, PF,
CF) according to result.

Example:
 MOV AL, 5
 MOV BL, 5
 CMP AL, BL ; AL = 5, ZF = 1 (so equal!)

Flags: r{C,Z,S,O,P,A }
CMPSB No operands Compare bytes: ES:[DI] from DS:[SI].

Flags: r{C,Z,S,O,P,A }
CMPSW No operands Compare words: ES:[DI] from DS:[SI].

Flags: r{C,Z,S,O,P,A }
CWD No operands Convert Word to Double word.

if high bit of AX =1 then DX=65535 (0FFFFh) else DX = 0

endif
Example:
 MOV DX, 0 ; DX = 0
 MOV AX, 0 ; AX = 0
 MOV AX, -5 ; DX AX = 00000h:0FFFBh
 CWD ; DX AX = 0FFFFh:0FFFBh

Flags: not changed
DAA No operands Decimal adjust After Addition.

Corrects the result of addition of two packed BCD values.

Algorithm:
if low nibble of AL > 9 or AF = 1 then AL = AL+6; AF = 1; endif
if AL > 9Fh or CF = 1 then AL = AL+60h ; CF =1; endif
Example:
 MOV AL, 0Fh ; AL = 0Fh (15)
 DAA ; AL = 15h

Flags: r{C,Z,S,O,P,A }
DAS No operands Decimal adjust After Subtraction.

Corrects the result of subtraction of two packed BCD values.
if low nibble of AL > 9 or AF=1 then AL =AL-6; AF = 1;
endif;
if AL > 9Fh or CF = 1 then AL = AL - 60h ; CF = 1; endif

Example:
 MOV AL, 0FFh ; AL = 0FFh (-1)
 DAS ; AL = 99h, CF = 1

Flags: r{C,Z,S,O,P,A }

DEC op
REG
memory

Decrement.
operand = operand - 1

Example:
 MOV AL, 255 ; AL = 0FFh (255 or -1)
 DEC AL ; AL = 0FEh (254 or -2)

Flags: r{Z,S,O,P,A }, n{C} Carry flag is not changed.

 Assemblers and Development Tools for 8086 and 8051 Microprocessors 87

DIV op
REG
memory

Unsigned divide.
when operand is a byte:
 AL = AX / operand; AH = remainder (modulus)
when operand is a word:
 AX = (DX AX) / operand ; DX = remainder (modulus)

Example:
 MOV AX, 203 ; AX = 00CBh
 MOV BL, 4
 DIV BL ; AL = 50 (32h), AH = 3

Flags: All Unknown
HLT No operands Halt the System.

IDIV op
REG
memory

Signed divide.

when operand is a byte:
AL = AX / operand; AH = remainder (modulus)
when operand is a word:
AX = (DX AX) / operand ; DX = remainder (modulus)

Example:
 MOV AX, -203 ; AX = 0FF35h
 MOV BL, 4
 IDIV BL ; AL = -50 (0CEh), AH = -3 (0FDh)

Flags: All Unknown

IMUL op
REG
memory

Signed multiply.
when operand is a byte: AX = AL * operand.
when operand is a word: (DX AX) = AX * operand.

Example:
MOV AL, -2
MOV BL, -4
IMUL BL ; AX = 8

Flags: 0{C, O }, u{ Z,S,P,A }
when result fits into operand of IMUL then 0{C,O} .

IN op1,op2
AL, im.byte
AL, DX
AX, im.byte
AX, DX

Input from port into AL or AX.
Second operand is a port number. If required to access port
number over 255 - DX register should be used.

Flags not affected

INC op
REG
memory

Increment.
Algorithm: operand = operand + 1

Example:
 MOV AL, 4
 INC AL ; AL = 5

Flags r{Z,S,O,P,A}, n{C}
INT imm
immediate byte

Interrupt numbered by immediate byte (0..255).
Push to stack: flags register , CS , IP . IF = 0 .
Transfer control to interrupt procedure
Example:
 MOV AH, 4Ch ; Terminate and Exit to DOS.
 INT 21h ; BIOS interrupt.
Flags n{ C,Z,S,O,P,A,I}

INTO No operands Interrupt 4 if Overflow flag is 1.

