Eastern Mediterranean University
Computer Engineering Department

- [ox]|

'
(] = de
new open examples
CMPE323
.MODEL SM =) »
-8086 Load reload single step
.CODE
mov AX,d vagislersH 97100018
mov D5, A -
& call Inil ax [00 [oo |[o7iaD: 74 116 € = 5
MODEL 8E: F9 249 - 3
B¢ [00 |00 8F: 8h 130 & AND AN, @DFh
.8086 ; Convert 8: E@ 224 « CALL B0845h
. CODE MainLoop: | o [61 |50 LB 230 JHE oo
mov AX,@dal call Req py [o0 [o0 3: 80 128 § oUT 83%h, AL
mov DS,AX cmp AL,Q 4: FC 252 0 OUT B32h, AL
call Initu jz Mainl] €5 [o718 071153 61 097 a OUT 832h, AL
6: 72 114 r HOU AL, G48h
mov AH,A P [seee 0 @8 98 BACK OUT B33h, AL
; Convert out 24h, . W 8: 80 128 [MOU AL, BC%h
ainloce: e i |2 e R |||E B
call RecvC jb trang < |e108 B: 77 119 u oUT 83%h, AL
cmp AL,0 cmp AH, 'l g [boos C: B3 083 v RET
jz MainLoo! ja trang 9711D: 80 128 { IN AL, 632h
mov AH AL and AH,(< [ooo F: b 22 o nan, "
out 24h,AL transmitch b [ooos B: Ef 232 & || IN AL, 3@
cmp AH,'a’ call) [T 12527 a2 OUT. B24H. AL,
b transmi imp M: 1 T
) 08 T
ja transmi InitUSAF 2
and AH, ODF| xor Al \
transmitch out 3.]
call XmitC out 32h, 4
jmp MainLo ;:: 35"!, 5 . ol 1
InitUSART |4 3 "
xor AL, AL[line:18 |[col: 4 @ E‘ L]
out 32h, AL : 5 rEar— KL
out 32h, AL 87131+ § i m,ﬂfgv
out 32h, AL Rl |
mov AL, 40 scieen | soucs | resel mi ERE | om
out 32h, AL o TER
P T V- R YA T PRSP RN U | e
|] GLotketo

oe
DEG_MEN_LINEADDA=0200000
oa 225201 0000

_sea=0u0i
o ern_snmerron—n0of

L 00
0
Ou8

oCTD

4o\ [0.19]

ato.3

RO

D2
5, RP2

=

*CPEA 323 Microprocessors Lab /f Designed by Dr. Mehmet Bodur (c) 2010

CMPE323 MICROPROCESSORS LAB MANUAL

Dr. Mehmet Bodur

il

Assemblers and Development Tools for 8086 and 8051 Microprocessors

Assemblers and Development Tools for 8086 and 8051 Microprocessors 1ii

Foreword

The objective of this book is to supply sufficient guidance to exploit the tools for
developing microprocessor based design and application projects up to physical level of
the implementation. The contents of is book is a collection of the hands-on experiments to
practice several hardware/interfacing/software issues for an introductory level
microprocessor course in a Computer Engineering program.

You may find considerable amount of practical information to guide a student in using the
modern microprocessor development tools along with the classical assembly programming
environments. The material is displayed in ten experimental chapters, where the first five
experiments are mainly on the development and demonstration of software in 8086
assembly language, next three are on the 8051 hardware for microprocessor interface units
including ports, memory, analog to digital converters and serial communication ports.
Furthermore it contains two 8051 system examples with development details in higher
level languages Keil-C51 C compiler. These two design examples are expected to serve for
term assignments to an introductory level microprocessor course such as CMPE 323 in
Computer Engineering Program of the Computer Engineering Department at Eastern
Mediterranean University, where the experiments are currently carried as lab activities of
CMPE 323 course.

The author of this book is aware of lots of books concentrating on both application design
and practical issues on using microprocessors. In the perspective of the author, the shift of
the microprocessor based applications from the assembly to the higher level languages is
inevitable while the interfacing units, memory size, and processing power of the processors
are developed in Moore’s law, almost doubling at every two or three years.

Finally it is the authors pleasure to acknowledge his colleagues Dr. Mohammed Salamah
and Prof. Dr. Hasan Komurcugil who contributed to the previously given microprocessor
courses, CMPE222, CMPE 326 and CMPE328. The finalized experiments are a product of
an evolution starting from the mentioned courses.

This kind of books to guide the practical applications on diverged microprocessor
development tools are not expected to be error-free, although the author spent considerable
effort for the correction of the errors during the practical laboratory exercise of the students
who followed the included experimental procedures. The author welcomes your comments,
suggestions, and corrections for the corrected editions of these laboratory notes.

Welcome to work with the microprocessors, their languages, and their development tools.

Dr. Mehmet Bodur

v

Assemblers and Development Tools for 8086 and 8051 Microprocessors

Assemblers and Development Tools for 8086 and 8051 Microprocessors \'%

Contents

FOREWORD
CONTENTS
1. TASM, EDIT, DEBUG AND EMU8086 ASSEMBLER TOOLS
1.1 OBJIECTIVEuttiiieiitteeeiteeestteeeeeetteeesaseeaestseaeassseeasssssaeassssasasssseesasssaessssssseasssseeessssaeesnsseesansssesssssses 1
1.2 INTRODUCTIONuvieiiiieiieeetiesteeateesseessseesseeasseesseeasseessseessseesssessssessssessssessnseesssesssessssessssessssessns 1
1.2.1. Editing the SOUFCE file..............coocuiiiiiiiiiiii ittt 1
1.2.2. Assembling 10 an OBDJECE file............cooccveviiiiiiiiiiiieet e 1
1.2.3. Linking to an Executable or Command File...................cc.cccociuiiniimniiiiiiiiiiiiieeet e 2
1.2.4. Tracing and Debugg@ing of an EXE fileccocoviiiiiiiiiiiiiieiiee e 3
1.2.5. EMUSOIDEcoooooooeeeeieeeeeeeeeeeeee e ettt 4
1.2.6. EMUSOSG SOUFCE EUIOF ..ot 4
1.2.7. EMUS086 / MASM / TASM COMPALIDILILYcoeoeeeeiiaiieiieeee e 5
1.3 EXPERIMENTAL PARTcutiiiiiiiiieeiiie ettt ettt e ettt e e et e e et e e e eseaaeeesssaeaesnssaeessssseesnsssaaesssseesanes 7
131, WFItING @ SOUFCE FILE ...ttt 7
1.3.2. ASSemDIING With TASMcocoiiiiiiiiiieeeeee ettt 8
1.3.3. Assembling With EMUSOS80..............c..ccovvueiiaiiiii ettt 9
2. DATA TYPES, AND EFFECT OF ALU INSTRUCTIONS ON FLAGS
2.1 OBJIECTIVE ..ttettieeiteesiteesteestttesteessteessseessseessseassseesssaessseessseessssesssesssseessseessseesssesssseessseenssesssseensses 11
2.2 PRELIMINARY STUDYeietiietieeieeeteeeteeetreesseeeseeesseessseesseessesessessssssessessssssessessssssessesssssesssessses 11
2.3 EXPERIMENTAL PART.....cctiiiitieiieeiie ettt ette ettt et et e et eeteessbaeensaeestaeensaeensseenseeensseenseennnes 11
2.3.1. Data types and DAta diTECIVES..............c..cccueevueeeeeieiieeiieeeeieeeereesteesseesveesseesbeesseesseesaee e 11
2.3.2. ALU Operations And FIAZS..............cc.cccocieviiiiiiiiiiiieiieeeeee ettt 13
3. SIMPLE VIRTUAL 8086 DEVELOPMENT BOARD
3.1 OBJIECTIVEuttitiettiieeeitteeeiteeeesitaeeeestseeessesesaasssstaeasssaeessssaeaasssseeasssessssssesssssessasssseesssssessssssesennes 15
3.2 INTRODUCTIONttiiiiiiiieeiiieeeeiiteeeetteeeesireeessstseaaesssaeessseaeaassseesassssesssssaeasssseeeasssseessssseessssesennes 15
3.2.1. 8086 aNnd MAIN MEMMOTY ...ttt et 15
3.2.2. 8086 ProcCesSOr BUSccoooiiieiieiiieee e 15
3.2.3. Address LAICHINGccoociiiiiieiiieee ettt 16
3.2.4. System CORIGUFALIONcc.oeeiiieiiieie ettt ettt ettt 16
3.2.5. IO Address deCOdINGcoccouueiieiiiiiie ettt 16
3.2.6. Simple QUIPDUE POTE ULcoooocuiiiiieiiiesie ettt tae et aae e tveasaeetaeasaeenseas 18
3.2.7. Simple Input Ports UA GNA UB............c...ccoueviuieiiieeiiieeieecie e eeiee ettt saae e 18
3.2.8. Serial Communication DeEVICe..............c..c....oouueeieeeeiieeieeiiieee et 19
33 EXPERIMENTAL PART......utiiiiiiiiieeiiie ettt e eettee ettt e e et e e e svtaeesstveeeesssaeeessssaeesnsseasesssesensssaeessseeens 21
3.3.1. Execution of a code on a virtual 8086 SYSIEM...............ccccoevueriririiniiiaieieieene et 21
3.3.2. Adding Port UA and Port UB.............ccccccciiiiiiiiiiiiiieieeeeee sttt 22
3.3.3. USART and Capit@liZALIONc.cccoeeieieeiiiieiieeiieee ettt nne e es 23
4. BIOS AND DOS SERVICES
4.1 OBJIECTIVE ...uttiiiettiteeetteeestteeeesitteeeestseeeseseeeasssseaeasssaeessssaeaassssesassseessssaesassseesassssesssssseeesnssesennes 29
4.2 PRELIMINARY STUDYtietiiitteeieeeteeeteeeteeesseessseeesseessesessesssssessessssssessessssssessessssssessesssssssssessses 29
4.3 EXPERIMENTAL PART.....ccctiiiiiieiieeite ettt eiteeite et e eite et eeaee et eetee s baeensaeessaeensaeensseenseesnsseenseennses 29
4.3.1. DOS services for String Display and INPUL..................ccocovioiiiiiiiieiiiieie et 29

4.3.2. Subroutines and INCIUAE fIlES...............c..cccoveriieiiieiiiieeie ettt 31

Vi

Assemblers and Development Tools for 8086 and 8051 Microprocessors

5. USING SIGNED NUMBERS AND LOOK-UP TABLES 35
5.1 OBIECTIVEutettiitiieiitenit et ettt et ett sttt et esa e s aae st e saeesaeemtteat e easeeasesue e bt enseesaeensesanesaeenseenseennens 35
5.2 PRELIMINARY STUDY ...eitttiiiieiittteniteetteesite ettt esitesbteesttesbeeesseessbaeanstesbaessseesnbaesnseesnbeesnseesseesseess 35
53 EXPERIMENTAL PART ..ottt ettt ettt ettt ettt s et e st e et esabeeenneesabaesnnee s 35

5.3.1. Macro Library for BIOS and DOS SErviCes..............cccccueeririimiiriiiiiiiienieniae st 35
5.3.2. Average by Signed Arithmetic OPEFratiONsSccccevueririiiiiiiiiieieiene et 38
5.3.3. Look-Up Table for the Square Root of an INteger.cccccuauemieiienianiieieseseeeeee 39
5.3.4. Simple Look-Up Table for Fibonacci NUMBEFS.c...cccocvoveeiiiniereniiieeieeeie e esve e 40

6.1/0 AND EXTERNAL MEMORY INTERFACE FOR 8051 45
6.1 OBIECTIVE ...ttt ettt sttt sttt ettt ettt te s b e b et e et e e aee s et e shee st e emteemt e eateebeeeb e e beenbeembeemeesatesaeenbeenseenneans 45
6.2 INTRODUCTION ...ttt ettt ettt ettt e bt ettt s e shee st e et e eat e eateebeesb e e been bt embeemeeseeeseeenbeenteenneans 45

0.2.1. TYDICAL JEATUTES ... ettt e e st e et e e st e e saseessbeesnseessbeennseeans 45
0.2.2. REZISTOFS ...ttt e 45
0.2.3. IRSIFUCIION S€E ...ttt ettt ettt et 47
6.2.4. TRE BOS5I POFES ... e ettt et e e eae e eaeeans 48
6.2.5. Command line AsSembler fOr 8051cccocouiriiiiiiiiiiiiiiii et 48
6.2.6. IDE T00l for Coding Of 8O51ccooouiiiiiiiiiiitiieieeee ettt 49
6.2.7. Simulation in ISIS.............cccccoooiieieeeee e 50
6.3 EXPERIMENTAL PART ...ttt ettt sttt ettt st st sae et e bt et eeeesbeenbeenean 50
6.3.1. Installation of AS1 t0 your Work fOlAercccoovieeciiiiiieiii it 50
6.3.2. Simulation of a Microcontroller CiFCUIL...............cccueeeveeceeiciieecie e et sbeesnee e 52

7. 8051 MEMORY DECODERS AND MEMORY INTERFACE 55
7.1 OBIECTIVE ...ttt ettt ettt ettt et te s b e s bt et e et e s e et s et e she e s bt e bt emteem e e ebeeebe e been bt emteemeeaaeeseeenseenteenteans 55
7.2 8051 MEMORY INTERFACING ...cecutteeutieetieetieettestteeieesbeeeteesbeeesseessbaeanseesbeeenseesbaeenueesseeenseesnne 55
7.3 EXPERIMENTAL PART ..ottt ettt ettt et et sttt sttt e st e st e sabeeenneesabeeennee s 55

7.3.1. Installation of KC51 and preparation of - HEX filesc.ccccocuocvniiniinininiiicnencnene 55
7.3.2. Simulation of 8051 with EXternal Memory...............cccccocuivirciiiiiiiioiiininieneeest e 57

8. 8051 MEMORY MAPPED I/O AND 8255A INTERFACING 61
8.1 OBIECTIVEutittiieiie ittt et ettt et ette sttt e b et saeesaeesueesaeestteateeasesasesuee bt enseesaeeasesanesaeenseenseennens 61
8.2 8051 EXTERNAL IO INTERFACINGeeertietieniieiteattesttenteete et eeesiteseee st e e enteentesteesbeenbeenseemaesneesae 61
8.3 EXPERIMENTAL PART ...ttt ettt ettt ettt st st sae ettt et eaeesbeenbeenean 61

8.3.1. Memory Mapped I/O iRIETfUCING.............cccoeveiiiiiiieeeeee ettt 61
8.3.2. Interfacing 8255 to 8051 Microcontroller.ccccovciiviiiiiciiniieiieiee e 64
8.3.3. Interfacing 8086 t0 G SIEPPEFr MOTOF.cccoueieirieiiei et 66
9. DESIGN AND CODING OF AN INTELLIGENT RESTAURANT SERVICE TERMINAL 69
9.1 OBIECTIVEutettiieiie ittt et ettt et ette st et e bt esaeeaae st e sueesaeemttest e easeeasesue e beenseenaeeasesanesaeenseenseennens 69
9.2 INTRODUCTION ...ccutiiiiiiitinitenitett ettt ettt et ettt ettt sae et eat e eas e st e sbeesbe et esneeanesanesaeenseenseennens 69
9.2.1. Installing KC51 0N YOUF AFIVe.........ccccoccuiririiiiitiiiieieeeeet ettt 69
9.2.2. Starting a 8051 or 8052 project in KCS51ccccocoeiiiiiiiiiiiiiiiniiiiiiteeeeeeee e 69
9.2.3. LCD AiSPIAY ..o e 70
924, S IALPOFL ...t 72
9.2.5. ADC GRIEFIACING ..ottt ettt 73
9.2.6. Switches and Operation Of the SYSIEM...........c...cooueivuieeieeiiiieeieeeii et sae s 74
9.3 ABOUT KEIL C51 COMPILEReettiuiieiitiitesitenteestt et ettt ettesteesteeteensesstesateseeesaee st enteensesseesseenseenseas 75
9.4 DESIGN REQUIREMENTSuuuttvtiiieeeiiiiieeeeeeeeeieiuereeeeeeseesasreeseesssesssseessesssssisssesssessssssssessessssmnsnees 75
9.5 REPORTING ...ttt ettt sttt ettt et e b e s b e b e et et e e e bt e et e sbeesae e bt embeenteeseeebeenbeenbean 77
10. DESIGN AND CODING OF AN INTELLIGENT HUMAN WEIGHT SCALE 79
10.1 OBIECTIVEutettiiteie it estt et et ettt et stee st e bt et eaaesaeesaeesaeemteest e easeeasesuee bt enseesaeeasesanesaeenseenseenneans 79
10.2 INTRODUCTION ...cctiiiiiiitiniteitett ettt ettt ettt et st e sae bt eat e eanesasesueesbe et esseeanesanesaeenseenseennens 79
10.2.1. Installing KCS51 00 YOUF AFIVE............c.cccueieeiieieiee ettt 79
10.2.2. Starting a project in KC51 for 8051 or 8052 PrOJects........c..ccueceeeeeeeeieaieaieeeneeeeeen, 79
10.2.3. LCD diSPIAY ...t ettt 79
10.2.4. Yo 177 o) USSR 79
10.2.5. ADC TRICFIACITG ...ttt ettt ettt nnees 79

Assemblers and Development Tools for 8086 and 8051 Microprocessors vil

10.2.6. Switches and Operation Of the SYSTEMLcc.occeeeceeiiiieeieeeie e 79
10.3 ABOUT KEIL C51 COMPILERcuutiitieiiieiiieeieeeiteeite sttt esitesbteesteesbaesaeesbeeeseesbaeenseesnbeeenseesnses 79
10.4 DESIGN REQUIREMENTS.......ceitiuttttteeeeeeiiiueeeeeeeeeeeiarreeeeeeeeesiasseseeeeeeesisssseseseeeeesssseseeeeeessssrreseseeens 80
10.5 REPORTING ...ceitieiiie ittt ettt ettt sttt et et e bt et e s bt e e bt e s beeenbeeeabeeenbeeeabaeenbeeenbaeenseesanes 81
11. APPENDIX
COMPLETE 8086 INSTRUCTION SET ..c..uuteruteenitieruteeniteesiteenieeesseessseesseessseesseessseesseessseesseessseesseessseessessnes 83
MICIONICS ... e et e e e e 83
OPC AN TYPES . oottt eet et e et e et e ettt e s ab e e e abe e e abeeesbeeeabeeeabeeeabeeenseesabeesnseeesteeanseennseas 83
INOLES: ... e 83
Instructions in AlPRADELICAL OFAEY:c..cccoeviiiiiiiieeieeeie ettt et stae s en 84

SUMMARY SHEET FOR ASSEMBLY PROGRAMMINGcuvveiiiiiiiiiiieeieeeeeeiiiiereeeeeeeeeiaeeeeeeessesssnneeessessesnnneeeees 96

83

viil Assemblers and Development Tools for 8086 and 8051 Microprocessors

1.
TASM, EDIT, DEBUG
and Emu8086 Assembler Tools

1.1 Objective

TASM is one of the well known 8086 Assembler programs. This experiment will
introduce you TASM, its input, and output file types.
Our objective covers hands-in experience to use

“Notepad” to create an assembler source file,

“TASM” to assemble the a source file into an object code

“TLink” to link an object code into an executable file.

“TD” and “Emu8086” debuggers to trace an executable file.

1.2 Introduction

Assembly language is the lowest level of symbolic programming for a computer system. It
has several advantages and disadvantages over the higher level programming languages.
Assembly language requires an understanding of the machine architecture, and provides
huge flexibility in developing hardware/software interface programs such as interrupt
service routines, and device drivers. 8086 Turbo Assembler is one of the well known
assembler programs used for PC-XT and AT family computers.

1.2.1. Editing the source file

The source for an assembly program is written into a text file with the extension -.ASM, in
ASCII coding. Any ASCII text editor program can be used to write an assembly source
file. We recommend to use NOTEPAD as a general purpose text editor, or the source
editor of the Emu86, which is especially tailored to write 8086 Flat ASM sources for your
experiments.

1.2.2. Assembling to an object file

Once the source file is ready for assembling, you will

need TASM program to be executed on the source |&

file. TASM is a quite old program, written for DOS | I erritaa T WL LR ar L
environment. Indeed, in most embedded system | /SRR,

application DOS operating system is preferred over
Windows because Windows is unnecessary, too
bulky and too expensive for most embedded
applications. In the Windows operating system, you
can invoke a DOS command window by running the “CMD.EXE” executable. Figure 1
shows a Command Window, with its typical cursor. You may change the font and the
colors of the Command window by the defaults and properties dialog which is opened with
a left-click on the windows title. Colors such as screen text black on white, popup text blue
on gray, and fonts Lucida-Console 18 point will make your command window much
more readable. Whenever you want, you can use CLS command of DOS to clear the
screen and the screen buffer.

Figure 1. A typical Command
Window in the Windows
Environment.

2 Assemblers and Development Tools for 8086 and 8051 Microprocessors

The Turbo Assembler program (TASM.EXE) can be started in the command window by
writing TASM <source-file-name> , and transmitting it to DOS using the“ENTER” key.