IRET No operands Interrupt Return.
Pop from stack: IP , CS, flags register

Flags C,Z,S,O,P,A,I popped from stack

88 Assemblers and Development Tools for 8086 and 8051 Microprocessors

JA addr
label

Jump if Above. Short Jump relative to IP for Unsigned compare.
Jump if first operand is Above second operand when used after CMP
instruction.

if (CF = 0) and (ZF = 0) then jump endif
Flags not changed

JAE addr
label

Jump if Above or Equal. Short Jump relative to IP for Unsigned
compare.
Jump if first operand is Above or Equal to second operand when used
after CMP instruction.

 if CF = 0 then jump endif
Flags not changed

JB addr
label

Jump if Below. Short Jump relative to IP for Unsigned compare.
Jump if first operand is Below second operand when used after CMP
instruction.

if CF = 1 endif jump endif
Flags not changed

JBE addr
label

Jump if Below or Equal. Short Jump relative to IP for Unsigned
compare.
Jump if first operand is Below or Equal to second operand when used
after CMP instruction.

if CF = 1 or ZF = 1 then jump endif
Flags not changed

JC addr
label

Jump on Carry. Short Jump if Carry flag is set to 1.
if CF = 1 then jump endif

Flags not changed

JCXZ addr
label

Jump if CX is Zero.
 if CX = 0 then jump endif

Flags not changed

JE addr
label

Jump if Equal. Short Jump relative to IP for Signed and Unsigned
compare. Jump if first operand is Equal to second operand when used
after CMP instruction.

if ZF = 1 then jump endif
Flags not changed

JG addr
label

Jump if Greater than. Short Jump relative to IP for Signed compare.
Jump if first operand is Greater than second operand when used after
CMP instruction.

 if (ZF = 0) and (SF = OF) then jump endif
Flags not changed

JGE addr
label

Jump if Greater than or Equal to. Short Jump relative to IP for Signed
compare. Jump if first operand is Greater than or Equal to second
operand when used after CMP instruction.

if SF = OF then jump endif
Flags not changed

JL addr
label

Jump if Less than . Short Jump relative to IP for Signed compare.
Jump if first operand is Less than second operand when used after CMP
instruction.

if SF <> OF then jump endif
Flags not changed

JLE addr
label

Jump if Less than or Equal to. Short Jump relative to IP for Signed
compare. Jump if first operand is Less than or Equal to second
operand when used after CMP instruction.

if SF <> OF or ZF = 1 then jump endif
Flags not changed

 Assemblers and Development Tools for 8086 and 8051 Microprocessors 89

JMP addr
label
4-byte address

Jump Always. This unconditional jump transfers control to another part
of the program. 4-byte address may be entered in this form:
1234h:5678h, first value is a segment second value is an offset.
Flags not changed

JNA addr
label

Jump if Not Above . Same as JB (jump below or equal) instruction.
Flags not changed

JNAE addr
label

Jump if Not Above or Equal . Same as JB (jump below) instruction.
Flags not changed

JNB addr
label

Jump if Not Below . Same as JAE (jump above or equal) instruction.
Flags not changed

JNBE addr
label

Jump if Not Below or Equal . Same as JA (jump above) instruction.
Flags not changed

JNC addr
label

Jump if No Carry. Short Jump if Carry flag is zero.
if CF = 0 then jump endif

Flags not changed

JNE addr
label

Jump if Not Equal . Short Jump relative to IP for Signed or Unsigned
compare. Jump if first operand is Not Equal to second operand when
used after CMP instruction.

if ZF = 0 then jump endif
Flags not changed

JNG addr
label

Jump if Not Greater than . Same as JLE (jump less or equal)
instruction.
Flags not changed

JNGE addr
label

Jump if Not Greater than or Equal . Same as JL (jump less than)
instruction.
Flags not changed

JNL addr
label

Jump if Not Less than . Same as JGE (jump greater or equal)
instruction.
Flags not changed

JNLE addr
label

Jump if Not Less or Equal . Same as JG (jump greater) instruction.
Flags not changed

JNO addr
label

Short Jump if Not Overflow.
Flags not changed

JNP addr
label

Short Jump if No Parity. Only 8 low bits of result are checked. Set by
CMP, SUB, ADD, TEST, AND, OR, XOR instructions.

if PF = 0 then jump endif
Flags not changed

JNS addr
label

Short Jump if Not Signed (positive). Set by CMP, SUB, ADD, TEST,
AND, OR, XOR instructions.