The full syntax of TASM command is:
>TASM [options] source [,object] [,1listing] [,xref]

TASM command line options are shown in Table 1.
Table 1. Possible Switches of the Turbo Assembler Program.

/a,/s Alphabetic or Source-code segment ordering

Ic Generate cross-reference in listing

/dSYM[=VAL] Define symbol SYM = 0, or = value VAL

le,lr Emulated or Real floating-point instructions

/h,/? Display this help screen

[iPATH Search PATH for include files

/jCMD Jam in an assembler directive CMD (eg. /[IDEAL)
/kh#,/ks# Hash table capacity #, String space capacity #

/l,/1a * | Generate listing: I=normal listing, la=expanded listing
/ml,/mx,/mu Case sensitivity on symbols: ml=all, mx=globals, mu=none
/n Suppress symbol tables in listing

/p Check for code segment overrides in protected mode
It Suppress messages if successful assembly
/wO0,/w1,/w2 Set warning level: wO=none, wi1=w2=warnings on
IW=XXX,/W+XXX Disable (-) or enable (+) warning xxx

Ix Include false conditionals in listing

Iz Display source line with error message

/zi,/zd Debug info: zi=full, zd=line numbers only

In DOS and Assembly programming, the names are not case-dependent, which means
writing TASM FIRST, Tasm first, tasm FIRST or tasm firST does not make any
difference.

Assume that you have written the following simple assembly program into a text file with
the name first.asm. To assemble it into first.obj file, you shall simply write the command

>tasm first

1.2.3. Linking to an Executable or Command File

The object files contains the program code but some of the labels are still in symbolic
form. A linker converts them into the executable file replacing all symbols with their
corresponding values. The use of library procedures, and splitting the large programs into
modules are possible since a linker can calculate a label referred from a different object
file. The file first.obj is converted to an executable by the DOS command

>tlink first
Figure 2 shows typical command window message after tasm and tlink is executed.

Assemblers And Development Tools For 8086 And 8051 Microprocessors 3

e+ G:\328\LNotes\First\cmd.exe

Microsoft windows XP [Version 5.1.2600] =
(C) Copyright 1985-2001 Microsoft Corp.

G:\328\LNotes\First>tasm first
Turbo Assembler Version 1.0 Copyright (c) 1988 by Borland International

Assemb1ing file: FIRST.ASM
Error messages: None

[Warning messages: None
Remaining memory: 455k

G:\328\LNotes\First>tlink first
Murbo Link Version 2.0 Copyright (c) 1987, 1988 Borland International

G:\328\LNotes\First>
Figure 2 Command Window after tasm and tlink are executed.

After running Tlink, you shall find the executable file first.exe in your working folder.
First.exe terminates with a return to DOS interrupt, without giving any message. An
assembly debugging tool can trace what happens during the execution of the first.exe file.

1.2.4. Tracing and Debugging of an EXE file

Turbo Debugger, td.exe, is an 8086 debugging tool which gives a convenient view of the
CPU status, and the memory segments. The command line syntax of TD has options,

program-file-name, and arguments
>TD [options] [program [arguments]] -X- = turn option x off
The options of td.exe is shown in Table 2.

Table 2. Command Line Options for Turbo Debugger TD.EXE

-c<file> Use configuration file <file>

-do,-dp,-ds | Screen updating: do=Other display, dp=Page flip, ds=Screen swap
-h,-? Display this help screen

-i Allow process id switching

-k Allow keystroke recording

-| Assembler startup

-m<#> Set heap size to # kbytes

-p Use mouse

-r Use remote debugging

-rn<L;R> Debug on a network with local machine L and remote machine R
-rp<#> Set COM # port for remote link

-rs<#> Remote link speed: 1=slowest, 2=slow, 3=medium, 4=fast
-sC No case checking on symbols

-sd<dir> Source file directory <dir>

-sm<#> Set spare symbol memory to # Kbytes (max 256Kb)

-sn Don't load symbols

-vg Complete graphics screen save

-vn 43/50 line display not allowed

-vp Enable EGA/VGA palette save

-W Debug remote Windows program (must use -r as well)
-y<#> Set overlay area size in Kb

-ye<#> Set EMS overlay area size to # 16Kb pages

4 Assemblers and Development Tools for 8086 and 8051 Microprocessors

=+
- File Edit View Run Breakpoints Data Options window

:0000»B8735B ax 0000 c=0
cs:0003 BED8 mov ds,ax bx 0000 z=0
cs5:0005 AQ0600 mov al, [0006] cx 0000 s=0
cs:0008 S8ALEO700 mov b1, [0007] dx 0000 o=0
cs:000C 02C3 add al,bl si 0000 p=0
cs:000E A20800 mov [0008],al di 0000 a=0
cs5:0011 B44C mov ah, 4C bp 0000 i=1
€s:0013 cp21 int 21 sp 0040 d=0
¢s:0015 005225 add [bp+si+25],d1 ds GB6Z
cs:0018 0000 add [bx+si],al es 5B62
¢s:001A 0000 add [bx+si1],al ss SB74
cs 0000 [bx+si],al cs 5B72

0000 [bx+si],al ip 0000
RC
ds:0008 1D FO E4 01 13 22 AE 01 s-0ell"«e
ds:0010 13 22 80 02 6E 1C DC OD !""GCenLg) s5:0042 0000
ds:0018 01 01 01 00 02 FF FF FF ooe @ 55:00400-0000

Figure 3. The turbo debugger started with first.exe file.

Entering the command
>td first

into the command window will start the debugger to load the executable first.exe to its
memory space. The screenshot of TD is shown in Figure 3. In Turbo debugger, you can
execute the instructions step by step and trace the execution of the code. Any message
written to the screen will invoke the screen display mode to let you observe the message.

1.2.5. Emu86 IDE

An Integrated Development Environment (IDE) provides a convenient environment to
write a source file, assemble and link it to a -.COM or -.EXE file, and trace it in both
source file, and machine code. Emu86 is an educational IDE for assembly program
development. You can download the latest student version of EMU86 from the web page
www.emu8086.com. It is a Windows program, and will run by dragging an -.ASM, -
.OBJ, -.LST, -.EXE , or

-.COM file into the emu86 shortcut icon. By this action, asm or Ist files will start the 8086
assembler source editor, while obj and exe files starts the disassembler and debugger units.

1.2.6. EMUS8086 Source Editor

The source editor of EMUS86 is a special purpose editor which identifies the 8086
mnemonics, hexadecimal numbers and labels by different colors as seen in Figure 4.

{5 edit: G:\328\LNotes\First\First.asm

fle edt bookmarks assembler emuator math asdicodes help
0O = D " B » »
new open examples save compile emulate | calodator convertor | options help about
_MODEL SMALL = [
-STACK 64 =
.DATA
DATAL DB 52H Azzembled in 2 passes. Time spent: 0.016 seconds.
DATA2 DB 25H entry point not set!

SUM DB ? "First.exe" is compiled successfully into 613 bytes.

_ B

. CODE
MAIN PROC FAR ;program entry point PR e g
MOV AX,@DATA datalccament Listing is save_d. Flrst.escg.llst B
MOV DS .AX . gbes into DS L Symbol table is saved: "First.exe.symbol
MOV AL ,DATAL ;First number
ADD AL,BL ;add them
MOV SUM, AL ;store to SUM
MOV AH,4CH ;Exit to DOS
INT 21H
MAIN ENDP

END MAIN| - View...
. LIJ —_— close
external... run

ine: 18 [cols 10 drag a file here te open

a) b)
Figure 4. a) EMUS8086 Source Editor, and b) assembler status report windows.

Assemblers And Development Tools For 8086 And 8051 Microprocessors 5

The compile button on the taskbar starts assembling and linking of the source file. A report
window is opened after the assembling process is completed. Figure 5 shows the emulator
of 8086 which gets opened by clicking on emulate button.

i.; emulator: First.exe_

fle math debug wiew external virtual devi

= ‘ \} » | !
Load reload H run step delay ms: 400
CEodee [e715:0000 [o715:0000
#x [0 [oo - MOV AX, 00714h
MOV DS, AX
o CNET MOV AL, [00000h]
x [o8 [65 o MOV BL. [00001h]
R 07154:- ADD AL, BL
o TN | SCAhs MOV [00002h1, AL
LS (8715 8;%2? NUL MOV agihoﬁ‘lch
IP [T e L) = NUL INT
- 07158: 5 _|| NopP ||
ar1e 07159: 1E 030 O NOP
5P |oono 0715A: 01 001 O NOP
5> [eees || 0715B: 00 000 NuL || NOP
0715c: 02 002 O NOP
§i |oeoe 0715p: ¢3 195 A NOP
Dl |eoe8 0715e: A2 162 ¢ NOP
o5 [sres || O715F: 02 002 0 | ... i

ES 6700 sCIeeh | snurce| reset | Al | varg | debug| stack | flags |

Figure 5. first.exe in the emulator window of EMU8086 debugging environment
Emul8086 environment contains templates to generate command and executable files.
Another benefit of Emul8086 is its emulation of a complete system, including the floppy
disk, memory, CPU, and I/O ports, which raises opportunity to write custom bios and boot
programs together with all other coding of a system. More over, its help is quite useful
even for a beginner of asm programming.

1.2.7. EMU8086 / MASM / TASM compatibility

Syntax of emu8086 is fully compatible with all major assemblers including MASM and
TASM; though some directives are unique to this assembler.
1) If required to compile using any other assembler you may need to comment out these

directives, and any other directives that start with a '# sign:
#make_b1in#
#make_boot#
#cs=...#

etc...
2) Emu8086 ignores the ASSUME directive. manual attachment of CS:, DS:, ES: or SS:
segment prefixes is preferred, and required by emu8086 when data is in segment other

then DS. for example:
mov ah, [bx] ; read byte from DS:BX
mov ah, es:[bx] ; read byte from ES:BX

3) emu8086 does not require to define segment when you compile segmentless COM file,
however MASM and TASM may require this, for example:

name test
CSEG SEGMENT ; code segment starts here.
ORG 100h
start: MOV AL, 5 ; some sample code...
MOV BL, 2
XOR AL, BL
XOR BL, AL
XOR AL, BL
RET
CSEG ENDS ; code segment ends here.

END start ; stop compiler, and set entry point.

6 Assemblers and Development Tools for 8086 and 8051 Microprocessors

4) entry point for COM file should always be at 0100h, however in MASM and TASM you
may need to manually set an entry point using END directive even if there is no way to
set it to some other location. emu8086 works just fine, with or without it; however error
message is generated if entry point is set but it is not 100h (the starting offset for com
executable). the entry point of com files is always the first byte.

5) if you compile this code with Microsoft Assembler or with Borland Turbo Assembler,
you should get test.com file (11 bytes). Right click it and select send to and emu8086.
You can see that the disassembled code doesn't contain any directives and it is identical
to code that emu8086 produces even without all those tricky directives.

6) emu8086 has almost 100% compatibility with other similar 16 bit assemblers. the code
that is assembled by emu8086 can easily be assembled with other assemblers such as
TASM or MASM, however not every code that assembles by TASM or MASM can be
assembled by emu8086.

7) a template used by emu8086 to create EXE files is fully compatible with MASM and
TASM.

8) The majority of EXE files produced by MASM are identical to those produced by
emu8086. However, it may not be exactly the same as TASM's executables because
TASM does not calculate the checksum, and has slightly different EXE file structure, but
in general it produces quite the same machine code. There are several ways to encode
the same machine instructions for the 8086 CPU, so generated machine code may vary
when compiled on different compilers.

9) Emu8086 integrated assembler supports shorter versions of byte ptr and word ptr,
these are: b. and w. For MASM and TASM you have to replace w. and w. with byte ptr
and word ptr accordingly.

for example:
Jea bx, varl
mov word ptr [bx], 1234h ; works everywhere.

mov w.[bx], 1234h ; same 1instruction / shorter emu8086
syntax.

hlt

varl db O

var2 db O

10) LABEL directive may not be supported by all assemblers, for example:
TEST1 LABEL BYTE

LEA DX,TEST1
the above code should be replaced with this alternative construction:
TEST1:

MOV DX, TEST1
the offset of TESTI is loaded into DX register. this solutions works for the majority of
leading assemblers.

Assemblers And Development Tools For 8086 And 8051 Microprocessors 7

1.3 Experimental Part

In this experiment you will use TASM, TLINK, and EMUS8086 to generate an executable
from an assembly source, and to trace the step-by-step execution of the executable in TD
debugger and in EMUS8086 emulator

1.3.1. Writing a Source File

Objective: to practice writing and editing an ASCII assembly source file using notepad.
Procedure: Generate a folder asm. Copy the files tasm.exe, tlink.exe, td.exe into asm
folder. Generate a working folder with name expl, and start a text file in your working
folder In the explorer while folder is open

- click on right button of mouse, and

- select new, select text document. “New Text Document.txt” will be generated.

- Rename it “expl.asm”
Now, you have an empty text file, with the name expl.asm. Use windows-start > all-
programs > accessories > notepad to open the Notepad text editor. Drag the file
expl.asm to the title-bar of the Notepad. The title will change to expl.asm — Notepad. It
means that you successfully opened the file expl.asm for editing in notepad. Write the
following source program into the edit window.

------ file: expl.asm-----
; STUDENT NAME and SURNAME:
; STUDENT NUMBER:

TITLE PROG2-2 (EXE) PURPOSE :ADD 4 WORDS OF DATA

PAGE 60,132
.MODEL SMALL
.STACK 64
’
.DATA
DATA_IN DW 234DH,1DE6H, 3BC7H, 566AH
ORG 10H
SUM DW ?
’
. CODE
MAIN PROC FAR yTHIS IS THE PROGRAM ENTRY POINT
MOV AX,@DATA ;Toad the data segment adress
MOV DS, AX ;assign value to DS
MOV CX,04 ;set up loop counter Cx=4

MOV DI,OFFSET DATA_IN ;set up data pointer DI
MOV SI,OFFSET SUM

Mov BX,00 ;initialize BX
ADD_LP:
ADD BX, [DI] ;add contents pointed at by [DI] to BX
INC DI ;increment DI twice
INC DI ;to point to next word
DEC CX ;decrement loop counter
IJNZ ADD_LP ;jump if Toop counter not zero
[0)V) SI,OFFSET SUM y SI points SUM
MOV [s1],BX ;store BX to SUM in data segment
MOV AH,4CH ;set up return
INT 21H ;return to DOS
MAIN ENDP
END MAIN ;this is the program exit point
------ end of file ------

Use tabs to start the mnemonics at the same column.

Reporting:

8 Assemblers and Development Tools for 8086 and 8051 Microprocessors

Start a text file (you may use notepad) with name expl.txt. Fill in the following
title to your text file.

CMPE 323 Experiment-1 Report. <your name surname, student number>
PART1 Assembly source file

Copy-and-paste your expl.asm into your report file.
; STUDENT NAME and SURNAME: ALI VELI
; STUDENT NUMBER: 012345

TITLE PROG2-2 (EXE) PURPOSE :ADD 4 WORDS OF DATA
PAGE 60,132
.MODEL SMALL

Keep your report file in a safe place until you complete the experiment and e-mail it to the
specified address.

1.3.2. Assembling with TASM

Objective: Assembling the source file with TASM, and tracing it in TD.
Procedure: You have already written the source file expl.exe .
- Organize a folder structure such as
ASM folder contains
files TASML.EXE, TLINK.EXE, and TD.EXE.
folder exp1, which contains expl.asm and expl.bat.
-Edit expl.asm to contain the complete source text by copy and paste.
Fill your student name and number to the first two lines.

-Edit exp1.bat to have the following text lines in it.
..\tasm -1 expl

pause
..\tlink expl
pause

..\td expl
pause

-Click on expl.bat to execute assembler. You will observe a DOS window opened, and
tasm executed on expl.asm, with the list option active. DOS window will pause and
will allow you to read the messages generated by TASM. You will observe
expl.obj, expl.lst, and expl.map files generated in folder expl.

-If you press on space-bar, bat file will continue to execution, and it will execute the
linker tlink on exp1.obj. Tlink will generate exp1l.exe file into the exp1 folder. Batch
file will pause until you press the space-bar.

-Press the space-bar again to execute turbo debugger on expl.exe file. In the debugger,
you can trace the execution by executing each line of the assembly program stepwise.

Reporting:
In td read the hexadecimal contents of the program code expl.exe (28 bytes), and the
contents of the memory location cs:0009. Start PART2 in your report file, and fill in (as text,

i.e., A3 02 etc)
PART2
B8 68 5B 8E D8 ...
cs:0009 contains

Then open expl.Ist, which is generated by turbo assembler in a text editor (notepad).
Copy-and-paste the first page of the listing into your report file

expl.lst contains ----------—--——-e——o———o

Turbo Assembler Version 1.0 01/13/11 11:32:32 Page 1
EXP1.ASM

1 ; STUDENT NAME and SURNAME:

2 ; STUDENT NUMBER:

3
4 0000 .MODEL SMALL

Assemblers And Development Tools For 8086 And 8051 Microprocessors 9

(55 0000 .STACK 64
7 0000 ’ .DATA
g 0000 234D 1DE6 3BC7 566A DATA_IN DW 2%60H,1DE6H,3BC7H,566AH
ORG 10H
%(1) 0010 7?7?77 SUM DW ?
12 0012 ' . CODE
13 0000 MAIN PROC FAR ;THIS IS THE PROGRAM ENTRY POINT
14 0000 B8 0000s MOV AX, @DATA ;load the data segment address

Save your report file in a safe place until you complete the experiment and e-mail it to the
specified address.

1.3.3. Assembling with Emu8086

Objective: Assembling a source file with Emu8086 assembler/emulator
Procedure:

-Start Emu8086, and close the welcome window. Use “open” in taskbar to start the file
browser. Select the folder exp1, and open expl.asm.

-Emu8086 cannot use title, page, and org directives. Put a semicolon to make them a
comment line. Then, use emulate in taskbar to assemble, and start the emulator
window with the expl.exe.

-Use the taskbar-button “single step” to execute each line of the assembly source.

Reporting

In PART3 of your report answer the following questions in full sentences.

a) How many times the loop passes through the add instruction?

b) What is the effective address of the add instruction in the code segment?

After completing the experiment, write an e-mail that contains

Please find the attached report file of experiment 1.
Regards.
012345 Ali veli

attach the report file to the e-mail and send it
- from your student-e-mail account
- to the e-mail address cmpe323lab@gmail.com
- with the subject: ”exp1”.
Late and early deliveries will have 20% discount in grading. No excuse acceptable.

10

Assemblers and Development Tools for 8086 and 8051 Microprocessors

11

2.

Data Types,
and Effect of ALU instructions
on Flags

2.1 Objective

The aim of this experiment consists of

1- Experimenting with data types, and assembler directives.
ii- Observing the effect of ALU instructions on flags.

1ii- Exercising some DOS interrupt services.

2.2 Preliminary Study

Before attending the lab, study from Mazidi&Mazidi textbook
- Section 1.4 and 2.5 to understand the data types and directives.
- Section 1.3, 1.4, and 1.5 to understand the MOV and ADD instructions, and the flags.

2.3 Experimental Part
2.31. Data types and Data directives

Objective: to observe the coding of several data types in various formats.
Procedure-1:
- Organize a folder structure such as
ASM folder contains
files TASM.EXE, TLINK.EXE, and TD.EXE.
folder exp2, which contains exp2p1l.asm and exp2p1.bat.
-Edit exp2p1.asm to contain the following source text by copy and paste.
Fill your student name and number to the first two data items.

---file exp2pl.asm------
.model small
.stack 64
.data
datal db 'Name-Surname'
data2 db 'Number'
data3 db 45, 4ch
data4 dw 0123, 0123h
data5 dd 3, 2 dup(5)
data8 db 'Hello world! $'
.code
mov ax,@data
mov ds,ax
mov dx,offset data8
mov ah,
int 21h ; displays message
mov ah,4ch
int 21h ; return to dos
end

In this program, data8 is a DOS screen message, and all DOS screen messages
shall terminate with a “$” character. data8 contains the ASCII message string
to be printed on the screen. mov dx,offset data8 loads the offset of data8 in

12 Assemblers and Development Tools for 8086 and 8051 Microprocessors

ds into dx. mov ah,09h determines “print the pointed string to the screen”
service among many other DOS int 21h services. Similarly, ah=4ch selects
“exit to DOS” service among many int 21h DOS services.
- exp2pl.bat should have the following text lines in it.

..\tasm -1 exp2pl

pause

..\tlink exp2pl

pause

exp2pl

pause

- Execute the batch file, and press space bar to proceed with tlink and exp2pl.
You will observe the message “Hello world” written on the dos command
window before pressing the space bar for the third pause.

- Open the exp2pl.Ist file in notepad to observe how the data directives place the
data items into the reserved memory locations in the data segment (First start
notepad, then open the file from browser, or drag the file into notepad
window). You will observe the followings in the list file.

Observations-1:
1- The quoted strings are converted to ASCII coding. Check the coded

characters against the following printable ASCII character table.

-0(-1(-2(-3(-4|-5|-6|-7|-8|-9|-A|-B|-C|-D|-E|-F
2- VI #18 (% &]"[CID)|*[+|,]-|.1|/
3-10]1]12([3[4]|5[6[7]8|9[:];]<|[=[>]7
4-1@|A|B|C|[D|E|F|{G|[H|[TI[J[K|IL[M[N|O
5-lP|Q|R[Ss|T|u|v|w|[XxX|Y[|[Z[L[I\N[]I[A]-
6-| |[a|[b|c|d|e|[f|lg|lh|[1]] IIm|n]o
7-lplaglr|s|t|lu|lv|w|x|yl|lz|{]|l|]|}|->]|«

2- db directive codes the numbers in single bytes, in the listed order.

3- dw directive codes the numbers in two-byte groups, in little endian
convention.

4- dd codes the numbers in four-byte groups, in little endian convention.

5- dup() codes repeated number of data into data area. In the list file data is
shown by dup() function. However, sufficient number of bytes are
allocated for the duplicate data.

Reporting:
1- Start a text file with the name exp2.txt.
2- Write the Report Title in the following format

CMPE328 Experiment 2, Report file by <name surname studentnr>
Part 1

2- Copy the data definition lines (datal ... data8) from Ist file to exp2.txt.
3- Save the text file to report the coming report item.

Procedure-2:

1- Open exp2pl.exe in td (i.e., first start td.exe, then open the file exp2pl.exe in
td).

2- Right click on ds, and change its contents to the immediate value of the first
instruction in the code segment (i.e, for mov ax,5B68 make ds=5B68h.)

3- Click on view > dump to open the data segment window.

4- Right click on command window title-bar. From the pop-up menu click edit-
mark.

Assemblers and Development Tools for 8086 and 8051 Microprocessors 13

5- Drag the mouse while left-clicked on data-segment dump window, to mark the
ds- dump from your name to hello world message (including both lines as well).

6- While the marked area stays on the dump window, right-click on command
window title-bar, and click edit-copy in the pop-up window. Then open exp2.txt
in notepad, and use paste to transfer the copied text into exp2.txt. Your text will
be similar to the following, however it will be different in some fields and
addresses.

Typical exp2.txt file after Procedure-2, step-6
CMPE328 Experiment 2, Report file by <name surname studentnr>

Part 1
4 0000 4E 61 6D 65 2D 53 75 + datal db 'Name-Surname'
5 72 6E 61 6D 65
6 000C 4E 75 6D 62 65 72 data2 db 'Number'
7 0012 2D 4C . .. data3 db 45, 4ch
8 0014 :007B Q123 : data4 dw 0123, 0123h
9 0018 00000003702%* + data5 dd 3, 2 dup(5)
10 (00000005)
11 004A 48 65 6C 6C 6F 20 77 + data8 db 'Hello world! §'

12 6F 72 6C 64 21 20 24

ds:0000 4E 61 6D 65 2D 53 75 72 Name-Sur
ds:0008 6E 61 6D 65 4E 75 6D 62 nameNumb

ds:0010 65 72 2D 4C 78 00 23 01 er-L{ #?
?

ds:0018 03 00 00 00 05 00700 007 /
ds:0020 05 00 00 00 03 00 00 00 ? ?
ds:0028 00 00 00 00 14 31 82 00 11é
ds:0030 00 00 00 00 00 00 21 00 !
ds:0038 00 00 00 00 00 00 00 00

ds:0040 00 00 00 00 00 00 00 00

ds:0048 00 00 48 65 6C 6C 6F 20 Hello
ds:0050 77 6F 72 6C 64 21 20 24 world! $

Save exp2.txt, and observe the following items on the edit window.
Observations-2:

1- data3 db 45, 4ch is expressed in Ist file memory listing by 2p 4c (45=2Dh).

2- data4 dw 0123, 0123h is converted to 0078 0123 in the Ist file, but it is written
in little endian convention into the memory area as 78 00 23 01 (shown in
circles).

3- data5 dd 3, 2 dup(5) is expressed in Ist file by 00000003 02*(00000005), but
it is filled into memory as 03 00 00 00 05 00 00 00 05 00 00 00 (in little-
endian double-words, and 5 repeated twice.)

2.3.2. ALU Operations and Flags

Objective is to observe the changes of flags with the add, sub, cmp, inc, dec, and, or,
neg, mov instructions.
Procedure:

- In this experiment you will use Emu8086 emulator.

- Take your list of instructions from your assistant. The list will contain add, sub,
cmp, inc, dec, and, or, neg, and mov instructions with immediate and register
addressing modes.

- Start Emu8086 emulator. Close the welcome window. Open the file
exp2pl.asm. Use Save-as to save it with the name exp2p2.asm.

- Emu8086 does not allow some data directives. Place a semicolon before data6
and data7 to get rid of dq and dt directives.

- Insert the code you’ve taken from your assistant after the mov ds,ax line.

- Emulate the assembler code by clicking on Emulate toolbar-button.

- In the emulator window, click on flags-button to open the flags-window.

14

Assemblers and Development Tools for 8086 and 8051 Microprocessors

Reporting: Use single-step button to execute each instruction. For each executed

Part 2

mov
add
sub
or

and
mov
inc
dec
add
sub
sub
cmp
cmp

ax,08803h
ax,07654h
ax,0F803h
ax,0F000h
ax, 0000Fh
ax,0FFFFh
ax

ax

ax,1

ax, 1
ax,08000h
ax,07000h
ax,09000h

You shall observe
1- mov instructions never change any flags,

2- inc, and dec never change carry flag,

AX
8803
FES57
0654
F654
0004
FFFF
0000
FFFF
0000
FFFF
7FFF
7FFF
7FFF

CZSOPA
000000
001000
000000
001000
000000
000000
010011
001011
110011
101011
000010
000010
101110

3- an immediate sub can do same job with inc, but it effects carry, and its code
takes 2-bytes longer than dec.

4- The flags changed by each instruction is given in the 80386 instruction sheet.
add, sub, neg, cmp determine flags CZSOPA ;
inc, dec determine flags ZSOPA ;
and, or determine flags CZSOP ;
mov does not change any flag (it is not an ALU operation)

The flags affected by each instruction is listed in 80x86-instruction-set table.

After you complete the procedures, please save and close exp2.txt file, and e-mail it using
your student e-mail account to cmpe323lab@gmail.com with the subject line “exp2”
within the same day before the midnight.

Late and early deliveries will have 20% discount in grading. No excuse acceptable.

Free time practice:
Modify the program exp2pl.asm to replace mov dx,offset data8 with the instruction
mov dx,offset datal.

What do you expect to be printed on the display?

What does it display when you run the assembled exe file?
What shall you do to display only your name-surname?

Assemblers and Development Tools for 8086 and 8051 Microprocessors 15

3.

Simple Virtual 8086
Development Board

3.1 Objective

This experiment includes introduction to design of a virtual simple educational 8086
development board (VSED board) with simple digital i/o ports, and a UART-terminal
connection. Our experimental part aims to give concepts of input and output ports with a
hands on practice for verification of an executable code on a virtual simple educational
8086 system.

3.2 Introduction

3.2.1. 8086 and main memory

Virtual Simulation Model (VSM) samples in ISIS provide 8086 simulation that loads exe
files to its internal memory. The executable files may be produced using any 8086
compiler including C or 8086 Assembler tools.

3.2.2. 8086 Processor Bus

ISIS provides a virtual simulation model (VSM) of 8086 including the 8086 processor bus.
The simulation model provided by ISIS contains configurable internal memory which

simplifies simulation of 8086 systems.
U1

% RESET AD[0.15]

22 READY A[16.19]

24 INTAKGST o
LB JINTR ALEasO 2=
S HoDeTT BHE o2
L HLDAGTO DTR/ST 2L
22 g TEST DENE2 022
CT NMI RD OE
S MNAIX - WRLOCK 22
1 1ok miorso |22

8086
LOAD_SEG=0x0800

Figure 1. 8086 processor of Prosis 7.7. It contains internal memory which is configured by
properties.

Bus is suitable for memory and 10 interfacing. In this experiment, we plan to use it for 10
interfacing.

16 Assemblers and Development Tools for 8086 and 8051 Microprocessors

3.2.3. Address Latching

8086 has ADO0-ADI15 multiplexed address lines which transfers both data and address
signals. Address is valid while ALE is high, and data is valid while ALE is low and either
~RD or ~WR line is low. 74237 octal latches are suitable for address latching purpose.

U2 U3z |4

ADD 3 2 A0 ADS 3 7 AS 4DME | 2 A8
DT 4] oy ol R I ol api7 g | o0 o
A7 7|5, o B A2 Ao 7| D) o I I oo b &18
D3 & | oo el IR SN A OI—RI ADISE | oo on 218,
A | o [A QAR Rl I P - -l I TN
ADS 14 | oo Q5 1585 AD1314 | - o5 1o Al3 —1t 1pns o5 =

ADS 17| oo oo I ADIATT | o 06 |—6__A14 —L] o =1

ADT 18 | 7 a7 I8 A7 ADTSTE | o7 a7 |2 _ATS —1E a7 12
—L ok — 1 Rek —L ek

— T dmr — TR —Ldwr

74273 74373 4T3

Figure 2. Address Latching Circuit for 8086 system.

CLK lines of U2, U3 and U4 are connected to ~ALE, which is obtained by inverting the
ALE output (pin25) of the 8086 processor. MR is clear input of 74273 (memory reset) and
all MR inputs are connected to high (Vss). The latch outputs AO ... A19 are the buffered
address bus of the system. ADO ... AD15 are the unbuffered data lines of the 8086 system,
and directly connected to the IO ports.

3.24. System Configuration

SED system has internal 64 k byte memory integrated into the 8086 device, starting from
address 0x00800. The executable file shall be compiled in small model, and include its
stack, data and code within the 64k memory range. The data, control and buffered address
bus of 8086 is utilized to access to an 8-bit output port, two 8-bit input ports, and a
universal serial asynchronous receiver transmitter (USART) unit.

3.2.5. IO Address decoding
A 74HC138 provides address decoding for the chip select signals of these IO devices.

Assemblers and Development Tools for 8086 and 8051 Microprocessors 17

R .
mh WP
A4 3 2 o 13
G Y2 DT
Y3 0—11

A5 B E E1 Vs o—;”
—?C EZ Y6 DT_
———¢| E3 Y7 p—
L. TaHCIZE

The ~E3 input of 74138 (3 to 8 line decoder) gets enabled only during 10-read an 10-write
bus cycles of the 8086 processor. The buffered address lines A6, AS, A4, A3, and A2 are
used for enable and select inputs of the decoder. Consequently the decoding map of the
decoder is obtained in Table 1.

Table 1. Address decoding map for 74138 decoder.

A9 | A8 | A7 [A6 | A5 | A4 | A3 | A2

3 2 El|l C| B | A ~Y0...~Y7 Enabled output
X I X[X[X110 [X[X | X |HHHHHHHH none
X1 X1 X 1 X | X | X | X HHHHHHHH none
X | X 1 X | X | X | X| X|HHHHHHHH none
0 | X I X I X[X[X | X | X |HHHHHHHH none
X110 [X[X[X[X[X | X |HHHHHHHH none
1 1 0 0 1 0 0 O | LHHHHHHH | ~Y0 —not connected
1 1 0 0 1 0 0 1 " HILHHHHHH | ~Y1 — output port UL
1 1 0 0 1 0 1 O | HHILHHHHH [~Y2— input port — UA
1 1 0 0 1 0 1 1l HHHLHHHH | ~Y3—inputport—UB
1 1 1 0 1 1 0 O | HHHHLHHH ~Y4 —USART
1 1 1 0 1 1 0 1l HHHHHLHH/| ~YS5—notconnected
1 1 1 0 1 1 1 O HHHHHHLH/| ~Y6—notconnected
1 1 1 0 1 1 1 1l " HHHHHHHL [~Y7—notconnected
1 1 X 1 X | X | X| X |HHHHHHHH none

Thus, the 8-bit address map of Enable signals are given in Table 2.

Table 2. 10 Port Addresses

A9 | A8 | A7T| A6 | AS| A4 | A3 | A2 | Al | A0 hex port
1 1 0 0 1 0 0 1 X | X 324h —327h UL
1 1 0 0 1 0 1 0 | X | X 328h — 32Bh UA
1 1 0 0 1 0 1 1 X | X 32Ch — 32Fh UB
1 1 0 0 1 1 0 0 | X | X 330h —333h USART

For each IO device the first address of the address ranges are used to address the device
conveniently. Simply, 324h is the address of UL, 328h and 32C are the addresses for UA

18 Assemblers and Development Tools for 8086 and 8051 Microprocessors

and UB. We will consider the USART address later since it has two internal registers
namely control and data.

3.2.6. Simple Output Port UL

The output port UL is constructed using 74273 octal D-flip-flops with common clear
(~MR) and common clock (CLK) inputs. ~MR is permanently disabled by connecting it to
high. The active low enable output ~Y1 of the address decoder and the active low write
output of 8086 are connected to the CLK input of the port through a NOR gate to enable
the clock (with a high) when both ~WR and ~Y1 are low.
In the program we use the instructions

mov DX, 324h

out DX,AL
to output the contents of AL to output port UL.

p

]
_ Ul _ uUg
ADO 3 1oo o 2—1{ m— 10 2
AD1 4 2 ° 3
D1 at —
A 7 3 B 4
D2 Q2 —
AD3 g 4 7 &
D3 Qs —
AD4 3 7 15 6 6
D4 a4 —
S 4 516 5 7
D5 as —
AD6 7 6 17 P
AD7 18 | 28 Q8 g | Mm—
D7 a7 12—
— — —
1 beix 20_{ o | RESPAC
M_C LR LED-BARGRAPH-RED

74273

Figure 4. Simple isolated output port at address 24h installed with LED displays.

The outputs of the 74273 D-flip-flops are connected to digital LED array to display the
output status in a convenient form. Note that the LED indicators glow while the latch
outputs are high. For example, with the instructions

mov DX, 324h
mov AL, 03h
out DX, AL

After the execution of the code LEDs of Q0 and Q1 shall remain dark, and Q3, Q4, Q5,
Q6, and Q7 shall start to glow.

3.2.7. Simple Input Ports UA and UB

Input Ports UA and UB are designed to read the 8-bit dip-switch status into register AL.
The instructions

mov DX, 328h
in AL,DX
and

mov DX, 32Ch
in AL,DX
read the status of the switches SW1 and SW2 into AL.

Assemblers and Development Tools for 8086 and 8051 Microprocessors 19

; b, _I: — r\llm tran Loln-lool
-9

E DSW3
from decoder: m FORT UA 1 EH H H H H H M 4 LE
—O mio CE ®
~Y2 for UA, AD7 el . ls doleldel|
~Y3 for UB A0 T] i
Al Al

ADA R a2 g
oF |2 L
g
02 e e ;

AD1 7 13 RESPACKS

AD0 9 ié ilil 1

743244

Figure 5. Simple isolated input port at address 328h and 32Ch installed with switch array.

For example, if the switch positions of SW1 were set to On, On, On, Off, On, On, Off, On
(in the order from 1 to 8) and the instruction in AL,28h was executed the corresponding
bit of AL for On position contains 0, and for Off position it will be 1, resulting in AL=12h.

3.2.8. Serial Communication Device

The USART 8251A is enabled by ~Y4 of the address decoder, and additionally it has a
Control/~Data select line which is connected to Al. Moreover, the ~RD and ~WR lines
provide reading and writing to control and data registers

from decoder:
~Y4

Mo -

u10
AD[D. 7] W O U0 %ﬁ%ﬁ%ﬁ%ﬁ%ﬁ%ﬁ%ﬁ%ﬁ%ﬁ%ﬁ%ﬁ%ﬁ%ﬁ%ﬁ%ﬁ%ﬁ
RESET ...
20 -
T3 CL TxRDY .
Al O L2 1ch T<emPTY
[=Tal 12 | % -
RD O RD
11 | — RxD
UART O CS

RRDY —— S
24 | =—— A T U10(RxC)
S OR FxC L e
5

= 1RT5 SYNDET —

cT5

B251A

Consequently it has the following address mapping

A9 | A8 | A7 | A6 | AS | A4 | A3 | A2 | Al | A0 | In/Out hex address addressed port
1 1 0 0 1 1 0 0 0 X Out 330h —331h USART data out
1 1 0 0 1 1 0 0 0 X In 330h —331h USART data in
1 1 0 0 1 1 0 0 1 X Out 332h —333h USART control
1 1 0 0 1 1 0 0 1 X In 332h—333h USART status

USART has configuration registers which needs initialization. The Reset sequence of the
USART provides safe reset of the device under the control of program.

xor AL, AL

20 Assemblers and Development Tools for 8086 and 8051 Microprocessors

mov DX, 332h
out DX, AL
out DX, AL
out DX, AL
mov AL, 40h
out DX, AL

After reset sequence, USART expects the mode control,
8251 Mode=sdppbbmm,
async mode << sd=00,
no parity << pp=00;
data-bits: 5<<bb=00; 6<<bb=01; 7<<bb=10; 8<<bb=11;
baud rate factor: xl<<mm=01l; x16<<mm=10; x64<<mm=11;
mov AL, ODh ; mode8251 8-bit, no parity, baud=clock x1
out DX, AL
; Next, USART waits command control
; 8251 Command = hmrtRdT
; search SYN char: disable<<h=0 (async mode); enable<<h=1
; internal reset: reset (expects mode) << m=1; command << m=0;
; request to send: forces RTS low << r=1;
; error reset : resets all error flags << r=1;

send break: forces TxD Tow << t=1;
receive enable: enable << R=1;
data terminal ready: forces DTR low << d=1
transmit enable: enable << T=1;
mov AL, 37h ; comd8251 both RC & TX, reset errors, RTS, DTR
active
out DX, AL

After this initialization code, USART is ready to transmit characters by putting them into
data-out register. It is possible to poll the status register to check the data-out and data-in
registers are full or empty. User may get the received character from data-in register when
bit-1 of status register is high, and may write the character to be transmitted into the data-
out if bit-0 of the status register is high.

; This code reads received character into AL.
; If no character received then AL returns zero.

mov DX, 332h ; status/control address

in AL, DX ; read status register

test AL,01h ; zero flag is set if AL .AND. 0lh is nonzero

jz NotReceived

mov DX, 330h ; data-in/data-out address

in AL, DX ; read received bits from data-in into AL.

shr AL,1 ; Purge out the start bit, remaining bits are data.
NotReceived:

; Any code that process the received character shall be placed here.

Data transmission through USART is obtained by writing character into data-out register

after USART unit is ready for transmission of a character
; this code transmits the contents of AH register to USART.

WaitReady:
mov DX, 332h ; status/control address
in AL, DX ; read status register
test AL,02h ; zero flag is set if AL .AND. 02h is nonzero
jz WaitReady ; Wait until flag is set
mov AL,AH
mov DX, 330h ; data-in/data-out address

out DX,AL ; received character transferred into AL.

Assemblers and Development Tools for 8086 and 8051 Microprocessors 21

In most applications serial io is managed through an input and an output buffer. USART
generates an interrupt request whenever a character is received or transmission of data-out
buffer is over. The related interrupt service routine transfers the received character from
the data-in register to the input buffer, and it transfers any characters from the output buffer
to the data-out register.

3.3 Experimental Part

In this experiment you will write and assemble short programs using 8086 instructions 1in,
out, mov, add, jmp, test, jz, jnz instructions, and you will use EMUS8086
assembler/emulator to obtain its executable code. Next, you will verify the executable code
by PROSIS simulation of a virtual simple 8086 educational development system.

At the first part of the experiment we will write a code to display either numl or num2 on
the LED array depending on the bit-0 switch status of port UA. At the second part, we will
display the sum of the two numbers switch status

3.3.1. Execution of a code on a virtual 8086 system

Procedure:
-Start Emu8086, and close the welcome window. Write the following program into the
new-source window of the Emu8086 editor.
; Your Student Number, Name, Surname . .
; CMPE323 Lab-1 Simple I/0 port with 8-bit address1ng
.MODEL SMALL
.8086
. CODE
mov ax,@DATA
mov DS, ax
Wl:
mov dx,328h
in al,dx
test al,01h
mov al,numl
jz W2
mov al,num2
W2:
mov dx,324h
out dx,al
jmp W1
.stack
.data
numl db 20
num2 db 30
END
-Save the file to your work-folder with the file name exp3A.asm
-Use the taskbar-button “compile” to assemble your source to exp3A.exe into your
working folder.
-Start ISIS and load the design file VSED_WA.dsn (drag and drop it into ISIS window).
- R-click (right click) on 8086 processor on the system diagram. 8086 will be selected
and turned to red, and a pop-up menu will appear. L-click (left-click) mouse on Edit
Properties to open Edit Component window. Change the program file browsing
exp3A.exe. R-click mouse on OK to close Edit Component window. R-click mouse

on any empty part of the diagram window to unselect the processor.