if SF = 0 then jump endif
Flags not changed

JNZ addr
label

Short Jump if Not Zero. Set by CMP, SUB, ADD, TEST, AND, OR,
XOR instructions

if ZF = 0 then jump endif
Flags not changed

JO addr
label

Short Jump if Overflow.
if OF = 1 then jump endif

Flags not changed

JP addr
label

Short Jump if Parity (even). Only 8 low bits of result are checked. Set
by CMP, SUB, ADD, TEST, AND, OR, XOR instructions.

if PF = 1 then jump endif
Flags not changed

JPE addr
label

Short Jump if Parity Even. Same as JP (Jump if Parity) instruction
Flags not changed

90 Assemblers and Development Tools for 8086 and 8051 Microprocessors

JPO addr
label

Short Jump if Parity Odd. Only 8 low bits of result are checked. Set by
CMP, SUB, ADD, TEST, AND, OR, XOR instructions. Same as JNP
(jump if no parity) instruction.
Flags not changed

JS addr
label

Short Jump if Signed (if negative). Set by CMP, SUB, ADD, TEST,
AND, OR, XOR instructions.

 if SF = 1 then jump endif
Flags not changed

JZ addr
label

Short Jump if Zero (equal).Set by CMP, SUB, ADD, TEST, AND,
OR, XOR instructions.

 if ZF = 1 then jump endif
Flags not changed

LAHF No operands Load AH from 8 low bits of Flags register.
AH = flags register

flag bits: 7:SF, 6:ZF, 5:0, 4:AF, 3:0, 2:PF, 1:1,
0:CF
bits 1, 3, 5 are reserved.
Flags not changed

LDS op,mem
REG, memory

Load memory double word into word register and DS.
REG = first word DS = second word

Flags not changed

LEA op,mem
REG, memory

Load Effective Address.

REG = address of memory (offset)
Example:

 MOV BX, 35h
 MOV DI, 12h
 LEA SI, [BX+DI] ; SI = 35h + 12h = 47h
Assembler may replace LEA with a more efficient MOV where possible.
Flags not changed

LES op,mem
REG, memory

Load memory double word into word register and ES.
Flags not changed

LODSB No operands Load byte at DS:[SI] into AL. Update SI.
Flags not changed

LODSW No operands Load word at DS:[SI] into AX. Update SI.
Flags not changed

LOOP addr
label

Decrease CX, jump to label if CX not zero.
CX = CX – 1
if CX <> 0 then jump else no jump, continue endif

Flags not changed

LOOPE addr
label

Decrease CX, jump to label if CX not zero and Equal (ZF = 1).
CX = CX – 1
if (CX <> 0) and (ZF = 1) then jump else no jump, continue
endif

Flags not changed

LOOPNE addr
label

Decrease CX, jump to label if CX not zero and Not Equal (ZF = 0).
CX = CX – 1
if (CX <> 0) and (ZF = 0) then jump else no jump, continue

endif
Flags not changed

LOOPNZ addr
label

Same as LOOPNE
Flags not changed

LOOPZ addr
label

Same as LOOPE
Flags not changed

 Assemblers and Development Tools for 8086 and 8051 Microprocessors 91

MOV op1,op2
REG, memory
memory, REG
REG, REG
memory, immediate
REG, immediate
SREG, memory
memory, SREG
REG, SREG
SREG, REG

Copy operand2 to operand1.

 operand1 = operand2
Restrictions:
The MOV instruction cannot set the value of the CS and IP registers.
Copying value of one segment register to another segment register
requires first copying to a general register.
Copying an immediate value to a segment register requires first copying
to a general register first.

Flags not changed

MOVSB No operands Copy byte at DS:[SI] to ES:[DI]. Update SI and DI.

ES:[DI] = DS:[SI]
if DF = 0 then SI = SI + 1, DI = DI + 1,
else SI = SI – 1, DI = DI – 1, endif

Flags not changed

MOVSW No operands Copy word at DS:[SI] to ES:[DI]. Update SI and DI.

ES:[DI] = DS:[SI]
if DF = 0 then SI = SI + 2, DI = DI + 2 ,
else SI = SI – 2 , DI = DI – 2 endif

Flags not changed

MUL op
REG
memory

Unsigned multiply.
when operand is a byte: AX = AL * operand.
when operand is a word: (DX AX) = AX * operand.
Example:
 MOV AL, 200 ; AL = 0C8h
 MOV BL, 4
 MUL BL ; AX = 0320h (800)
Flags r{C, O}. 0{CF,OF} when high section of the result is zero.