22 Assemblers and Development Tools for 8086 and 8051 Microprocessors

~From ISIS simulation bar L® [® [W | ® [| _click on step button (2" button) to
start debugging. From the ISIS menu-bar L-click on debug >> 8086 >> registers to
open register window. On the register window R-click >> set font >> Lucida
Console / Bold / 12 to make the font readable. L-clicking on step button will execute
each instruction and update the registers accordingly. Trace the program while PORT
UA A0 switch is at on position and at off position. On your report sheet write the
instruction pointer contents and the instructions for each step of execution until IP
becomes 0005 for the second time.

Reporting:

1- Start a text file with the name exp3.txt.

2- Write the Report Title in the following format
CMPEais Experiment 3, Report file by <name surname studentnr>
Part

3- Open the list file exp3A.exe.list and use copy-and-paste to copy it into your
report file.
4- Save exp3.txt to report the coming report item.

3.3.2. Adding Port UA and Port UB

This experiment uses a different board, VSED BA.dsn, with an 8-bit IO address decoder
for port addresses

n

Y0
Y1

T

a]g@

It may be obtained from the 16-bit IO addressed | Az
VSED_WA.dsn circuit by removing the AND | &5 v
and OR gates which are connected to ~E2 and o
~E3 of 74HC138, and connecting A6 and A6 to ﬁo S
~E2 and ~E3 lines so that decoder is enabled | = 9% 77
when (A7A6A5A4) is (001x). e

ow®
e

A

&

T

A7 | A6 | A5 | A4 | A3 | A2 | A1 | AO hex port
010 1 0 0 1 | X | X 24h —27h UL
0[O0 1 0 1 0 | X | X | 28h—2Bh UA
010 1 0 1 1 | X | X | 2Ch—2Fh UB
0[O0 1 1 0101 XX 30h —33h USART

Procedure:
-Start Emu8086, and close the welcome window. Write the following program into the
new-source window of the Emu8086 editor.
; Your Student Number, Name, Surname . .
; CMPE323 Lab-1B Simple I/0 port with 8- b1t address1ng
.MODEL SMALL
.8086
.CODE
mov ax,@data
mov ds,ax
W1:
in al,28h ; first number from UA
mov ah,al
in al,2Ch ; second number from UB
add al,ah
out 24h,al
jmp W1
.stack
.data

Assemblers and Development Tools for 8086 and 8051 Microprocessors 23

END

-Save the file to your work-folder with the file name exp1B.asm

-Use the taskbar-button “compile” to assemble your source to explB.exe into your

working folder.

-Start ISIS and load the design file (simply drag and drop it into ISIS window.
- R-click (right click) on 8086 processor on the system diagram. 8086 will be selected

and turned to red, and a pop-up menu will appear. L-click (left-click) on Edit
Properties to open Edit Component window. Change the program file browsing
explB.exe. R-click on OK to close Edit Component window. R-click on any empty
part of the diagram window to de-select the processor.

-From ISIS simulation bar L® [® [W | ® [| _click on step button (2" button) to

start debugging. From the ISIS menu-bar L-click on debug >> 8086 >> registers to
open register window. If the font is too small to read then R-click on the register
window, select set font >> Lucida Console / Bold / 12 to make the font readable.
L-clicking on step button will execute each instruction and update the registers
accordingly. Trace the program to add the last two digit of your student number to
the third&fourth digits in hexadecimal format. For example if your student number is
123456, then you shall write 34h to port UA, and 56h to port UB. Read the result
from the LEDs of port UL.

Reporting
Write your observations into PART2 of your report file in full sentences. (i.e., “I set

port UA to 34h by making (AD7..AD4)=0011, (AD3..AD2)=0100, and port UB to
56h by making (AD7..AD4)=0101, (AD3..AD2)=0110. Then, I read from port UL
Q0=0, Ql1=1, Q2=0, Q3=1,Q4=0,Q5=0,Q6=0, Q7=1, which makes in binary 10001010

= 8Ah.”)

3.3.3. USART and Capitalization

Procedure:

-Start Emu8086, and close the welcome window. Write the following program into the

new-source window of the Emu&8086 editor.

; Your Student Number, Name, Surname .
; CMPE323 Lab-1C Serial Communication
.MODEL SMALL
.8086
.CODE
mov AX,@data
mov DS,AX
call InitUSART
; Convert all characters to Upper Case

MainLoop:
mov BX,offset inbfr
mov CX,0
Recv:
call RecvChar ; character is in AL
cmp AL,O
jz Recv ; nho character
mov [BX],AL ; put chr into buffer

inc BX ; point empty byte in buffer

inc CX ; keep number of received chars
mov DX, 324h ; LED-display

out DX,AL

cmp AL,O0Dh ; is the character 1ine feed

jnz Recv ; if not line feed receive next char.

24 Assemblers and Development Tools for 8086 and 8051 Microprocessors

; transmit the buffer after making upper case
mov BX,offset 1inbfr
Txmt:
mov AH, [BX] ; character from the buffer
inc BX ; point next char.
cmp AH,'a’ ; is it Tower case alphabetic
jb transmitchar
cmp AH, 'z’
ja transmitchar
and AH,O0DFh ; now the character is uppercase
transmitchar:
call XmitChar ; Transmit the processed character.
mov AX,200
delay:
dec AX
jnz delay
Toop Txmt
jmp MainLoop

InitUSART proc

xor AL, AL

mov DX, 332h

out DX, AL

out DX, AL

out DX, AL

mov AL, 40h

out DX, AL

mov AL, 04Dh ; 8-bit, no parity, baud=clock x1
out DX, AL

mov AL, O5h ; start both receive and transmit
out DX, AL

ret

endp

RecvChar proc
; reads received character into AL.
; If no character received then AL returns zero.
push DX
mov DX,332h ; status/control address
in AL,DX ; read status register
and AL,02h ; zero flag is set if AL .AND. 0lh 1is nonzero
jz NotReceived
mov DX, 330h ; data-in/data-out address
in AL,DX ; received character transferred from data-in into AL.
shr AL,1
NotReceived:
pop DX
ret
endp

XmitChar proc
; transmits the contents of AH register to USART.

push DX

mov DX, 332h ; status/control address

in AL,DX ; read status register

and AL,Olh ; zero flag is set if AL .AND. 02h is nonzero
jz XmitChar ; Wait until flag is set

mov AL,AH

mov DX, 330h ; data-in/data-out address

Assemblers and Development Tools for 8086 and 8051 Microprocessors 25

out DX,AL ; received character transferred into AL.

pop DX

ret

endp
.data
bptr dw 0102h
inbfr db 0 dup(32)
.stack 32

END

-Save the file to your work-folder with the file name exp1C.asm
-Use the taskbar-button “compile” to assemble your source to explC.exe into your

working folder.

-Start ISIS and load the design file VSED_WA.dsn (drag and drop it into ISIS window).
- Rclick (right click) on 8086 processor on the system diagram. 8086 will be selected

and turned to red, and a pop-up menu will appear. Lclick (left-click) on Edit
Properties to open Edit Component window. Change the program file browsing
explB.exe. Rclick on OK to close Edit Component window. Right-click on any
empty part of the diagram window to de-select the processor.

~From ISIS simulation bar L® 1 ™ [1 | ® | T ¢lick on run button (1™ button) to start

execution.

-If the terminal page does not appear on the screen then Lclick on ISIS-menu-bar-
debug >> virtual terminal to open terminal monitor window. Right-Click into the
terminal window and check “Echo typed characters”. -If the font is too small to read
then right-click on the terminal window, select set font >> Lucida Console / Bold /
12 to make the font readable.

- Click on terminal window, and then use keyboard to write Hello, and end the line
with return (enter-key). You shall see

Hello

HELLO

on the monitor. The first character of each character pair is what you entered from
keyboard echoed on the monitor, and the second character is the character sent from
8086 code.

- If you have the oscilloscope settings horizontal (sweep-time) at Ims/div, Channel-
A and Channel-B at DC 2V/div, trigger at DC with source A, at level 20, negative
edge, and Auto-mode then you may observe the received and transmitted waveform
of serial signal on the scope window.

Write your name in lower-case characters, set the trigger of scope to one-shot, and then

send the return character to catch the transmitted string from USART to terminal.

Reporting:

Use Oscilloscope to measure the total time period to transmit your name, and

write it in full sentence into PART3 of your report (i.e., I entered my name

“ATi veli” and set the oscilloscope to one-shot trigger_mode. After I
sent a return character I used cursor to measure total transmission

time T=34.25ms at time-base setting 5Sms/div).

After you complete the procedures, please save and close exp3.txt file, and e-mail
it using your student e-mail account to cmpe323lab@gmail.com with the
subject line “exp3” within the same day before the midnight.

27

29

4.1 Objective

4-
BIOS and DOS Services

The aim of this experiment consists of
1- Exercising keyboard and screen related BIOS and DOS interrupt services.
ii- Coding with macros and procedures

1ii- Using include files.

4.2 Preliminary Study

Before attending the lab, study from Mazidi&Mazidi textbook
- Section 2.3 and 2.4 to understand Control Transfer Instructions.
- Section 3.4 to understand BCD, packed-BCD, ASCII-decimal, representation of

numbers.

- Section 4.1 BIOS interrupt service to clear the screen.

- Section 4.2 DOS interrupt services to display a single character, to display a string, to
input a single character, and to display a string.

- Section 4.3 DOS Keyboard interrupt service to test the keyboard buffer, and return the

pressed key.

- Section 5.1 MACRO definitions, and include files

4.3 Experimental Part

4.3.1. DOS services for String Display and Input

Objective: to observe the coding of several data types in various formats.

Procedure-1:

- Organize a folder exp4 under your asm folder.

- In exp4 folder, create and edit exp4pl.asm to contain the following source text
(please use copy and paste, but correct all mistakes in the code. Do not forget
to fill in your student number to the first line of the source code).

---file exp4pl.asm

; exp4pl student nr:

.model small
.stack 64
.data

msgl db 13,10,"I will add two numbers."

msg2 db 13,10,"
msg3 db 13,10,"
msg4 db 13,10,"
sum db "
bufl db 10,0,"
buf2 db 10,0,"
.code
start:
mov ax,@data
mov ds,ax

Give me one number:$"
Give me second one:S$"
The sum is "
$ll

;disp]aK msgl and msg2
, 09h

mov a

mov dx, offset msgl

int 21h

;input the first number

mov ah, OAh

30

Assemblers and Development Tools for 8086 and 8051 Microprocessors

mov dx, offset bufl
int 21h
;disp1a¥ msg3
mov ah, 09h
mov dx, offset msg3
int 21h
;input the second number
mov ah, OAh
mov dx, offset buf2
int 21h
; align the numbers
mov di, offset bufl+l
mov si, offset buf2+1
cmplengths:
mov al, [dil]
cmp al, [sil
je aligned
jb shiftbufl
;swap buffers
mov ax,di
mov di, si
mov si,ax
shiftbufl:
xor bh,bh
mov b1, [di]
shiftloop:
mov al, [bx][di]
mov [bx][di]+1,al
dec bl
s endloop
jnz shiftloop
endloop:
mov [di]+1,'0’
inc [di]
_jmp cmplengths
aligned:
mov bx,offset sum
xor ch,ch
mov cl, [di]
add di,cx
add si,cx
add bx,cx
clc
addToop:
mov al, [di]
adc al, [si]
aaa
pushf ; save flags
or al,30h ; make it ASCII
mov [bx],al
dec si
dec di
dec bx
opf ; restore flags
oop addloop
mov ah,09h
mov dx,offset msg4
int 21h

mov ah,4ch
int 21h
end

"~
| buf=buft, (dizbuf) |

buf1[1] = buf2[1

[Yes Aligned

| bx=buf[1], (length of the number) |

———

(shift the digit one byte up)
buf[bx+1] = buf(bx]

(point to next digit)
bx =bx -1

bx=0
(some digits are not
processed)

Yes

(fill “0” to leftmost digit)
buff2] = “0”

(increment length of number in buf)
buf{1]= buff1] +1

In this program bufl and buf2 are input string buffers. An input-string buffer

consists of three fields.

The first byte of the buffer is single byte buffer-size field.
The second byte is single-byte input-string-length field.
The remaining bytes are reserved for the ASCII-coded-input-string.

- You will use EMUS8086 in tracing the assembly code. Open exp4pl.asm in

EMU8086.

Assemblers and Development Tools for 8086 and 8051 Microprocessors 31

- Ask to your Lab-assistant the first and second numbers to be used in tracing the
code. Start the emulation, and go in single steps until you will get the message
“waiting for input” on the emulator window.

- Switch to the screen by clicking the screen-button on the emulator window.
Then write the first number, and press enter-key to complete the string-input
service. In the emulator window “waiting ...” message will disappear.

- Continue to single step emulation and enter the second number.
- Now, open variables window (by clicking the var button).

- In the variables window, click on bufl, and make its size qword. Then make
both buf2 and sum qword as well.

- Write the qword values of bufl and buf2 into the report file exp4.txt, as shown

below:

CMPE3281Fxperiment 4 Report file by <Name-Surname> <number>
Part-
bufl: Oa......... h
buf2: Oa...... h

- Continue to tracing until it reaches to JB instruction. Does it execute “mov
ax,di”, or “xor bh,bh” after the jb instruction. Write this first instruction

that is executed after jb to the exp3.txt file (either mov, or xor).
after jb ... is executed.

- Continue to tracing until it reaches to “xor ch,ch” instruction. Open the
variables window, and write the new qword values of bufl and buf2 to the

exp3.txt file.
after aligned:
bufl: OA...... h
buf2: OaA...... h

- Run the code to the end (use run button). Then, in the variable window find the

qword value of sum, and write it into exp4.txt.
SUM: e h

4.3.2. Subroutines and Include files.

Objectives:
-to observe usage of macros in improving the readability of the assembly sources.
-to make and use an include file for the subroutines.

Procedure-1:
-The following assembly code finds the maximum and the minimum of an array
of two digit decimal numbers (i.e., numbers between 0 and 99). Write it into
exp4p2.asm in the exp4 folder. Don’t forget to fill your name and number into

the first line of the file.
; exp4p2.asm student name and number :
.MODEL SMALL
.STACK 100h
.DATA
MESSAGE1 DB 13,10,' The smallest is: '
SMALLEST DB ' '
MESSAGE2 DB 13,10," The biggest is: "
BIGGEST DB ' $!
MESSAGE3 DB ?

32

Assemblers and Development Tools for 8086 and 8051 Microprocessors

NUMCOUNT EQU 6
NUMBERS DB 51,98,2,18,11,40
ROW EQU 08
COLUMN EQU 05
.CODE
MAIN PROC FAR
MOV AX,@DATA
MOV DS,AX
MOV SI,OFFSET MESSAGE3
CALL CLEAR
MOV DL, COLUMN
MOV DH,ROW
CALL CURSOR

MOV CX, NUMCOUNT-1

MOV DI, OFFSET NUMBERS
MOV SI, DI ; [SI] is smallest
MOV BX, DI ; [BX] is biggest
BACK: INC DI
; is [DI]<[SI]
MOV AL, [DI]
CMP AL, [SI]
JAE BIG ; skip if big
MOV SI, DI ; update if small
JMP SML
; is [DI]>[BX]
BIG: MOV AL,
CMP AL,
JB SML
MOV BX, DI
SML: LOOP BACK
mov AL, [SI]
mov AH,0
call HEX2ASCII
xchg AH,AL ; ascii strings big-endian
mov WORD PTR SMALLEST,ax
mov AL, [BX]
mov AH,0
call HEX2ASCII
xchg AH,AL ; ascii strings big-endian
mov WORD PTR BIGGEST,ax

DI]
BX]

mov DX, OFFSET MESSAGE1l
CALL SCREEN
MOV AH,4CH
INT 21H
MAIN ENDP

HEX2ASCIT PROC _ 3
; converts ah=0, al=binary_number to ax=ascii number
AGAIN:

CMP AL,10
JB CONVERTED
sub al,10
inc AH
jmp AGAIN
CONVERTED:
or ax,3030h
ret
HEX2ASCII endp
CLEAR PROC
; clears 25rows,80cols screen
MoV AX,0600H ;scroll the entire page
MoV BH, OFOh ;normal attribute
MoV Cx, 0000 ;row and column of top Tleft
MoV DX, 184FH ;row and column of bottom right
INT 10H ;invoke the video BIOS service
RET
CLEAR ENDP
CURSOR PROC ;SET CURSOR POSITION
; sets cursor to DH=row,DL=col.
MoV AH,02
MOV BH, 00

INT 10H

Assemblers and Development Tools for 8086 and 8051 Microprocessors 33

RET
CURSOR ENDP

SCREEN_PROC _ _ _
; displays a $-terminated string pointed by DH.

Mov AH,09
INT 21H
RET

SCREEN ENDP

END MAIN

- You will use Emu8086 to trace this assembly code. Open exp4p2.asm in the
Emu8086, and replace the data entries NUMCOUNT and NUMBERS with the data
supplied to you by your lab instructor.

- Click the emulate button to start emulation. Then click the aux button and select
listing to open the list file. debug button in the emulator windows to open the
debug listing. Use Ctrl-A, and then Ctrl-C to copy the debug listing into
clipboard. Then paste them to the end of the reporting file exp4.txt. The added
text will look like the following text.

EMUB086 GENERATED LISTING. MACHINE CODE <- SOURCE.
expdp2.exe_ -- emu8086 assembler version: 4.05
[3/23/2008 -- 23:18:53]

[LINE] LOC: MACHINE CODE SOURCE

[1] : .MODEL SMALL

[2] : .STACK 100h

[3] : .DATA

[4] 0100: 0D 0A 20 20 20 54 68 65 20 73 6D 61 MESSAGE1 DB 13,10,' The smallest is: '

6C 6C 65 73 74 20 69 73 3A 20

- Now, you shall build an include file with the name “exp4p2b.asm”.
First save the file exp4p2.asm twice with the new names exp4p2a.asm and
exp4p2b.asm.
In exp4p2a.asm, delete the procedures HEX2ASCII, CLEAR, CURSOR, SCREEN
and insert a line after MAIN ENDP that contains include exp4p2b.asm, i.€.,

MOV AH,4CH

INT 21H

MAIN ENDP
include myproc.asm

END MAIN

In exp4p2b.asm leave only the procedures HEX2ASCII, CLEAR, CURSOR,

’
HEX2ASCII PROC
; converts ah=0, al=binary_number to ax=ascii number
AGAIN:
CMP AL,10

RET
CURSOR ENDP
SCREEN PROC
; displays a $-terminated string pointed by DH.
MOV AH, 09
INT 21H
RET
SCREEN ENDP

34 Assemblers and Development Tools for 8086 and 8051 Microprocessors

- Now open exp4p2a.asm in Emu8086, emulate and run. You will observe that it
runs the same as the single-file source code. In the listing of exp4p2a.asm, the
included code will appear missing. Copy all listing to exp4.txt.

Reporting:

After you complete the procedures, please save and close exp4.txt file, and e-mail
it using your student e-mail account to cmpe323lab@gmail.com with the
subject line “exp4” within the same day before the midnight.

Late and early deliveries will have 20% discount in grading. No excuse acceptable.

Free time practice-1:

In your free time, convert the code exp4p2.asm to two files: File exp4p2c.asm that
contains source code invoking macros, and file exp4p2c.mac that contains
macro definitions. Instead of converting the procedures into parameterless
macros, try to include necessary calling parameters as well into the definition
of macro i.e.,

Table-1 Converting subroutines to macros with parameters.

CURSOR PROC ;SET_CURSOR POSITION RO JRSOR, o Raw, coL
MOV AH, 02H PSET SOV BH Row
Nov E(")'I:IOO MOV DL, COL
INT [] MOV AH,02H
MOV BH,00

CURSOR ENDM

SCREEN PROC
MoV AH,09

INT 21N []

SCREEN MACRO STROFFSET
$ MOV DX,offset STROFFSET

RET i 9'1&09
SCREEN ENDP SCREEN ENDM

Then, you need also modifications in exp4p2c.asm for invoking the macros

Table-2 Invoking macros with parameters instead of parameters passed in register.

MOV DL, COLUMN []
MOV DH.ROW CURSOR ROW,COLUMN

CALL CURSOR

mov DX, OFFSET MESSAGEL E?

CALL SCREEN SCREEN MESSAGE1

35

5.
Using Signed Numbers
and
Look-up Tables

5.1 Objective

The aim of this experiment is

1- Coding with macro and procedure libraries
ii- Using signed numbers in calculations.

1ii- Using Look-Up Tables.

5.2 Preliminary Study

Before attending the lab, study from Mazidi&Mazidi textbook

- Section 2.3 and 2.4 to understand Control Transfer Instructions.

- Section 4.1 BIOS interrupt service to clear the screen.

- Section 4.2 DOS interrupt services to display a single character, to display a string, to
input a single character, and to display a string.

- Section 4.3 DOS Keyboard interrupt service to test the keyboard buffer, and return the
pressed key.