NEG op
REG
memory

Negate. Makes operand negative (two's complement).
Invert all bits of the operand. Add 1 to inverted operand

Flags r{C,Z,S,O,P,A}

NOP No operands No Operation.

Flags not changed

NOT op
REG
memory

Invert each bit of the operand.

Flags not changed

OR op1,op2
REG, memory
memory, REG
REG, REG
memory, immediate
REG, immediate

Logical OR between all bits of two operands. Result is stored in first
operand.

Flags 0{C, O}, r{ Z,S, P,A}

OUT op1,op2
immediate-byte, AL
immediate-byte, AX
DX, AL
DX, AX

Output from AL or AX to port.

First operand is a port number. If required to access port number
over 255 - DX register should be used.

Flags not changed

POP op
REG
SREG
memory

Get 16 bit value from the stack.
operand = SS:[SP] (top of the stack)
SP = SP + 2

Flags not changed

92 Assemblers and Development Tools for 8086 and 8051 Microprocessors

POPA No operands
(80186 +)

Pop all general purpose registers DI, SI, BP, SP, BX, DX, CX, AX

from the stack (SP value is ignored, it is Popped but not set to SP
register).
it works with 80186 and later

POP DI
POP SI
POP BP
POP xx (SP value ignored)
POP BX
POP DX
POP CX
POP AX

Flags not changed

POPF No operands Get flags register from the stack.
flags = SS:[SP] (top of the stack)
SP = SP + 2

Flags popped from stack

PUSH op
REG
SREG
memory
immediate (80186 +)

Store 16 bit value in the stack.
PUSH immediate works only on 80186 CPU and later!

Flags not changed

PUSHA No operands
(80186 +)

Push all general purpose registers AX, CX, DX, BX, SP, BP, SI, DI

in the stack. Original value of SP register (before PUSHA) is used.
Note: this instruction works only on 80186 CPU and later!

PUSH AX
PUSH CX
PUSH DX
PUSH BX
PUSH SP
PUSH BP
PUSH SI
PUSH DI

Flags not changed

PUSHF No operands Push flags register in the stack.
SP = SP - 2
SS:[SP] (top of the stack) = flags

Flags not changed

RCL op1,op2
memory, immediate
REG, immediate

memory, CL
REG, CL

Rotate operand1 left through Carry Flag.
The number of rotates is set by operand2.
When immediate is greater then 1, assembler generates several RCL xx,
1 instructions because 8086 has machine code only for this instruction .

shift all bits left, the bit that goes off is set to CF and previous
value of CF is inserted to the right-most position.

Flags r{C,O} . 0{OF} if first operand keeps original sign.

RCR op1,op2
memory, immediate
REG, immediate

memory, CL
REG, CL

Rotate operand1 right through Carry Flag.
The number of rotates is set by operand2.
When immediate is greater then 1, assembler generates several RCL xx,
1 instructions because 8086 has machine code only for this instruction .

shift all bits right, the bit that goes off is set to CF and previous
value of CF is inserted to the left-most position.

Flags r{C,O} . 0{OF} if first operand keeps original sign.

 Assemblers and Development Tools for 8086 and 8051 Microprocessors 93

REP chain instruct Repeat following MOVSB, MOVSW, LODSB, LODSW, STOSB,

STOSW instructions CX times.
 if CX<>0 then
 do repeat
 execute next chain instruction; CX = CX – 1;
 until CX==0 enddo
 endif
Flag r{Z}

REPE chain instruct
REPZ chain instruct

Repeat following CMPSB, CMPSW, SCASB, SCASW instructions

while ZF = 1 (result is Equal), maximum CX times.
 if CX<>0 then
 do repeat
 execute next chain instruction;
 CX = CX – 1;
 until ZF==0 && CX==0 enddo
 endif
Flag r{Z}

REPNE chain instruct
REPNZ chain instruct

Repeat following CMPSB, CMPSW, SCASB, SCASW instructions

while ZF = 0 (result is Equal), maximum CX times.
 if CX<>0 then
 do repeat
 execute next chain instruction;
 CX = CX – 1;
 until ZF==1 && CX==0 enddo
 endif
Flag r{Z}

RET No operands
or even immediate

Return from near procedure.
Pop from stack: IP
if immediate operand is present: then SP = SP + operand endif

Flags not changed

RETF No operands
or even immediate

Return from Far procedure.
Pop from stack: IP, CS
if immediate operand is present: then SP = SP + operand endif

Flags not changed

ROL op1,op2
memory, immediate
REG, immediate

memory, CL
REG, CL

Rotate operand1 left. The number of rotates is set by operand2.
When immediate is greater then 1, assembler generates several ROL xx,
1 instructions because 8086 has machine code only for this instruction .

shift all bits left, the bit that goes off is set to CF and the same
bit is inserted to the right-most position.

Flags r{C, O}, OF=0 if first operand keeps original sign.

ROR op1,op2
memory, immediate
REG, immediate

memory, CL
REG, CL

Rotate operand1 right. The number of rotates is set by operand2.
When immediate is greater then 1, assembler generates several ROR xx,
1 instructions because 8086 has machine code only for this instruction .

shift all bits right, the bit that goes off is set to CF and the same
bit is inserted to the left-most position.

Flags r{C, O}, OF=0 if first operand keeps original sign

SAHF No operands Store AH register into low 8 bits of Flags register.
flags register = AH

flag bits: 7:SF, 6:ZF, 5:0, 4:AF, 3:0, 2:PF, 1:1,
0:CF
bits 1, 3, 5 are reserved.
Flags r{C,Z,S,O,P,A}

94 Assemblers and Development Tools for 8086 and 8051 Microprocessors

SAL op1,op2
memory, immediate
REG, immediate

memory, CL
REG, CL

Shift Arithmetic operand1 Left. The number of shifts is set by
operand2.
When immediate is greater then 1, assembler generates several SAL xx,
1 instructions because 8086 has machine code only for this instruction .

Shift all bits left, the bit that goes off is set to CF.
Zero bit is inserted to the right-most position.

Flags C, O updated. OF=0 if first operand keeps original sign.

SBB op1, op2
REG, memory
memory, REG
REG, REG
memory, immediate
REG, immediate

Subtract with Borrow.
operand1 = operand1 - operand2 - CF

Flags: r{C,Z,S,O,P,A}. CF is used as Borrow-flag.

SCASB No operands Compare bytes: AL from ES:[DI].
AL - ES:[DI]; set flags according to result: OF, SF, ZF, AF, PF,
CF
if DF = 0 then DI = DI + 1 else DI = DI - 1 endif

Flags: r{C,Z,S,O,P,A}

SCASW No operands Compare words: AX from ES:[DI].
AX - ES:[DI]; set flags according to result: OF, SF, ZF, AF, PF,
CF
if DF = 0 then DI = DI + 2 else DI = DI - 2 endif

Flags: r{C,Z,S,O,P,A}

SHL op1,op2
memory, immediate
REG, immediate

memory, CL
REG, CL

Shift operand1 Left. The number of shifts is set by operand2.
When immediate is greater then 1, assembler generates several SHL xx,
1 instructions because 8086 has machine code only for this instruction .

Shift all bits left, the bit that goes off is set to CF.
Zero bit is inserted to the right-most position.

Flags C, O updated. OF=0 if first operand keeps original sign.

SHR op1,op2
memory, immediate
REG, immediate

memory, CL
REG, CL

Shift operand1 Right. The number of shifts is set by operand2.
When immediate is greater then 1, assembler generates several SHR xx,
1 instructions because 8086 has machine code only for this instruction .

Shift all bits right, the bit that goes off is set to CF.
Zero bit is inserted to the left-most position.

Flags r{C, O} OF=0 if first operand keeps original sign.
STC No operands Set Carry flag.

 Flags: 1{C}

STD No operands Set Direction flag. SI and DI will be decremented by chain instructions:
CMPSB, CMPSW, LODSB, LODSW, MOVSB, MOVSW, STOSB,
STOSW.
Flags: 1{D}

STI No operands Set Interrupt enable flag. This enables hardware interrupts.
Flags: 1{I}

STOSB No operands Store byte in AL into ES:[DI]. Update DI.
ES:[DI] = AL
if DF = 0 then DI = DI + 1 else DI = DI - 1 endif

Flags are not changed

STOSW No operands Store word in AX into ES:[DI]. Update DI.