- Section 5.1 MACRO definitions, and include files

- Section 6.1 For signed integer arithmetic operations

5.3 Experimental Part
5.3.1. Macro Library for BIOS and DOS Services

Objective: to use a macro library for BIOS and DOS service.
Procedure-1:
- Organize a folder exp5 under your asm folder.
- In exp5 folder, create and edit expS.inc to contain the following source text
(please use copy and paste, but correct all mistakes in the code. Do not forget
to fill in your student numbers to the first line of the source code).

----- file exp5.inc-------]

; MACRO Library exp5
; student nrl:
; student nr2:

; ASCII code for carriage return
CR equ ODh

; ASCII code for Tine feed

LF equ OAh

al2asc macro buffer

; al to ascii-decimal conversion
xor ah,ah
mov cx,100%256+10
div ch

mov buffer,al

or buffer,30h

mov al,ah

xor ah,ah

div cl

Assemblers and Development Tools for 8086 and 8051 Microprocessors

mov buffer+l,al

or buffer+l,30h

mov buffer+2,ah

or buffer+2,30h

mov buffer+3,’$’
al2asc endm

asc2al macro buf

;converts ascii str to number in al
Tocal_hexnumber,numerl,numer2,negative,completed
mov bl,byte ptr buf+l ; size of the string
mov bh,0
mov al, [bx + offset buf+1]
or al, Zgh ; lowercased

cmp al,
hexnumber
,number is decimal
and al,O0Fh
mov cl,al
dec bx
je com leted
mov bx + offset buf+1]
cmp a1,
je negative
and al,OFh
mov ch 10
mul ch
add c1,al
dec bx
je com leted
mov bx + offset buf+1]
cmp a1,
je negative
and al,O0Fh
mov ch 100
mul ch
add c1,al
dec bx
je com leted
mov bx + offset buf+1]
cmp a1,

je negative
jmp completed
hexnumber
dec
je comp1et d
mov a1 [bx + offset buf+1]
cmp al,
jna numerl
add al,9 ; letter correction
numerl:
and al,OFh
mov c1 al
dec
je comp1eted
mov a1 [bx + offset buf+l]
cmp al,
je negative
cmp al,'9’
jna numer2
add al,9 ; letter correction
numer2:
and al,O0Fh
mov ch,16
mul ch
add cl1,al
dec bx
je completed
mov a1 bx + offset buf+l]
cmp al,
je negat1ve
Jmp completed
negative:
neg cl
completed:
mov al,cl
asc2al endm

dispclr macro
mov ax,0600h
mov bh,0FOh
mov cx,0000
mov dx,184Fh
int 10h
dispclr endm

Assemblers and Development Tools for 8086 and 8051 Microprocessors 37

dispstr macro string
mov ah, 09h
mov dx, offset string
int 21h

dispstr endm

imultx macro prod,opl,op2
mov ax,opl
cwd
mov_cx,op2
imul cx
mov prod,ax
imultx endm

idivx macro quot,num,denom
; remainder returns in dx
mov ax,num
cwd
mov cx,denom
idiv cx
mov quot,ax
idivx endm

getstr macro buffer
mov ah, O
mov dx, offset buffer
int 21h

getstr endm

keybch macro
mov ah, O1h
int 16h

keybch endm

setcurs macro row, col
mov ah,02
mov bh,00
mov d1,col
mov DH, row
int 10H
setcurs endm

exitdos macro
mov ah,4ch
int 21h

exitdos endm

-In expS folder, create and edit expSp1.asm to contain the following source text
; Source exp5p1
; student nrl:
; student nr2:

include exp5.inc
.model small
.stack 100h
.data
rowno equ 08
colno gu 05
Messagel db 'what is your last name? ','$'
Bufferl db 24,? 24 pupP (0)
Message2 db CR, LF 'Letter-count of your last name is:
Message3 db ' §'

.code

mov ax,@data
mov ds,ax
dispclr

setcurs rowno,colno

dispstr Messagel

getstr bufferl

; Mem[bufferl+l] contains the stringlength

mov al,Bufferl+l

al2asc Message3

dispstr Message2
waitkey:

keybch

jz waitkey

exitdos

end

- You will use EMUS8086 in tracing the assembly code. Open exp5Spl.asm in
EMUS086.

38 Assemblers and Development Tools for 8086 and 8051 Microprocessors

- Click on Emulate to start the emulator.

- In the emulator window, click on menu-bar item view -> listing . You will get
the list file opened.
Reporting: Start a text file with the name expS5.txt. Write the Report Title in

the following format
CMPE3%8 Experiment 5, Report file by <name surname studentnr>
Part

- Copy the listing lines corresponding to the code segment (starting from .code)
into your report file expS.txt, as shown below:

CMPE328 Experiment 5 Report file
by <Name-Surname> <number> and <Name-Surname> <number>

Part-1

[16] : .code

[17] 0160: B8 10 00 mov ax,@data
[18] 0163: 8E D8 mov ds,ax

[19] 0165: gg 00 06 B7 FO B9 00 00 BA 4F 18 ¢cD dispclr

[20]

- Inspect carefully the first and the second occurance of invoking dispstr macro.
Are there any difference? Why are they different?

Reporting: Write your answer to report file
Dispstr macros are different because .

- Close the listing, and trace the execution using smgle step When the emulator
warns you to enter the string, write your surname on the DOS window.

- Open “vars” window (click on vars button), and click on “buffer1”. Then fill in
o “elements” box 20.

Reporting: Write the array of bytes in the buffer1 to your report file exp5.txt
including the first zero byte.
BUFFER1: 18 05 62 . . . 75 72 OD 00

- Can you understand the length of the string from the second byte in bufferl? Is
it consistent with the remaining bytes?

- Close the emulator window. On the edit window, click on “compile”. A “file-
save browser” will get opened to save the exe file. Save the expSpl.exe file
into your expS5 folder. Then, execute the expSp1.exe to observe how it works.

- Reporting: Save the report file, and start to the second part of the experiment.

5.3.2. Average by Signed Arithmetic Operations .

Objectives:
-to demonstrate signed arithmetic operations on a code finding the average of
signed numbers.
Procedure:
-The following assembly code finds the average of an array of bytes. Write it into
expSp2.asm in the exp5 folder. Don’t forget to fill your name and number into
the file.

; exp5p2.asm
; student name and number 1:
; Student name and number 2:
include ex?5 .inc
.model sma
.stack 100h
.data
snum dw 4
sdata db —3, -12, 5, 2
aver dw
remn dw 7
MessageA db "Average is $"
MessageR db “Rema1nder is $"
NextLine db 13,1
dstr db 10 dup(20h) '$’
.code
mov ax,@data
mov ds,ax

Assemblers and Development Tools for 8086 and 8051 Microprocessors 39

mov CX, snum
mov bx, offset sdata
mov dx,0

addloop:
mgv ax, [bx]

cbw
add dx,ax
inc bx
loop addloop
mov ax,dx
cwd
mov cx,snum
idiv cx
mov aver,ax
mov remn,dx
mov ax,aver
cmp ax,0
jge positive
mov dstr,'-'
neg ax
positive:
al2asc dstr+l
dispstr NextLine
dispstr MessageA
dispstr dstr
mov ax, remn
al2asc dstr
dispstr NextLine
dispstr MessageR
_dispstr dstr
waitch:
keybch
jz waitch
exitdos
end

- You will use Emu8086 to trace this assembly code. Open exp5p2.asm in the
Emu8086.

- Click the emulate button to start emulation. Observe carefully how the addition
and division operations are performed, how the result is converted to ascii, and
how it is written to display.

-Compile the executable file of the expSp2.asm file. Execute and observe its
operation.

Reporting: In pArRT2 of your report file fill in the screen output to your report
after the program stops.

5.3.3. Look-Up Table for the Square Root of an Integer.

Objectives:
-to demonstrate the input value search, and the output access for a Look Up table.

Procedure:
-The following assembly code finds the average of an array of bytes. Write it into
expSp3.asm in the exp5 folder. Don’t forget to fill your name and number into

0, 1, 4, 9, 16, 25, 36, 49, 64
81, 100, 121, 144,169,196, 225
Tutout , 2, 3, y é, 7, 8,
9, 10, '11, 12, 13, 14, 15

buf 10h,?,10h dupg' bH
output db 5 dup(' "), '

.code

mov ax, @data

mov ds,ax

dispstr Msgl

getstr buf

asc2al buf

; find index

mov cx, lutcnt
Tutlp:

mov bx,cx

the file.

; exp5p3.asm
; Student name and number 1:
; Student name and number 2:

include exp5.inc

.model smal

.data . .
Msgl db '1I''11 find the square root using '

db 'a look-up table.",13,10
' Give me a number in the range [0, 255]: §'
Msg2 b 13,10,' Square-root is $'
lutcnt g 15
b

d
d
d
lutin d
d
d
d

scSos

40 Assemblers and Development Tools for 8086 and 8051 Microprocessors

cmp al,[bx + offset Tutin]
ae lutexit
loop Tutlp

Tutexit:
; read output
mov al, [bx + offset lutout]
al2asc output
dispstr Msg2

. dispstr output

waitch:
keybch
jz waitch
exitdos
end

- You will use Emu8086 to trace this assembly code. Open expSp3.asm in the
Emu8086.

- Click the emulate button to start emulation.

- During the single-step emulation
- Enter string “200” when the emulator asks an input value.

- Observe carefully how the ascii input string is converted to 8-bit value by
asc2al macro.

- Observe carefully how the input array is searched from the last down to the
first until an entry is found smaller than the input value.

- Observe carefully how the output value is accessed once the index
corresponding to the input value is obtained.

- Generate the executable file (use compile), and run it to see the operation of the
program. Use input values 1, 5, 42, 64, 4Dh and 182 to see how it works.
Reporting: In PART3 of your report write what happens for each input.

- Hide the lines containing keybch and jz waitch. behind semicolons. Then
generate its executable and observe the difference in operation.

5.3.4. Simple Look-Up Table for Fibonacci Numbers.

Objectives:
-to demonstrate the input value search, and the output access for a Look Up table.

Fibonacci Numbers:

According to Wikipedia pages, the Fibonacci numbers first appeared, under the name matrameru (mountain
of cadence), in the work of the Sanskrit grammarian Pingala (Chandah-shastra, the Art of Prosody, 450
or 200 BC). Prosody was important in ancient Indian ritual because of an emphasis on the purity of
utterance.

In the West, the sequence was first studied by Leonardo of Pisa, known as Fibonacci, in his Liber Abaci
(1202). He considers the growth of an idealised (biologically unrealistic) rabbit population, assuming
that:

in the first month there is just one newly-born pair,
new-born pairs become fertile from after their second month
each month every fertile pair begets a new pair, and

the rabbits never die

Let the population at month n be F(n). At this time, only rabbits who were alive at month n-2 are fertile and
produce offspring, so F(n-2) pairs are added to the current population of F(n-1). Thus the total is
F(n) = F(n-1) + F(n-2).

Procedure:
-The following assembly code finds the i-th Fibonacci number. Write it into

expSp4.asm in the exp5 folder. Fill your name and number into the file.
; exp5p4.asm
; Student name and number 1:
; Student name and number 2:
include exp5.inc
.mode1 small
.data
Tuacnt dw 12
Tua db 1,1,2,3,5,8,13,21,34,55,89,144,233
fibnr ! $'
buf db 20,?, 20 dup(' ")
msga db 'I have a look-up table to get'

Assemblers and Development Tools for 8086 and 8051 Microprocessors 41

db 7 the n- -th Fibbonachi number.$’

msgb db cr,1f, G1ve me a number in the range [0,12] : §'
msgc deicr 1f 'Your Fibonachi number is

.code

mov ax,@data

mov ds ax

d1spstr msga
again:

dispstr msgb

getstr buf

mov al,byte ptr buf+l

cmp al,0

jz em tystr

asc2a

xor ah, ah ; zero extend to ax

mov bx ax

mov al, [bx + offset lua]

al2asc fibnr

dispstr msgc

dispstr fibnr

jmp again
emptystr:

exitdos

end

- Use Emu8086 to trace this assembly code. Open expSp4.asm in the Emu8086
and start single-step emulation.

- Generate the executable file (use compile), and run it to see the operation of the
program. Use input values “3”, “6”, “Ah”, “12” to see how it works.

Reporting:
After you complete the procedures, please save and close exp5.txt file, and e-mail
it using your student e-mail account to cmpe323lab@gmail.com with the
subject line “exp5” within the same day before the midnight.

Late and early deliveries will have 20% discount in grading. No excuse acceptable.

Free time practice-1:
In your free time, write assembly code of a program to return 255 sin(180 i /32)
from a simple look-up table of 32 elements. (i.e., using a look-up table like

this one)
Tutcnt db 32
Tutout db 0, 25, 50, 74, .. , O

Your program shall

write an explanation that it will return 255 sin(180 1/32), and that the user shall
enter the number 1.

If the entered number i is out of limits, program shall write wrong number.

Else, it will read the table, and print the result to the display with a reasonable
message.

After printing the result it shall give a message and wait the next 1 in a loop
until an empty string is entered in.

43

45

6.1 Objective

The aim of this experiment is

i- An introduction to microcontroller architecture and instruction set of 8051.
1i- An introduction to the hardware-software simulation of 8051 in Prosys.
iii- An introduction of LED indicator output and switch input circuits.

6.2 Introduction

1/0 and External Memory Interface
for 8051

A microprocessor on a single integrated circuit intended to operate as an embedded
system. As well as a CPU, a microcontroller typically includes small amounts of RAM and

PROM and timers and I/O ports.

Intel introduced the first 8-bit microcontroller family MCS-48 in 1976. After four years
development, Intel upgraded the MCS-48 family to 8051, an 8-bit microcontroller with on-
board EPROM memory in 1980. Intel’s 8051 is used in almost all embedded control areas

including the car engine control.

6.2.1. Typical features

A typical 8051 family member, 80C51 has the following features:

4K Bytes of In-System Reprogrammable Flash Memory;

Fully Static Operation: 0 Hz to 16MHz;

128 x 8-bit Internal RAM ;

32 Programmable I/O Lines;

Two 16-bit Timer/Counters;

Six Interrupt Sources;

Programmable Serial Channel

The 8051 microcontroller is available in 40 pin DIP package

with the pin layout given in Fig.1. This section will provide
short information on the register-memory architecture, and the
instruction set of 8051 microcontroller.

6.2.2. Registers

The 8051 microcontroller has two accumulator registers A and
B, and eight general-purpose-data registers numbered from RO
to R7. The following is a list of predefined assembler labels
corresponding to special function registers associated with

P1.00
P11

P1.2 0
P1.30
P1.4
P1.5

P1.6 OJ
P1.70
RESET O
(rRxD) P3.0[
(Tx0) P3.1
(INTO) P3.2 [
(INT1) P3.30
(T0) P3.4 [
(1) P3.50
(WR) P3.6
{RD) P3.7
xTaL2 O
XTAL1 O
vss O

1
2
3
4
S
53
7
8

9

10
1"
12
13
14
15
16
17
18
19
20

21

1 Vee

[P0.0 (ADO)
[PO.1 (AD1)
[PO.2 (AD2)
[P0.3 (AD3)
[PO.4 (AD4)
[PO.5 (ADS)
[P06 (AD6)
[0 P0.7 (AD7)
[EA / Vppt

[ALE /PROG™
[PSEN
P27 (A15)
P26 (A14)
[P2.5 (a13)
[P2.4 (A12)
[P2.3 (A11)
[P2.2 (a10)
[P2.1 (A9)
[P2.0 (A8)

Fig. 1. Pin Layout of 40-pin
DIP 8051 package

direct memory access. Although they can be used with any immediate data evaluation.

Associated label values are given in hexadecimal notation.

46

Assemblers and Development Tools for 8086 and 8051 Microprocessors

Table 1.1 Special Function Register definitions of 8051 microcontroller
SFR definitions (Alphabetic Order)

SFR definitions (Direct Mem. Addr. Order)

Label Value |Description Label Value |Description
A EO |Accumulator PO 80 |Port0
ACC EO0 |Accumulator SP 81 |Stack Pointer
B FO B reqister DPL 82 |Data Pointer Low byte
DPL 82 |Data Pointer Low bvte DPH 83 |Data Pointer High byte
DPH 83 |Data Pointer High bvte PCON 87
IE A8 TCON 88
IP B8 TMOD 89
PO 80 [Port0 TLO 8A [Timer/Counter 0 Low bvte
P1 90 |Port1 TL1 8B [Timer/Counter 1 Low byte
P2 A0 |Port2 THO 8C [Timer/Counter 0 High byte
P3 BO |Port3 TH1 8D [Timer/Counter 1 High bvte
PCON 87 P1 90 |Port 1
PSW DO |Program Status Word SCON 98
RCAP2L CA SBUF 99
RCAP2H CB P2 A0 |Port2
SCON 98 IE A8
SBUF 99 P3 BO [Port3
SP 81 |Stack Pointer IP B8
T2CON C8 T2CON C8
TCON 88 RCAP2L CA
THO 8C _[Timer/Counter 0 High bvte RCAP2H CB
TLO 8A [Timer/Counter 0 Low bvte TL2 CC _[Timer/Counter 2 Low bvte
TH1 8D [Timer/Counter 1 High bvte TH2 CD __ [Timer/Counter 2 High byte
TL1 8B [Timer/Counter 1 Low bvte PSW DO |Program Status Word
TH2 CD __[Timer/Counter 2 High bvte A EO |Accumulator
TL2 CC _[Timer/Counter 2 Low bvte ACC EO |Accumulator
TMOD 89 B FO B reqister

The predefined labels for bit addressable memory locations are limited by 8051
architecture. In Table 1.2, .X represents a value in the range of 0 to 7. For example PO . X
is short hand to represent P0.0, P0.1, P0.2, P0.3, P0.4, P0.5, P0.6 and PO.7.
With P0.0 = 80h, P0.1 equal to 81h, etc. Associated label values are given in

hexadecimal notation.
Table 1.2 Predefined Bit Labels

Label | Value |Description REN 9C
ACC.xX | E0-E7 |Accumulator (bits 0 through 7) SM2 9D
B.X FO - F7 B register (bits 0 through 7) SM1 9E
PO.X | 80-87 |Port0 (bits 0 through 7) SMO 9F
P1.x | 90-97 |Port1 (bits 0 through 7) EXO0 A8
P2.X | AQ-A7 |Port 2 (bits 0 through 7) ETO A9
P3.x | BO-B7 |Port3 (bits 0 through 7) EX1 AA
PSW.X | D0-D7 |Program Status Word (bits 0 through 7) ET1 AB
SCON.X | 98-9F |Serial Control register (bits 0 through 7) ES AC
IE.X | A8-AF ET2 AD
IP.x |B8-BF EA AF
TCON. X | 88-8F [Timer Control register (bits 0 through 7) PX0 B8
T2CON. x| C8 - CF [Timer 2 Control register (bits 0 through 7) PTO B9
ITO 88 PX1 BA
IEQ 89 PT1 BB
ITl 8A PS BC
IE1 8B PT2 BD
TRO 8C P D0 |Parity flag
TFO 8D ov D2 |Overflow flag
TR1 8E RSO D3 |Register Select (bit 0)
TF1 8F RS1 D4 |Register Select (bit 1)
RI 98 [Receive Interrupt flag FO D5
TI 99 [Transmit Interrupt flag AC D6 |Auxiliary Carry flag
RBS 9A CcY D7 _|Carry flag
TB8 9B

Assemblers and Development Tools for 8086 and 8051 Microprocessors

47

6.2.3.

Instruction Set

The 8051 instruction set contains data-transfer, ALU, bit-manipulation, and program
branching instructions. The complete instruction set is given in the following table.

Instruction Set of 8051.

Key: direct : direct memory address Ri : registers i=0,..,7

Arithmetic Operations

Data Transfer

Mnemonic [Description Size|Cyc Mnemonic Description Size|Cyc
ADD A,Rn [Add register to Accumulator (ACC). 1 1 MOV A,Rn Move register to ACC. 1 1
ADD A,direct |Add direct byte to ACC. 21 MOV A,direct |Move direct byte to ACC. 2 |1
ADD A,@Ri [Add indirect RAM to ACC. 1 1 MOV A,@Ri Move indirect RAM to ACC. 1 1
ADD A #data |Add immediate data to ACC. 2|1 MOV A #data [Move immediate data to ACC. 2 1
ADDC A,Rn |Add register to ACC with carry. 101 MOV Rn,A [Move ACC to register. 1|1
ADDC A,direct |Add direct byte to ACC with carry. 2 |1 MOV Rn,direct |[Move direct byte to register. 2|2
ADDC A,@Ri |Add indirect RAM to ACC with carry. 111 MOV Rn,#data |Move immediate data to register. 2 |1
ADDC A j#data |Add immediate data to ACC with carry. 2 |1 MOV direct,A |Move ACC to direct byte. 2 1
SUBB A,Rn [Subtract register from ACC with borrow. 111 MOV direct,Rn [Move register to direct byte. 2 |2
SUBB A,direct [Subtract direct byte from ACC with borrow 2 |1 MOV direct,direct|Move direct byte to direct byte. 3|2
SUBB A,@Ri Subtract indirect RAM from ACC with 1|4 MOV direct,@Ri [Move indirect RAM to direct byte. 2|2
OITOW. _ - MOV direct,#data|Move immediate data to direct byte. 3|2
SUBB A #data [Subtract imm. data from ACC with borrow. 2 [1 MOV @Ri,A__ |Move ACC to indirect RAM. 111
INC A Increment AC_C‘ 1 MOV @Ri,direct |[Move direct byte to indirect RAM. 2 |2
INCRn___[increment register. T MOV @Ri,#data [Move immediate data to indirect RAM. 2 [1
INC direct _|[Increment filre_d byte. 2|1 MOV DPTR#data16[Move immediate 16 bit data to data pointer register.| 3 | 2
INC @Ri _[Increment indirect RAM. 1)1 MOVC Move code byte rel. to DPTR to ACC (16 bit
DEC A Decrement ACC. 1 1 A,@A+DPTR laddress). ! 2
DEC Rn Decrement register. 1101 MOVC A,@A+PC |Move code byte rel. to PC to ACC (16 bit address). | 1 | 2
DEC direct [Decrement direct byte. 2 |1 MOVX A,@Ri [Move external RAM to ACC (8 bit address). 102
DEC @Ri__|Decrement indirect RAM. 1)1 MOVX A,@DPTR [Move external RAM to ACC (16 bit address). 1] 2
INC DPTR _ [Increment data pointer. 112 MOVX @Ri,A [Move ACC to external RAM (8 bit address). 1|2
MUL AB __ Jresultis 16-bitB:A € AXB; 114 MOVX @DPTR,A [Move ACC to external RAM (16 bit address). 1]2
DIV AB A € A/B (intresult);, B <- A%B (remainder) 1 | 4 PUSH direct |Push direct byte onto stack. 2|2
DA A Decimal adjust ACC. 111 POP direct Pop direct byte from stack. 2|2
Logical Operations Boolean Variable Manipulation
Mnemonic _|Description Size|Cyc Mnemonic [Description Size|Cyc
ANL A,Rn |AND Register to ACC. 111 CLRC Clear carry flag. 1|1
ANL A,direct |[AND direct byte to ACC. 2 | 1 CLR bit Clear direct bit. 2 | 1
ANL A,@Ri |AND indirect RAM to ACC. 1 1 SETB C Set carry flag. 1 1
ANL A #data |AND immediate data to ACC. 2)1 SETB bit Set direct bit. 2 |1
ANL direct,A |AND ACC to direct byte. 2 |1 CPLC Compliment carry flag. 1|1
ANL direct,#data|AND immediate data to direct byte. 3|2 CPL bit Compliment direct bit. 2 1
ORL A,Rn__|OR Register to ACC. 111 ANL C,bit |AND direct bit to carry flag. 2|2
ORL A,direct [OR direct byte to ACC. 2 |1 ANL C,/bit |AND compliment of direct bit to carry. 2 |2
ORL A,@Ri [OR indirect RAM to ACC. 111 ORL C,bit OR direct bit to carry flag. 2 |2
ORL A #data |OR immediate data to ACC. 2 |1 ORL C,/bit [OR compliment of direct bit to carry. 2 |2
ORL direct,A |ORACC to direct byte. 2 |1 MOV C,bit Move direct bit to carry flag. 2 |1
ORL direct,#data|OR immediate data to direct byte. 3[2 MOV bit,C Move carry to direct bit. 2 |2
XRL A,Rn Exclusive OR Register to ACC. 1 1 program Branching
XRL A,direct [Exclusive OR direct byte to ACC. 2|1 Mnemonic Description Size|Cyc
XRL A,@Ri__[Exclusive OR indirect RAM to ACC. 111 ACALL addr11 |Absolute subroutine call. 2|2
XRL A, #data |[Exclusive OR immediate data to ACC. 2 |1 LCALL addr16 |Long subroutine call. 3|2
XRL direct,A |[Exclusive OR ACC to direct byte. 2 1 RET Return from subroutine. 1 2
XRL direct,#data|XOR immediate data to direct byte. 3|2 RETI Return from interrupt. 1 2
CLRA Clear ACC (set all bits to zero). 1 1 AJMP addr11 |Absolute jump. 2 2
CPLA _ [Compliment ACC. 111 LJMP addr16_|ong jump. 3|2
RLA Rotate ACC left. 111 SJMP rel Short jump (relative address). 2|2
RLCA [Rotate ACC left through carry. 11 JMP @A+DPTR [Jump indirect relative to the DPTR. 1] 2
RRA Rotate ACC right. 111 JC rel Jump if carry is set. 2|2
RRC A Rotate ACC right through carry. 1 1 JNC rel Jump if carry is not set. 2 | 2
SWAP A [Swap nibbles within ACC. 111 JB bit,rel Jump if direct bit is set. 3|2
Other Instructions JNB bit,rel [Jump if direct bit is not set. 3 |2
Mnemonic |Description Size|Cyc JBC bit,rel |Jump if direct bit is set & clear bit. 3|2
XCH A,Rn__[Exchange register with ACC. 111 JZrel Jump relative if ACC is zero. 2|2
XCH A,direct [Exchange direct byte with ACC. 2|1 JNZ rel Jump relative if ACC is not zero. 2|2
XCH A, @Ri__[Exchange indirect RAM with ACC. 111 CJNE A, direct,rel|Comp. direct byte to ACC and jump if not equal. 3|2
XCHD A,@Ri \I/Evﬁﬁhlaor\]n?e?‘ ﬁ‘évb?;bgigféndirec‘ RAM 111 CJNE A #data,rel|Comp. imm. byte to ACC and jump if not equal. 3|2
- - CJNE Rn,#data,rel [Comp. imm. byte to reg. and jump if not equal. 3 |2
NOP No operation. 1 1
JRE:d':tEa,rel Comp. imm. byte to ind. and jump if not equal. 3 2
DJNZ Rn,rel |Decrement register and jump if not zero. 2|2
DJNZ direct,rel |Decrement direct byte and jump if not zero. 3|2

48 Assemblers and Development Tools for 8086 and 8051 Microprocessors
8051 can access the program code ROM or Flash memory by MOVC instructions. External

RAM by MovX instructions, and the internal RAM memory (locations O ... 128 for MCS51,
0...256 for MCS52) by MoV instructions.

6.2.4. The 8051 Ports

The 8051 microcontroller provides three ports for the users, denoted by symbols PO, P1, P2
and P3. 8051 i/o ports are memory mapped registers with input/output connection to the
external circuits. The addresses of these ports are available in Table 1.1.

The ports are bit addressable as seen in Table 1.2. Ports P1, P2 and P3 have weak
internal pull-up resistors, while the pins of PO has no internal pull-ups, because it is also
used as ADO-AD7 lines for external memory access. Therefore external pull ups are
necessary to interface a switch to a PO pin, similar to resistors RO0 and RO1 in Fig. 2.

An i/o pin of the ports is suitable for
input only when it is set to high. For .. ;| © oo o @ of oo
example: CLR P1.3 makes P1.3 pin 0V, icm_ - cxﬂg'"z. o E o

and it is not suitable for input, since P1.3 e e T;?; :ag:
will sink external current strongly to the]
ground. SET P1l.3 makes P1.3 pin 5V
with a weak current source. The external :

circuit can easily drive P1.3 below the =~ ' L—&a o

P2 0fg

logic-threshold voltage, and make it read - - - e

P2.2i410
PSR P2.3001

0. A reset (RST high) starts the ports with - - - ol

EA P2.5013
P26

PO=P1=P2=P3=0xO0FF, suitable for input. S

An output pin can drive a LED : g
indicator in the common-cathode mode. In
Fig.2, the component pair {R30, DB1} -
connected to P3.0 pin is a typical LED - . - oo T
indicator. DB1 gets lighted when the
output pin P3.0 delivers low (=0V, or logic-0), and DB1 stays dark while P3.0 stays at
high (=5V, or logic “17).

In Fig.2, S1-RD1 forms a pull-up biased switch circuit. It gives high to the input P0.1
while switch is open (open-circuit = off), and makes P0.1 low while switch is closed
(closed circuit = on). In summary, P0.1 reads O if switch is turned on, and it reads 1
otherwise.

TALT PO.0/CO
PO.1/ADT
PO.2A02
T2 PO.3008
Pi.4804
PO.SADS

F3.1D0
P32

- FEEREREE- FREREREE FREREREE - -

6.2.5. Command line Assembler for 8051

Keil products supplies professional integrated development tools for 8051 family devices.
The currently available Keil student version can code up to 2-kBytes of hexadecimal
coding for any 8051 device. Keil-C (C51) and assembler (A51) are usually called by its
development environment UV3. However, we will use them calling in DOS-Command
environment through a batch file. Keil C is an almost-ANSI C compatible C-compiler for
writing programs in tiny-os operating system. Compiler C51 and assembler A51 produce
an object file, which needs linking into an absolute code using BL51. Absolute code is
further converted to INTEL HEX format by the code converter Oh51. The following listing

is the compile.bat batch file .

echo off
PATH=.\8051\C51\BIN
SET TMP=.\8051\TMP
del exp6.hex

Assemblers and Development Tools for 8086 and 8051 Microprocessors 49

a51 exp6.a51 debug object(p.obj)
b151 p.obj
oh51 p hexfile(exp6.hex)

pause
del p.*
del exp6.1st
The environment settings of the batch file is valid only if the folder 8052 is under the work

folder of the experiment. It works on desktop folder, or on the root folder of a flash disk.

6.2.6. IDE Tool for Coding of 8051

Keil products supplies professional integrated development tools for 8051 family
devices. The currently available Keil IDE mvision-3 (uv3), and a limited capacity trial
version can code up to 2-kBytes of hexadecimal coding for any 8051 device. UV3 is Keil-
C (C51) and assembler (A51) compatible. Keil C is an almost-ANSI C compatible C
compiler environment for writing programs in Tiny-OS operating system. Keil IDE
produces the hex file to transfer the program code into the target 8051 device. The free trial
version of Keil-IDE does not require any registration into Windows operating system. Its
initialization parameters are stored in tools.ini file, and can be edited by a text editor. The
software pack can be easily installed by copying the KC51 folder at the root of any drive,
and correcting the drive name in the tools.ini file.

UV3 environment does not need installation other than modification of the C51 path in
tools.ini file. A copy of KC51 is available on the C-drive, and you may use it also on your
flash-disk drive (about 50Mbytes).

Installation and starting a C or Assembly project with Keil-C51 are quite simple. If KC51
is not yet installed on your computer follow the steps to install it on your hard disk (C:) or
your floppy disk (E:).

- Installing KC51: Download the rarred KC51 IDE folder from the coarse web side, open
the rar-archive, and copy the folder KC51 to the root of your drive (C:) or (E:), so that
E:\KC51\ folder contains folders C51, UV3 and the file TOOLS.INI. Then edit path
statement of tools.ini to E:\KC51\C51. Your KC51 is ready for execution.

- Making a Work Folder: Start a working folder similar to E:\323\012345\ExpXX .
Copy all necessary C (-.C , -.H . and -.C51 files) and Assembler (-.ASM and -.A51
files) source files together with Proteus Circuit Simulation files (-.DSN) into your work
folder.

- Opening an existing Project: If a KC51project definition file (-.UV?2) is available in the
work folder use (Project = Open Project) to start the project with its settings.

- Starting a New Project: Start KC51\UV3\UV3.exe file. Close the initially opened
project file using menu (Project = Close Project) . Start a new project by (Project 2
New uVision Project) browsing your work folder, and entering project name, let’s say
“proj”. From the popped CPU-dialog-box, select “Generic — 8052 (all variants)”. Click
“No” if it asks to “copy 8051 startup code to project folder ...” . Click on 3 Target 1 to
select it, and with right-click open the “Options for Target-1" dialog window. Check
that Device is Generic 8052 and Linker is BL51. Set Target Xtal(MHz) as required for
the application, Memory Model Small, Code Rom Size Small, Operating System None,
and put check for Use On-chip ROM (0x0-0x1FFF).

50 Assemblers and Development Tools for 8086 and 8051 Microprocessors

Options for Target "Target 1

Device Target | Output | Listing | User | C51 | A81 | BLS1 Locate | BLST Mis
Generic 8052 (3l Variants)

Hal (MHz): 12.0 ¥ Use On-chip ROM
Memary Madel: |Small: varizbles in DATA ;I
Code Rom Size: |Small: program 2K orless ;l
Operating system: |None ;I

Set Output to create both executable and hex file with debug information. You may
change the name of the executable and Hex-file by entering it into Name of Executable

box
Options for Target "Target 1

Device | Target Outout | Listing | User | C51 | AS1 | BL51 Locate | BL5"

Select Folder for Objects... | MName of Executable: IDFUJ'

¥ Create Bxecutable: “proj

¥ Debug Information ¥ Browse Infomation

W CeateHEXFle o [wecen «|

- Generating a list file: List file contains debug messages and symbol tables. You can
generate -.Ist file by putting a check into the Assembler Listing box in Listing window
of Options dialog.

After setting all of the above options click OK to close the Options dialog.

- Adding Assembly files to the project: Open the dependents list of i3 Target 1 by clicking
on plus sign next to it. Right-click on “Source Group 1~ to get the quick menu for
“adding source files to Group I”. Click it to start the file browser to add your source
file. First set the folder to your work folder that contains your -.asm file. Then set “Files
of type” field to “asm source file”. Your -.a51 file will appear in the browser window.
Select the file and click on “add”.

- Adding C files to the project: Apply the same procedure, but set “Files of type” field to
“C source file”. Your -.C file will appear in the browser window. Select the file and
click on “add”.

- Building the project: On the toolbar use the icons E
project and generate the executable and -.hex file.

6.2.7. Simulation in ISIS

Simulation is the best methodology to verify operation of the circuit and the program code
in a time-efficient manner. It is always a good idea to simulate the circuits and codes using
convenient simulation software instead of rushing to build the circuit and code the chip for
a real-life test.

ISIS is able to simulate many microcontrollers with their peripheral circuits. The circuit
diagrams are composed of components, and connections between the component terminals.
A component that needs a program code is linked to the program code file writing the code
folder and file name (.hex file name) into its configuration window. ISIS can simulate this
graphical circuit representation and update the appearance of the display elements in
regular periods of about 50ms.

6.3 Experimental Part

6.3.1. Installation of A51 to your work folder

Objective: preparation of a work folder for A51 IDE.
Procedure-1:

Assemblers and Development Tools for 8086 and 8051 Microprocessors 51

1- Download the expé6.rar file which contains all necessary files and folders to a
convenient place i.e. onto the desktop. Extract and open the work folder Exp6.
2- Open the source file Exp6.a51. The file shall contain the following lines
; Exp6.a5l1 test file

; (c) 2008, Dr. Mehmet Bodur
xtal equ 16 ; Crystal frequency in MHz

; power-on reset starts execution from address 0
org 0

mov P0,#00000011b ; make PO.1 and P0.0 suitable for 1input
mov P3,#10000000b ; prepare P3.7 for 1input

back:
; copy port0 switch B1,S1 states to acc
mov a,PO

anl a,#00000011b ; PO.1 and P0.0 are selected
orl a,#10000000b ; prepare P3.7 for {input

; copy bit P3.7 to bit P2.2

mov C, p3.7 ; copy P3.7 to Carry Flag
mov acc.2, C ; copy Carry to acc.2
mov P3,a ; apply result to P3

; increment Pl
inc P1

; delay for 25ms delay
mov A, #250
acall dlyl00u

sjmp back

d1yl00u:
; delay loop takes A*100u
mov rl,A
dlylpl: mov rO0,#(xtal*62/10)
dlylp2: djnz r0,dlylp2
djnz rl,dlylpl
ret
end

3- Double-click on compile.bat to start assembling of the source file exp6.a51 .
Batch file will stop on pause waiting a key press. Before you press any key check
your work folder and find the generated exp6.lst file.

Reporting:

Open exp6.Ist file in a text editor, and copy the first page (up to symbol table) to
your reporting file. After you close the text editor activate batch file window and
press the space-bar to end the batch session.

4- In your work folder you will find the file “exp6.hex” which is generated by the
batch operation as a product of assembly, link, and conversion processes.

Reporting:

- Open the exp6.hex file in a text editor, and copy the contents to your report file.

The hex file contains the machine code to be coded into the micro-controllers

program memory. This file will be used in the next section of the experiment.

- Save your reporting file for other report deliverables.

52 Assemblers and Development Tools for 8086 and 8051 Microprocessors

6.3.2. Simulation of a Microcontroller Circuit

ISIS release 6.9 of Labcenter Electronics can successfully simulate the digital-analog
hybrid circuits including the PIC16, PIC18, 68HC11 and MCS51 family micro controllers.

Objective:
Our objective is getting familiar with the ISIS simulation environment.

55 Edit Component

Companent Reference; U1 Hidder: [~ [
Component Yalug: B0C51 Hidder: [il
Help
PCB Package: IDIL40 LIF‘ IHide o o] ‘ Data I I
Pragram File: IE“P&'\‘ hex IHide Al ;I Hidden Pirs I i
Clock Frequencs: I1 EMHz IHlde All LI I
C |
Advanced Properties: M
ISimu\ata Program Fetches ;”ND ;I IHide All ;I I
Other Properties:
<]
E}
c]
Exclude from Simulation: [Attach hierarchy module: [~
Exclude from PCE Layout [Hide comman pins: r - ""‘;:5“':" - p—
Edit all properties as text: [I pan: mmsﬂsgs:;n:: o
Fig. 4. Edit component window of 8051 Fig. 3. Design window of Exp5SA.DSN
Procedure

1- Start Proteus Professional>1SIS 6 Professional in windows.

2- Use File->Load design to open the file-browser, navigate to Exp6A folder, and load
Exp6A.DSN file to ISIS. You will get the design window seen in Fig.3.

3- Right click once on the 8051 processor. The processor will turn to red, indicating
that it is selected. Left click once on 8051 to open the “edit component” window of
8051 seen in Fig.4. The Program File shall contain the file name Exp5A.hex,
which is generated in Section 3.1. You can link a file using the file browser icon,
or directly by editing the file name. Do not forget to OK the new file name.

4- Close the edit-window, and right-click on the empty part of the design window to
deselect components. All red components will take their original colors.

5- Two kind of switches are shown in Fig.5 . These switches are active circuit
elements changing state by clicking on their control buttons.

6- Click on & button to start the component insertion mode. This mode supports
interaction to the active components (switches, buttons, and logic-states) using the
mouse.

¢ single pole :
i single throw :

7- Click on start button [_»] to start simulation. Turn the toggle and button switches
on and off, and observe the logic status at the port inputs P0.0, and PO.1.

Reporting:
Write your observations into the report file Exp6.txt as seen below filling the
question marks with your observations.

Assemblers and Development Tools for 8086 and 8051 Microprocessors 53

3.2 Simulation section:

Bl= Pressed, P0.0 = “lowhigh?”’; P3.0 = “low/high ?”
Bl= Released, P0.0 = “low/high?”; P3.0 = “low/high ?”
S1= on, PO.1 = “lowhigh?”; P3.1 = “lowlhigh?”
Ss1= off, P0.1 = “lowhigh?”; P3.1 = “low/high?”

B2= Pressed, P3.7 = “lowhigh?”; P3.2 = “low/high ?”
B2= Released, P3.7 = “low/high?”; P3.2 = “low/high ?”

9- Click on stop button [M] to stop simulation. Right-click on DB1, and make its
full drive current 20 mA (nominal current of the old low-efficiency LED). Then
start the simulation, push on B1. LED DBI1 will glow. Then push on B2 to glow
DB2. Report any difference between the LED illumination levels in your reporting
file

Explanations:

The code Exp6A.a51 executed in 8051 makes pins P0.0, PO.1 and P3.7 input pin.
mov PO,#00000011b ; make P0O.1 and P0.0 suitable for input
mov P3,#10000000b ; prepare P3.7 for input

All other bits initially start giving low output (near 0V). Then, a loop starts with the

label “back™,
back:

In the loop, PO is copied to accumulator. An and-mask keeps bit-0 and bit-1, and
clears all other bits. Then, an or-mask sets bit-7.

; copy port0 switch B1,S1 states to acc
mov a,PO
anl a,#00000011b ; PO.1 and P0.0 are selected
orl a,#10000000b ; prepare P3.7 for input

Next, bit-7 (button B2 status) is copied to bit-2 of the acc register. Acc is copied to

P3 to display the new status on LED indicators.
; copy bit P3.7 to bit P2.2

mov C, p3.7 ; copy P3.7 to Carry Flag
mov acc.2, C ; copy Carry to acc.2
mov P3,a ; apply result to P3

There after, port P1 is incremented by one,
; increment P1
inc P1

Finally, a delay of approximately 25 ms is called to slow down the counting on
P1,
; delay for 25ms delay
mov A,#250
acall dlyl00u

And the code in the back loop is repeated forever.
sjmp back

The delay is obtained by looping idle a preset amount of cycles depending on

crystal frequency.
d1yl00u:
; delay loop takes A*100u

54 Assemblers and Development Tools for 8086 and 8051 Microprocessors

mov rl,A
dlylpl: mov r0,#(xtal*62/10)
dlylp2: djnz r0,dlylp2

djnz rl,dlylpl

ret
end

Reporting:

After you complete the procedures, please save and close exp6.txt file, and e-mail
it using your student e-mail account to cmpe323lab@gmail.com with the
subject line “exp6” within the same day before the midnight.