ES:[DI] = AX
if DF = 0 then DI = DI + 2 else DI = DI - 2 endif

Flags are not changed

 Assemblers and Development Tools for 8086 and 8051 Microprocessors 95

SUB op1,op2
REG, memory
memory, REG
REG, REG
memory, immediate
REG, immediate

Subtract.
operand1 = operand1 - operand2

Flags: r{C,Z,S,O,P,A}

TEST op1,op2
REG, memory
memory, REG
REG, REG
memory, immediate
REG, immediate

Logical AND between all bits of two operands for flags only.
These flags are effected: ZF, SF, PF. Result is not stored anywhere.

Flags: 0{C,O}, r{Z,S,P}

XCHG op1,op2
REG, memory
memory, REG
REG, REG

Exchange values of two operands.
operand1 < - > operand2

Flags are not changed

XLATB No operands Translate byte from table.
Copy value of memory byte at DS:[BX + unsigned AL] to AL register.

AL = DS:[BX + unsigned AL]
Flags are not changed

XOR op1,op2
REG, memory
memory, REG
REG, REG
memory, immediate
REG, immediate

Logical XOR (Exclusive OR) between all bits of two operands.
Result is stored in first operand.

Flags: 0{C,O}, r{Z,S,P}. AF is unknown.

96 Assemblers and Development Tools for 8086 and 8051 Microprocessors

Summary Sheet for Assembly Programming
INT 10h BIOS services
 AH=00h Set video mode
 AL=03, CGA text mode
 AL=04, 320x200 graphics mode 4-color.
 AL=06, 640x200 hi-res graph.mode B/W.
 AL=07, monochrome text mode
 AH=02h Set cursor location
 DH=row, DL=col. BH=page
 AH=03h Get cursor location, It returns
 DH=row, DL=col. BH=page. CX=cursor
 AH=06h Clearing the screen
 AL=0 for entire page, BH=7 attributes,
 CH=0, CL=0, row and col to start.
 DH=24, DL=80, row and col to end.
 AH=0Ch Set a pixel in graphics screen.
 AL=(0 black, or 1 for white),
 CX=col; DX=row,

INT 21h DOS services
 AH=01h wait and echo a single character.
 AL returns char keyed to the keyboard.
 AH=02h display a character on the monitor
 L= ASCII coded char to be displayed.
 AH=09h display a string to the monitor
 DX= offset of ASCII string ending with “$”.
 AH=0Ah wait a string input ending with <cr>
 DX=offset of buffer area .
 Input returns in the buffer
 buffer area = {size, length, contents}
 05 00 20 20 20 20 20 is buffer of 5 char,
 05 03 33 32 38 0D 20 contains “328<cr>”.
INT 16h Keyboard Service
 AH=01h (checks if any key is pressed)

ZF=1 if no keys pressed).
 AH=00h (it is used only after AH=01h, it returns

the pressed key in AL).

Assembler Directives
 .model [tiny|small|compact|medium|large|huge]
 .data (defines the start of data segment)
 .code (defines the start of code sector)
 .stack n (defines the size of stack segment)
 @data (data segment allocated by OS.)
 <name> equ value (assigns name=value)
 db value (allocate byte with value)
 dw, dd, dq alloc.word, double-word, quad-

word
 dt (allocate 10 digit unpacked-BCD.)
 n dup(value) (duplicate value for n times.)
 <proclabel> proc [short|near|far]…endp

(define procedure)
 end (end of assembler source.)
 <macrolabel> macro argumentlist…endm

(define macro).
 include filename.extension (include a file)

80x86 Instruction formats

mov dst,src (move data)
movsx - movzx (move 8-bit into16-bit reg, 386)
cbw reg (convert byte to sign ext. word, 386)
cwd reg (convert word to sign ext. double, 386)
cbw (convert byte al to word ax)
cwd (convert word ax to doubleword dx:ax)
clc / stc (clear / set carry flag)

add dst,src (dst=dst+src ; add)
adc dst,src (dst=dst+src+CF ; add with carry)
sub dst,src (dst=dst - src ; subtract)
sbb dst, src (dst=dst - src - CF; sub with carry)
daa (decimal adjust add);
das (dec.adjust sub)
aaa (ascii or unpacked-BCD adjust addition.)
and dst,src ; or dst,src ; xor dst,src (logical)
neg dst (negation of binary by 2’s complement)
shl dst,1 - shl dst,cl (shift left 1-bit, cl bits);
shr dst,1 - shr dst,cl (shift right 1-bit, cl bits);
sar dst,1 - sar dst,cl (arithmetic shift right)