Late and early deliveries will have 20% discount in grading. No excuse acceptable.

Free time practice:
Write a 8051 assembler source (file name Exp6P.a51) for the circuit of Exp6A, that
- initially turn off all three LED, and make P0.0, P0.1, and P3.7 input pins.
Clear R3 and R4.
- in the mainloop
call dly100u with acc=100 (for 10ms delay)
increment R3,
if R3 exceeds 10, reset R3=0, and increment R4.
turn off all LEDs
if R4=1, turn on the LED connected to P3.2 .
if R4=2, turn on the LED connected to P3.1 .
if R4=3, turn on the LED connected to P3.0 .
if R4=4, turn on all of LEDs, connected to P3.0, P3.1, and P3.2,
if R4=5, make R3=0; R4=0.
continue looping forever.

Assemble your source, and execute your code in ISIS. You shall edit compile.bat
file with a text editor to change exp6.a51 and exp6.1st to exp6P.a51 and
exp6P.1st.

After these changes compile.bat will generate exp6.hex file by assembling the
source file exp6P.aS1.

Start execution of the code in ISIS and observe the LEDs.

Does it light the LEDs in a sequence at every 1 second?

55

7

8051 Memory Decoders and
Memory Interface

7.1 Objective

The aim of this experiment is to observe the operation of a memory address decoder on a
8051 external memory circuit on the ISIS external memory interfacing simulation.

7.2 8051 Memory Interfacing

The 8051 microcontroller instruction set includes an external memory dedicated data
transfer instruction: MOVX, and the processor supports up to 64 kbytes external memory
addressing through the ports PO, P2 and P3. Accessing external memory occupies PO to
carry AD[0..7] address-data lines, P2 to carry A[8..15] high address byte, and the pins
P3.6 and P3.7 to carry ~RD and ~WR control signals. The address latch enable ~ALE pin
supplies a negative-edge to trigger the D-FF register while 8051 delivers the lower address
byte A[0..7] through AD[0..7] lines, similar to the 8088 local bus. Total 16 address lines
provide 64kbytes address space for external memory. This address space is usable for
external code or data memory, and also for memory mapped i/o devices.

ISIS6.9 provides simulation of external memory addressing of the 8051 microcontroller,
which serves in this experiment for observing the operation of a 74LS138 decoder, 6116
RAM devices, and 2764 EPROM devices. The simulation power of ISIS is restricted to
only 8051bus devices with a limited memory options.

ISIS simulates a 2764 EPROM chip with its programmed contents by linking the contents
filename (.hex format) to its properties. In this experiment, we will have two program
projects: Exp7Bus.Uv2 to generate the program code file Exp7Bus.hex that runs in 8051
processor, and Exp7_2764.Uv2 to generate the data code file 2764.hex for the 2764 EPROM
chip.

7.3 Experimental Part

7.3.1. Installation of KC51 and preparation of -.HEX files

Objective: preparation of a workfolder for KC51 IDE and generation of -.hex files for the
simulation. If KC51 is already installed on the computer skip steps 1 to 3 of Procedure-1.
Procedure-1:
1- Download the rarred KC51 IDE folder from the coarse web side, open the rar-
archive, and copy the folder KC51 to the desktop or to a flash-disk.
2- In the explorer, open M51 folder under the KC51 folder. Copy the folder address
“...\KC51\C51” to the clipboard.
3- Open “tools.1ini” in notepad. Paste the folder address into PATH= “...\” at the
[C51] section of the ini file.
- If you plan to work on flashdisk (let’s say drive E:\) then copy KC51 folder to
the root folder so that E:\KC51\ folder contains folders C51, UV3 and the file
TOOLS. INI. Then edit path statement of tools.ini to E:\KC51\C51.

56

Assemblers and Development Tools for 8086 and 8051 Microprocessors

4- On the root folder create folder x:\323\012345\exp7\, where 012345 stands for
your student number. In the folder ..\exp7\ start a txt file with the name
“Exp7.txt” for reporting. Write your student name and number on the first line of
the file similar to.

CMPE 328 Exp7 Report file by <your-name, surname, student
number>

5- Start UV3.exe (Keil-IDE) by clicking on the shortcut. Close the projects
(menu->project-> close project) if any project is open.

6- Open the project file “Exp7_2764.Uv2” in the “KC51/Exp6A” folder. In the
Project-Workspace window, click on the target, and the source-group-1 folders to
turn on the project source file list. There must be “2764.a51” in your projects
sources. If the file is not yet open, open it by clicking on this item.

7- The file shall contain the following lines

; 2764 EPROM contents source file.

; 2008 (c) Mehmet Bodur
org 0
db OxEO,0xE1l,0xE2,0xE3, 'Hello World. '
end

8- Build the project by clicking to Build-Target button (l:l). You shall see the
following messages in the “Build” message window if the installation is
successful.

Build target 'Target 1'

assembling 2764.a51...

Tinking...

Program Size: data=8.0 xdata=0 code=17

creating hex file from "2764"...
"2764" - 0 Error(s), 0 Warning(s).

9- Open the project folder “Exp7A” in the explorer. From the date and time marks of
the files, you will see the following files created recently.

Reporting:

- Open the -.1st file in a text editor, and copy the first page (up to the “end” in the
source code) to your reporting file.

- Check whether the -.hex file in a text editor is generated. This file will be used for
the contents of the external EPROM chip.

- Save your reporting file for other report deliverables.

10- Open the project file “Exp7Bus.Uv2” in Keil-IDE. You will find the following
source file in the project with the filename “extmemread.a51” .

; Exp.7 8051 External Memory
; (¢) 2008 Mehmet Bodur

org 0
mov pO0,#0

mov dptr,#0001h
mov a,#0x23
movx @dptr,a
mov pl,a

mov dptr,#2001h
mov a,#0x45
movx @dptr,a
mov pl,a

Assemblers and Development Tools for 8086 and 8051 Microprocessors 57

mov dptr,#0001h
movx a,@dptr
mov pl,a

mov dptr,#2001h
movx a,@dptr
mov pl,a

sjmp start
end

This program code writes two bytes to external memory locations, first 0x23 to
0x0001, then 0x45 to 0x2000. Next, it reads these two data bytes from the same
locations: 0x0001 and 0x2001. This program code displays on port-1 data bytes
after a read or write operation.

10- Build the project by clicking to Build-Target button ([ZI). You shall see the
following messages in the “Build” message window if the installation is
successful.

Build target 'Target 1'

assembling extmemread.a51...
Tinking. ..

Program Size: data=8.0 xdata=0 code=33
creating hex file from "Exp7Bus"...
"Exp7Bus"™ - 0 Error(s), 0 Warning(s).

11- In the project folder “Exp7A” check the -.hex and -.Ist files to be sure that they are
generated. Copy the first page (upto the end line of assembly) into your reporting
file.

7.3.2. Simulation of 8051 with External Memory

Labcenter Electronics Portable Proteus 7.6 ISIS will simulate the extended memory of an
8051 micro controller.
Objective:
Our objective is getting familiar to the ISIS simulation environment.
Procedure w7
1- Start Proteus 7 Portable=>1SIS ...
in windows.
2- Use File>Load design to open
the file-browser, navigate to
Exp7A folder, and Iload
Exp7Bus.DSN file to ISIS.
You will get the design
window seen in Fig.3.
3- Right click, and then Ileft
click once on the 8051
processor. The Program File
in the “edit component” window
of 8051 shall contain the file
name Exp7Bus.hex, which is generated in Section 3.1. Check that its clock
frequency is 40. This frequency is selected because the animation display rate of
ISIS is frames per second, and it executes in 50ms steps at every click on the [®_1
button. Close the edit-window.

w071

22828828

B

Fig. 2. Design window of Exp5SA.DSN

58

Assemblers and Development Tools for 8086 and 8051 Microprocessors

4- Apply the same procedure described in (3) on 2764 EPROM chip to link
“2764 .hex” to this EPROM device. After this process close the edit-window.

6- Click on ¥ button to start the component insertion mode. Click on step button
[®] to start simulation. Start of [“]

0 | E0 E1 E2 E3|48 65 6C GC|6F 20 57 6F|72 6C 64 2E |Hella world. &
20 FF FF FF|FF FF FF FF|FF FF FF FF|FF FF FF FF | ivivieinnnen.n

Slmulatlon Wlll enable the memory v || o O T R O O R T O R O O OF || cmsossonseassans =
0000 |00 00 00 00|00 00 00 00|00 00 00 00[00 00 00 00 | sreverereeerenss 1

windows in the debug menu. Open
: 0010 |00 00 00 00|00 00 00 00|00 00 00 00(00 00 00 00 | cvuuerereeerenns
the [[le[[lory Wlndows’ and Obse[‘ve 0020 | 00 00 00 00[00 00 00 00|00 00 00 00[00 00 00 00 | weeueerenneennnn

the initial contents of U3 (=2764) Fig. 3. The initial contents of
and U4 (=6116) memory chips. the memory chips.
Reporting:

Write the first 8 bytes of each memory contents to your reporting file.
3.2 Simulation section:
initial contents of U3: EO E1 E2 E3 48 65 6C 6C
initial contents of U4: 00 00 00 00 00 00 00 00
7- Click on execute button [* | to execute the code for a couple of seconds. Then
pause the simulation by clicking on 1 button. Observe the contents of U3,
2764 and U4, 6116 memory chips.
Reporting:
Write the first 8 bytes of each memory contents to your reporting file.

after 10s contents of U3: EO
after 10s contents of U4: 00

Explanations:

You shall expect that EPROM is non-volatile, and it is a read-only memory.
Therefore the written bytes shall not change the contents of the EPROM memory.
On contrary, 6116 RAM will change the contents of the locations whenever a data
is written on its locations.

8- Click on the graph title “Transient Analysis”. A graph window will get opened.
The control buttons | & % | &= R QABEF S are for EditWindow, AddTrace,
Execute, NavigateLeft, NavigateRight, ZoomIn, ZoomOut, ZoomAll, ZoomManuel,
and ViewLogFile. Clicking on Execute, and then ZoomAll will display the following

graph.
E—— TRANSIENT AMALYSIS
CLK
“RD | LT L]] L
“HR ! L L] L LI
ALE 0 0
R..71 [| FF | FF i FF T FF i FF LB FF T FF J FF J FF
A8, 151 FF 3§ | FF | FF | FF T FF | FF T FF [FF T FF
ADCA. .71 i} {} [} i i} it i i
~CER L] [L] L]
~CE1 . LT LT L] L
=
I Lo, L L L. Ly Lo, L 1Y 1 1 I I 1
B.08 1.00 Z.08 3.00 4,00 5,08 £.00 7.08 5.00 ER 8.0 1.8 1£.0 15.0 4.8 15.0
zoom in range
Fig.4. ZoomAll view of the memory write and read cycles.
Explanations:

CLK frequency is too high to display the clock pulses individually. ~RD, ~WR, ALE,
A[8..15] are microcontroller outputs. AD[0..7] is multiplexed address-data
lines. A 74374 positive edge-triggered D-Latch stores address value A[0..7]
given from AD[0..7] lines at the positive . ~CEO and ~CE1 are address decoder
outputs.

Assemblers and Development Tools for 8086 and 8051 Microprocessors 59

9-

Use ManualZoom to zoom in to the first write cycle of the graph, as seen below.

TRAMSIENT AMALY¥SIS

RLA..7]

FF | a1 I FF

ACE..13]

FF X [o] i FF

RDCA. .71

{ a1 i 23 }

~CER

~CE1

L I I I L
1.33 1.48 1,43 1.58 1.33 1.68 1.83 1.78 1.73

Fig.4. Zoom in [1.35, 1.75] seconds view showing the write 0x23
to the external memory location 0x0001.

Reporting:

At

tach the blue start line to the start of the AD[0. .7] valid period by left-clicking at
that point while you press the control-key. Now, measure the duration of the
AD[0..7]=0x01 and =0x23. Write the durations both in total number of clock
cycles and time in seconds.

Duration of AD[0..7]=0x01 is .. cc , = seconds
Duration of AD[0..7]=0x23 is .. cc , = seconds
Explanations:

One external memory write bus cycle starts from valid address on AD[0..7] , and

10

ends when AD[O0. . 7] becomes floating.

- Use manual zoom to display the first read bus cycle on the graph. This is a read
from 2764 EPROM device. An Intel 8051 external memory read bus cycle takes
exactly 12 clock cycles.

Reporting:
Explain in your report how you conclude that the memory cycle is a read cycle from

the EPROM (Use the status of ~WR, ~RD, and ~CE# lines). Explain what is value of
the data byte sent from the EPROM to the processor.

11- Use manual zoom to display the second read bus cycle. This is a read from 6116
RAM device. An Intel 8051 external memory read bus cycle takes exactly 12
clock cycles.

-)) i TRANSIENT AMALYSIS =) o
S B e e N o o S o e o e I e S s [S Sy |
RO H |]
“HR H
ALE H ,——\—
AL@. .71 FF h a1 i FF
ACS. . 15] FF I] 1 FF
ADLB. .71 ———F 21 1 45 }
“CER H
“CE1 H | I
1. | | . | |- Il | - |
£.130 = 5.230 5.300 £.338 5.400 6.438 &.38a £.330
Fig.4. Zoom in [6.15 , 6.5] seconds view showing the read from the external memory location
0x2001.
Reporting:

Explain in your report how you conclude that the memory cycle is a read cycle from

the RAM (Use the status of ~WR, ~RD, and ~CE# lines). Explain what is value of the
data byte sent from the RAM to the processor. Is the data byte value the same
with the written data value?

60 Assemblers and Development Tools for 8086 and 8051 Microprocessors

Reporting:
After you complete the procedures, please save and close exp7.txt file, and e-mail
it using your student e-mail account to cmpe323lab@gmail.com with the
subject line “exp7” within the same day before the midnight.

Late and early deliveries will have 20% discount in grading. No excuse acceptable.

61

8.
8051 Memory Mapped 1/0
and
8255A Interfacing

8.1 Objective

The aim of the first part of this experiment is to observe

a- an /O address decoder for memory mapped i/o system of an 8051 processor.
b- a simple output port implemented with a 74 LS374 latch,

c- a simple input port implemented with a 74S244 three-state buffer.

d- interfacing button switches to an input port

e- interfacing a 7-segment LED display to an output port

The aim of the second part consists of

a- interfacing an 8255 to a 8051 processor,

b- interfacing a 6-digit multiplexed 7-segment display to an 8255.

The aim of the third part is to demonstrate how the rotation of a stepper motor is controlled
with 80x86 code.

8.2 8051 External 10 Interfacing

The MOVX instruction of 8051 microcontroller offers a method to interface memory mapped
io devices using the ports PO, P2 and P3 for external memory addressing. P0 carries AD[0..7]
address-data lines, P2 carries A[8..15] high address byte, and the pins P3.6 and P3.7 provide
~RD and ~WR control signals. In contrast to external memory interfacing, we do not need to
latch A[0..7] since A[8..15] is sufficient to address up to 256 io devices.

In this experiment we will construct simple input and output ports using AD[0..7] lines
for only data transfer, and A[8..15] lines only for addressing the 10 devices. The address
will be decoded by an address decoder made of 74LS138 and 74LS139 decoders.

8.3 Experimental Part

8.3.1. Memory Mapped I/O interfacing

Objective:

To prepare a workfolder for KC51 IDE and generation of -.hex files for the simulation.

To observe the simulated circuit while it executes the assembled program code on 8051

with a memory mapped output and input interfacing to drive a 7-segment LED and to read

four switches.

Procedure-1.a : Preparation of the -.hex file

1- If C:\KC51\ folder is not available download KC51 from the course web page and

copy it on hard disk or your flash disk (let’s say E:). Correct the PATH statement
on the file E:\KC51\TOOLS.INI to PATH="E:\KC51\C51". Download and extract
EXP8A. rar into folder E:\323\012345\EXP8A.

62

Assemblers and Development Tools for 8086 and 8051 Microprocessors

2- Start a -.txt file with the name “E:\323\012345\Exp8. txt" for reporting. Write
your student name and number on the first line of the file similar to.
CMPE328 Exp8 Report file by <your-name, surname, student number>
3- Find and start “../KC51/UV3/UV3.exe”. Close the projects (menu—>project—> close
project) if any project is open. Open the project file “E:\323\012345\Exp8A.Uv2”
. In the Project-Workspace window, click on the target, and the source-group-1
folders to turn on the project source file list. There must be “Exp8Al.a51” in your
projects sources. If the file is not yet open, open it by clicking on this item.
4- The file shall start with the following lines. Fill in your name and number.
; Exp8Al.a51

; Student Name:

; Student Number:

; (. ¢) 2008 Mehmet Bodur
;$ge

; Display value in RAM memory
; 01d keys to detect negative edge.
; Hide/Display flag
Disp equ RO
5- Build the project by clicking to Build-Target button (LZl). You shall see the
following messages in the “Build” message window if the installation is
successful.
Build target 'Target 1'
assembling Exp8Al.a51...
Tinking. ..
Program Size: data=8.0 xdata=0 code=107
creating hex file from "Exp8Al"...
"Exp8A1l" - 0 Error(s), 0 Warning(s).
This project contains macros. In the target options, it needs the extended linker
and Ax51 instead of A51 assembler; and the output shall be set to create hex file.
The list file expands the macros only if listing is set to all-expansions. The macros
in this experiment can be handled both by standard and MPL macro processor.
6- Open the project folder “Exp8” in the explorer. From the date and time marks of the
files, you will see the most recently created -.hex and -.Ist files.
Reporting:
- Open the -.Ist file in a text editor, and copy the first 35 lines (including “main:”) to

your reporting file.
A51 MACRO ASSEMBLER EXP8Al 05/07/2008 18:32:16 PAGE 1

MACRO ASSEMBLER A51 v8.01
OBJECT MODULE PLACED IN EXp8Al.OBJ
ASSEMBLER INVOKED BY: H:\KC51\C51\BIN\A51.EXE Exp8Al.a51 SET(SMALL) DEBUG EP

LoC OBJ LINE SOURCE
; Exp8Al.a51
2 ; Student Name:
2 ; Student Number:
5 ; (¢) 2008 Mehmet Bodur
(75 ;$ge
8 ; Display value in RAM memory
9 ; 01d keys to detect negative edge.
10 ; Hide/Display flag
REG 11 Disp equ RO
REG 12 Keys equ R1
REG 13 oldKeys equ R2
REG 14 Hide equ R3
REG ig T™mr equ R4
17 ; simple output port
0080 18 PA e?u 80h
19 ; simple input port
0081 20 PB equ 81

21 ; port-1 for debug

Assemblers and Development Tools for 8086 and 8051 Microprocessors 63

22 ;P1 equ 90h

23 ; reset vector
0000 24 org 0
0000 010C %(5; ajmp main
0002 27 Tutcode:

28 H fedcba fedcba
0002 3F06 29 db 00111111b, 00000110b
0004 5B4F 30 db 01011011b, 01001111b
0006 666D 31 db 01100110b, 01101101b
0008 7007 32 db 01111101b, 00000111b
000A 7F6F 32 db 01111111b, 01101111b
000C 35 main:

- Save your reporting file for other report deliverables.
Procedure-1.b : Execution of the -.hex file on 8051 simulated in ISIS

1- Start Portable Proteus 7.6 - ISIS in windows.

2- Use File>Load design to open the file-browser, navigate to Exp8 folder, and
load Exp8A1.DSN file to ISIS. You will get the design window seen in Fig.1.

3- Right click, and then left click once on the 8051 processor. The Program File in
the “edit component” window of 8051 shall contain the file name Exp8A1.hex, which
is generated in Section 3.1. Close the edit-window.

6- Click on ‘¥ button to start the component insertion mode. Click on start button
[» T to start simulation.
While the simulation works, a number will appear on the 7-seg-LED display.
Click on UP and DN push-button switches to change the number as you wish.
Click on Hide to make the 7-seg-LED off.
Click on Disp to make the number reappear.
You may observe the bus timing for input and output port using the digital
analyzer.