ror dst, 1 ; ror dst, cl ; rol dst, 1 ; rol dst, cl ;
 (rotate right and rotate left)
rcr dst, 1 ; rcr dst, cl ; rcl dst, 1 ; rcl dst, cl ;
 (rotate right and left, over carry flag)
mul op (unsigned ax=al × op or dx:ax=ax × op)
div op (unsigned al=ax/op, ah=reminder, or

ax=dx:ax/op dx=reminder)
imul op (signed ax=al × op or dx:ax=ax × op)
idiv op (signed, execution is similar to div)

loop nearaddress (decrement cx, if not zero then

go to nearaddress.)
jmp nearaddress (jump to near address)

test op1,op2 sets flags by op1 AND op2
cmp op1, op2 (compare operands for branch)
jxx shortaddress (jump for equal, above, below,

greater-than, less-than, and flag conditions)
signed and unsigned: je, jne

 signed: jg, jng, jge, jnge, jl, jnl. jle, jnle
 unsigned: ja, jna, jae, jnae, jb, jnb, jbe,jnbe
 on-flags jz, jnz, jc, jnc, js, jns, jo, jno, jp,

jpo,

call procaddr (calls near subroutine procaddr)
ret [n] (removes n bytes from stack and
returns from subroutine)
push rx - pop rx (push - pop16-bit reg. on
stack.)
pushf - popf (push - pop flags onto stack)
xchg dst,src (swaps registers dst and src)

Some ASCII control characters
07h =<BEL> (bell) ; 08h =<BS> (backspace) ;
09h =<TAB>; 0Ah =<LF> Linefeed; 0Ch =<FF>
formfeed ; 0Dh =<CR> Carriage-Return;

Printable ASCII Table:

 -0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -A -B -C -D -E -F
2- ! " # $ % & ' () * + , - . /
3- 0 1 2 3 4 5 6 7 8 9 : ; < = > ?
4- @ A B C D E F G H I J K L M N O
5- P Q R S T U V W X Y Z [\] ^ -
6- ` a b c d e f g h i j k l m n o

7- p q r s t u v w x y z { | } →→→→ ←←←←

8255 PPI Mode-0 Control Byte: b7 b6 b5 b4 b7 b6 b5 b4 b7 b6 b5 b4 b7 b6 b5 b4 b3 b3 b3 b3 b2 b1 b0 b2 b1 b0 b2 b1 b0 b2 b1 b0
(for PA, PCH, PB, PCL use 0:output, 1:input) 1 0 0 1 0 0 1 0 0 1 0 0 PA PA PA PA PCH PCH PCH PCH 0 PB PCL0 PB PCL0 PB PCL0 PB PCL

8251 USART
 Mode Register format for asynchronous mode:
b7 b6 = { S2S1: nr.of stop bits 00: invalid / 01:1stop / 10: 1.5stop / 11: 2stop },
b5 = { EP: parity type 0: odd / 1: even },
b4 = { PEN: parity enable 0: no-parity-bits / 1: parity-bits-present },
b3 b2 = { L2L1: nr.of data bits 00: 5-bit / 01: 6-bit / 10: 7-bit / 11: 8-bit },
b1 b0 = { B2B1: baud rate factor 00: sync-mode / 01: /1 / 10: /16 / 11: /64 }

 Control Register format for asynchronous mode:
b7 = { EH: Enter hunt mode 1: enable / 0: disable }
b6 = { IR: Internal reset 1: resets the 8251A }
b5 = { RTS: Request to send, 1: RTS-output-forced-to-low }
b4 = { ER: Error Reset 1: reset error flags PE,OE,FE}
b3 = { SBRK: Send break char 1: forces TxD low }
b2 = { RxE: Receiver enable 1: enable, 0: disable }
b1 = { DTR: Data terminal ready 1: DTR-output-forced-to-low }
b0 = { TxE: Transmitter enable 1: enable, 0: disable }

 Status Register format for asynchronous mode:
b7 = {DSR 1: DSR pin is active (low)}
b6 = {SY/BD 1: sync-or-break char detected}
b5 = {FE 1: Framing error detected}
b4 = {OE 1: Overrun error detected}
b3 = {PE 1: Parity error detected}
b2 = {TxE 1: Tx finished transmitting all data}
b1 = {RxRDY 1: Data-in buffer is full}
b0 = {TxRDY 1: Data-out buffer is empty}