Tairont Tiners

|

—1 | IR -
81 5 | [D1
Q2 6 , | D2
o IR : D
12 [[N
g; 15 1 Dg_
5| g | I : D,

= T o | | SR

Isimple Inpus Port

Tutcode:
H egfcbda egfcbda
G 019001116, 0ol0i11dh
Fig. 1. Experimental Circuit Exp7A0.DSN in ISIS. db 00111100b, 00111011b
db 01111011b, 00001101b
db 01111111b, 00111111b

Fig.3 Modified lookup table

7- Get from your lab assistant a new combination of connections between port pins
and display pins (i.e., Q0 = a, Q1> d, Q2>b, Q3>c, Q4>f, Q5>g, Q6>¢).
You shall modify the connections between the 74LS374 and the display
accordingly as you see in Fig.2 . Then modify the display-code look-up table in
the assembly source for the correct display of the numbers on the display as
shown in Fig.3 .

Reporting:

Write the combination given to you by your assistant in a table form like

Q: 76543210
D: ~-egfcbda

Thereafter copy the first 35 lines of -.Ist file obtained with your modified code i.e.
AX51 MACRO ASSEMBLER EXP7B 05/07/08 18:34:01 PAGE 1

64 Assemblers and Development Tools for 8086 and 8051 Microprocessors

MACRO ASSEMBLER AX51 Vv3.03c

OBJECT MODULE PLACED IN EXp7B.OBJ

ASSEMBLER INVOKED BY: H:\KC51\C51\BIN\AX51.EXE Exp7B.a51 SET(SMALL) DEBUG EP
LoC OBJ LINE SOURCE

; (¢) 2008 mehmet Bodur

2 ; Macro pefinitions for 8088 style io

3 ige

4

5 in macro al,p8

6 mov DPH, #p8

7 movx al,@PTR

g endm

10 out macro p8,al

11 mov A,al

12 mov DPH,p8

13 movx @DPTR,A

14 endm

15
0083 16 ComR equ 83h
0080 17 PA equ 80h
0081 18 PB equ 81lh,

%3 ; start PPI in all output mode.
000000 21 org 0
000000 0100 F %g ajmp main
000002 24 Tutseg:

25 H gfedcba fedcba
000002 3F06 26 db 00111111b, 00000110b
000004 5B4F 27 db 01011011b, 01001111b
000006 666D 28 db 01100110b, 01101101b
000008 7D07 29 db 01111101b, 00000111b
00000A 7F6F gg db 01111111b, 01101111b
00000C 33323824 32 msg: db '328%'
0002 gz msglen equ 2
000010 35 main:

Show that the simulation works properly for all numbers to your assistant to get
performance points of this experiment.

8.3.2. Interfacing 8255 to 8051 Microcontroller.

Objective:
To observe the slow-motion simulation of the multiplexed 3-digit common-anode 7-
segment LED display, and to observe the simulation of a 6 digit common cathode 7-
segment LED display at full speed.
Procedure-2.a : Preparation of the -.hex file
1- Start UV3.exe . Close the projects (menu->project—> close project) if any project is
open. Open the project file “Exp8B.Uv2” in the “KC51/Exp8B” folder. In the
Project-Workspace window, click on the target, and the source-group-1 folders to
turn on the project source file list. There must be “Exp8B.a51” in your projects
sources. If the file is not yet open, open it by clicking on this item.
3- The file shall start with the following lines
; Student Name:
; Student Number:
; File: Exp8B.a51
; (¢) 2008 Mehmet Bodur
; Macro Definitions for 8088 style io
$ge

in macro al,p8
mov DPH, #p8
movx al,@DPTR
endm
8- Build the project by clicking to Build-Target button (). You shall see the
following messages in the “Build” message window if the installation is
successful.
Build target 'Target 1'
assembling Exp8B.a51...

Assemblers and Development Tools for 8086 and 8051 Microprocessors 65

Tinking. ..
Program Size: data=8.0 xdata=0 const=0 code=87
creating hex file from "Exp7B"...
"Exp7B" - 0 Error(s), 0 Warning(s).
9- Open the project folder “Exp8B” in the explorer. From the date and time marks of
the files, you will see the -.hex and -.Ist files created recently.

Reporting:

- Open the -.Ist file in a text editor, and copy the first 11 lines (up to the line to your
reporting file.

AX51 MACRO ASSEMBLER EXP7B 05/07/08 22:01:16 PAGE 1

MACRO ASSEMBLER AX51 V3.03c
OBJECT MODULE PLACED IN Exp7B.OBJ
ASSEMBLER INVOKED BY: C:_AB\SW\KC5I1\C51\BIN\AX51.EXE Exp7B.a51 SET(SMALL) DEBUG EP

LoC 0BJ LINE SOURCE
1 ; Student Name:
2 ; Student Number:
3 ; File: Exp7B.a51
4 ; (. ¢) 2008 Mehmet Bodur
5 ; Macro Definitions for 8088 style io
6 $ge
7
8 in macro al,p8
9 mov DPH, #p8
10 movx al,@DPTR
11 endm

- Save your reporting file for other report deliverables.

Procedure-2.b : Execution of the -.hex file on 8051 simulated in ISIS

1- Start PortableProteus ISIS 7 Professional in windows.

2- Use File->Load design to open the file-browser, navigate to Exp8B folder, and load
Exp8B.DSN file to ISIS. You will get the design window seen in Fig.4.

3- Right click, and then left click once on the 8051 processor. The Program File in
the “edit component” window of 8051 shall contain the file name Exp8B.hex, which is
generated in Section 3.2.a. Also check that the Clock Frequency box contains
120k instead of 12M. With this settings, simulation will work 100 times slower
than its full speed. Close “edit component” window.

4- Click on ¥ button to start the component insertion mode. Click on start button
[» I to start simulation. While the simulation works, numbers 8, 2 and 3 will
appear on the 7-seg-LED displays.

You may observe the bus timing for input and output port using the digital
analyzer.

Reporting:

- Look at the program code and explain in two paragraphs what shall you change in
hardware and software if you need 8 digits instead of only 3 digits.

e
*H-H'\'\“\‘}-E £op
@ a EEM

7222 33A25A23 22REREEE

a a a 1 TG i

war EpTBDSH
......... HUCSIEDTBEDTBISN

i ExpTAZOSH
CHETTEDTA20SN

e a0

[—— R———

Fig. 4. Experimental Circuit Exp7B.DSN in ISIS. Fig. 5. Experimental Circuit Exp7C.DSN in ISIS.

66

Assemblers and Development Tools for 8086 and 8051 Microprocessors

Procedure-2.c : Common Cathode Displays running at full speed.
Explanation: In the first two experiments you worked with common anode displays.

1-

Now, you will use a common cathode 7-segment LED array in this simulation.
Start “UV3.exe”. Close all projects (menu->project->close project). Open the project
file “Exp8C.Uv2” in the “Exp8C” folder. In the Project-Workspace window, click
on the target, and the source-group-1 folders to turn on the project source file list.
There must be “Exp8C.a51" in your projects sources. If the file is not yet open,
open it by clicking on this item. Build the project to generate the -.Ist and -.hex
files.

Explanation: This code is almost the same with the 3-digit display code you

assembled in Procedure 2.b. The only difference is, the digit select changed to
active low (i.e., $OFE selects digit-0), and the complement instruction cpl a is
canceled because common-anode segments need active-high excitation.

3- Start Proteus7.6Portable->1SIS in windows and use File->Load design to open the file-

browser, navigate to Exp8C folder, and load Exp8C.DSN file to ISIS. You will get
the design window seen in Fig.5.

3- Right click, and then left click once on the 8051 processor to open “edit component”

window. The Program File of 8051 shall contain the file name Exp8C.hex. Also
check that the Clock Frequency box contains 12M (it is 12 Mega Hertz, do not
confuse with 12m = 12 milliHertz). With this settings, simulation will work at its
full speed. Close “edit component” window.

4- Click on ¥ button to start the component insertion mode. Click on start button

[* 1 to start simulation. While the simulation works, numbers 054321 will appear
on the 7-seg-LED displays.

5- Stop the simulation, and set the clock frequency of 8051 to 120k. Then start the

the simulation. Write your observation (how the numbers shift) into the report file.
Section 2.c
At 12M clock frequency:
At 120k clock frequency:

6- Before you complete your lab, modify the code to write your student number on

the display (at 12M clock frequency) to get the performance grade for this part of
the experiment.

8.3.3. Interfacing 8086 to a stepper Motor.

Objective:

The aim of this part is to demonstrate the operation of a stepper motor control by 8086
assembly code.

Procedure-3:

1-

Create a subfolder “E:\323\012345\Exp8D\” in the KC51 folder. Create a text
file in Exp8D folder with the name “Exp8D2.ASM”. Write the following program
into the Exp8D2.asm file:

Your Student Number, Name, Surname .
CMPE323 Lab Stepper Motor and UART
Stepper Motor control.

in the mainloop
read a character from UART into rchr
if rchr="1" step forward
else if rchr="2" step backward

Assemblers and Development Tools for 8086 and 8051 Microprocessors

67

; else do nothing
; Tooping in mainloop

.MODELSMALL
.8086

.CODE

jmp Main

; Data in the code segment

rchr db O

step db O

smtb db 3, 6, 12, 9 ; double coil drive

; Code starts here
Main:
mov AX,CS
mov DS, AX
call InitUSART
MainLoop:
call RecvChar
; reads received character into AL.
; If no character received then AL returns zero.
cmp al,0
jz Mainloop
mov rchr,al
cmp rchr,'l’'
jnz skipforward
; forward step
inc step
mov bx,0003h
and bl,step
mov al, [bx]+offset smtb
mov dx,324h
out dx,al
skipforward:
cmp rchr,'2’'
jnz MainLoop
; backward step
dec step
mov bx,0003h
and b1,step
mov al, [bx]+offset smtb
mov dx,324h
out dx,al
jmp MainLoop

InitUSART proc

xor AL, AL
mov DX, 332h
out DX, AL
out DX, AL
out DX, AL
mov AL, 40h
out DX, AL

mov AL, 04Dh ; 8-bit, no parity, baud=clock x1
out DX, AL

mov AL, O5h ; start both receive and transmit
out DX, AL

ret

68 Assemblers and Development Tools for 8086 and 8051 Microprocessors

endp

RecvChar proc
; reads received character into AL.
; If no character received then AL returns zero.

push DX
mov DX, 332h ; status/control address
in AL,DX ; read status register

and AL,02h ; zero flag is set if AL .AND. 0lh 1is nonzero
jz NotReceived
mov DX, 330h ; data-in/data-out address

in AL,DX ; received character transferred from data-in into
AL.
shr AL,1
NotReceived:
pop DX
ret
endp
.data
.stack 32
END

2- Use EMU8086 to assemble the source file to an exe file “EXP8D2.exe”. Start
Proteus-Professional 7.6 ISIS and open VSED_WA_SMOTOR.DSN in ISIS. Link the
8086 processors program file to EXP8D2.EXE file. Observe how the motor turns
when pressing to key “1” and key “2”. Write your observation into your report

file

Your report shall contain
EXP8D2:
-With SMTB 3, 6, 12, 9
on key "1” rotor rotates (ccw or cw?)
on key "2” rotor rotates (ccw or cw?)
when PAis 00000011 the rotor alignesto degrees position.
when PAis 00000110 the rotor alignesto degrees position.
when PAis 00001100 the rotor alignesto degrees position.
when PAis 00001001 the rotor alignesto degrees position.

3- Modify the step motor look-up table SMTB to contain 1, 2, 4, 8 instead of 3, 6,
12, 9. Assemble it to EXP8D2.EXE and simulate in ISIS with the same circuit.
Observe how the motor turns when pressing to key “1” and key “2”. Write your

observation into your report file.
-With SMTB 1, 2, 4, 8

on key "1” rotor rotates (cow or cw?)

on key "2 rotor rotates (cow or cw?)

when PA is 00000001 the rotor alignesto degrees position.

when PAis 00000010 the rotor alignesto degrees position.

when PAis 00000100 the rotor alignesto degrees position.

when PAis 00001000 the rotor alignesto degrees position.
Reporting:

After you complete the procedures, please save and close exp8.txt file, and e-mail
it using your student e-mail account to cmpe323lab@gmail.com with the
subject line “exp8” within the same day before the midnight.

Late and early deliveries will have 20% discount in grading. No excuse acceptable.

69

Sample Design Project Specifications and Requirements

9.

Design and Coding o
an Intelligent Restaurant
Service Terminal

9.1 Objective

The aim of this project is to use an A/D converter, four switches, an LCD and the serial
output port of an 8051 to construct an intelligent terminal for the restaurant service
stations.

9.2 Introduction

The file proj09.zip contains the C code, two header files, and the circuit design file of a
8051 system. The presented system reads an analog voltage and states of four switches,
displays these readings on LCD screen, and transmits the digital value through the serial
port with 4800 baud, 8-bit, no parity, one stop bit settings. The code is written with student
version Keil C compiler. The ISIS circuit schematics design file may be executed using
ISIS of the Portable PROSIS 7.6.

9.21. Installing KC51 on your drive

KC51 does not support folder names longer than 32 characters. Therefore you shall copy
the proj09 folder to the root of a flash disk (E:) or to your hard disk (C:) drive. For a
trouble free operation we recommend to work in folder C:\323\012345\proj09\, where
012345 stands for your student number. Copy KC51 folder to C:\KC51\ so that the folder
C:\KC51\ contains folders C51, UV3 and the TOOLS.INI file. Edit the path line of the
TOOLS.INI file to change it to PATH="C:\KC51\C51\" so that KC51 programs can be
called while your source file is in folder C:\323\012345\proj09\. If you copy KC51
folder to another place do not forget to update the path statement accordingly. For
example, if KC51 is directly on the root of your flash disk E:, you shall make the path
statement PATH="E:\KC51\C51\".

9.2.2. Starting a 8051 or 8052 project in KC51

1. Extract projo09 folder to “C:\323\012345\”. If KC51 is not yet installed in your drive
the copy KC51 folder to file to C:\323\, and update PATH statement in the
TOOLS.INI file according to installation directives stated in previous subsection.

2 Start C:\323\KC51\UV3\Uv3.exe and start a “New uVision project” from project
menu. Use “Generic” and “8052 all variants”, and click “No” for question “Copy
standard 8052 startup code?” .

70

Assemblers and Development Tools for 8086 and 8051 Microprocessors

3. With a right-click on Target 1 enter options
target: use on chip ROM (X);

Generic 8052 (all Varants)

Wal (MHz): [12.0
Memary Model: |Small: varables in DATA ﬂ
Code Rom Size: |Sma||: program 2K or less j
COperating system: |I-J.3|-.e ﬂ

¥ Use On-chip ROM ((x0-X«1FFF)

Output

* Create Executable: Proj10

[+ Browse Information

[v Debug Information

[Create HEX File

oo .. -..nat: |HEK'5:

El

5 In C:\323\012345\proj08 the template source prog08.C is available for your use.
Add prog08.C to your project using “Add files” to “Source Group 1”. Compile it

to obtain its hex file.

6 Start ISIS, and open the design file C:\KC51_proj08\proj08\Proj.DSN, which uses a
8051 (it is also compatible to generic 8052). Link the hex file “Proj.hex” to the
properties of 8051, entry: “program file”. Then start simulation in ISIS. It displays the
ADC reading and switch readings on LCD display. It also prints the ADC reading to
the terminal window when you push SW1.

7 Write your program into the template prog08.C to satisfy the project requirements.
Debug, compile, and simulate in ISIS until you obtain stable operation of the system.

The electronic circuit of this project is available in Proj.dsn file and it is shown in Fig. 1.

m

4 P

u2

Py g

TAL POLADO

prqy | UEULSE]

Po.1dD

Pztg | o

PO.2iD2

EETT

ATeLE POSHADS

Paty | I08

oLt
PO.5DS

HZM
PiLEDE

1123
1133

Pryy | D6

13
20p 2 2 gt Po 707 e
Pa.nia =
Pa1tag

GHD

DETMSE]

10n DK
100k V=2.30634
1k m

2 - e & V=155
L L [eeEal o |
_ P20 —ﬁ%'
sC e PasinIt 4 ADCOS01
AE PuA2 —
% A [§ LHO16L -
[
0 Pa.TIIS AOC=
g Fi '—i'UESLI_]— PLO PEORD £
U:SLU% P11 PEADD.
Fi14.17] —ne P5.20NTH
£ iéi " P13 P33T
=l]xll5T5— Fld F3.4TH
‘TL 383 FSATL
o FLE PEEME
PLT PS.TRD
30C51
DIGITAL ANALYEIS
Fie | | | |
P11 ‘ ||| ||
P14, 171 [F || [GH 1 K 1
™D f | |
Ed . ___|
.28 188 20 e 480) =+
Fig.1 Sample Design Template Circuit
9.2.3. LCD display

The sample code is written for LMO16L (2-line by 16 column) LCD display in 4-bit data

transmission mode.

The following bit definitions assign symbols to the port pins for LCD.

Assemblers and Development Tools for 8086 and 8051 Microprocessors 71

#include <REG51.H>
#include <stdio.H>
// . Special Function Bits_declared for LCD

sbit RS = P1A0; // Control signal RESET of the LCD connected to pin P2.0
sbit EN = P1Al; // Enable (ENg LCD control signal connected to pin P2.2
sbit RW = P1A2; // write (Rw) Signal pin connected to pin P2.1

bit RSF,RSC ;// RS Flag,
where, RSF stores the state of control mode (1) or text mode (0). RS, EN and RW declares the
symbols corresponding to RS, EN and RW pins of the LCD unit.

The following three subroutines support printing strings on LCD.

The delay(int) procedure

void delay(int dd) { // Delay function.

int j=dd; while(j--);}

provides necessary delays for LCD and mainloop. The delay time is proportional to dd, and
it gives 1 ms delay for dd=100.

The LCDChar(char) procedure sends one character to LCD display by making enable
signal EN=high, and EN=low while the higher- and lower-nibbles of the character is applied
to the data lines. It also calls sufficient delay (1ms) after sending each control character.

void Lcbchar(char ch){

char Ct=ch;

Pl= Ct&0xFO; 1if(RSF&&RSC){RS=1;}
EN=0; delay(10);

EN=1; delay(10);

EN=0; delay(5);

Ct= ch << 4 ;

P1l= Ct&0xFO0; if(RSF&&RSC){RS=1;}
EN=0; delay(10);

EN=1; delay(10);

EN=0; de1a¥(5);

if(IRSF) delay(120); //1.2ms

The procedure PrintLCD(*char) sends the control and text characters to LCD. As a
feature of this procedure, printing a “\xOFF” toggles the text mode to control mode by
sending the characters with RS line high. The printed string must end with a null character
as usual in C language.

void PrintLCD(char *ch){

char ct, n=0 ;

EN =0 ; RSF=1;

Ct=ch[n];

while(ct){ RSC=1;
if(Ct&0x80) {RSC= 0;} // Ct>0x7F -> RSC=0
if(~Ct==0) {RSF= 0;} // Ct=0XFF -> RSF=0
else{ LCcDChar(ct);}
n++;Ct=ch[n]; }

72 Assemblers and Development Tools for 8086 and 8051 Microprocessors

The control characters valid for LMO16L-LCD unit is given in the following Table.
Table of command codes for LCD displays

Hex | Action Hex | Action

01 | Clear display screen 02 | Return home

04 | Decrement cursor (shift cursor left) 05 | Shift display row right

06 | Increment cursor (shift cursor right) 07 | Shift display row left

0C | Display on, Cursor hidden OF | Display on, cursor blinking

10 | Shift cursor position to left 14 | Shift cursor position to right

18 | Shift the entire display left 1C | Shift the entire display right

28 | 4-bit data, 2 lines, 5x7 matrix 38 | 8-bit data, 2 lines, 5x7 matrix

Cursor Placement Commands — row-1 Cursor Placement Commands — row-2

80 | Move cursor to 1* column of 1* row CO | Move cursor to 1* column of 2* row

81 | Move cursor to 2" column of 1™ row C1 | Move cursor to 2™ column of 2* row

8F | Move cursor to 16™ column of 1™ row C1 | Move cursor to 16™ column of 2 row
The placement of the cursor is achieved with the control codes { 80h, .. ,8Fh } for the
first line, and with the control codes { COh, .. ,CFh } for the second line. For example,

to start the text “Hello” from the second line, third column you shall use
PrintLCD(“\x0C2He110”), where \x0C2 sets the cursor to second line third column, and
the text Hello is written to the display. The cursor placement characters are over 0x7F,
and PrintLCDQ) process them as commands without needing a command mode character
\xOFF.

In the Init() procedure, PrintLCD sends a collection of commands (\xff) to LCD to
initialize it to 4-bit mode (\x02\x28), clear the display (\x01), hide the cursor (\x0c), and
with each written character shift the cursor to right (\x06).

void INIT(void){

// Initialization of the LCD by giving proper commands

// comm-mode,ret-home,4-bit,clr, hide-cursor, shift-cursor-right
PrintLCD("\xff\x02\x28\x01\x0c\x06\0"); // Initialize 4-bit LCD.

9.24. Serial Port

The 8051 has an on-chip UART to implement serial communication with RS-232
communication protocol. RS232 communication may be useful for user interface as well as
in code development

a) to debug embedded applications, using a desktop PC;

b) to load code into flash memory for ‘in circuit programming’.

¢) to transfer data from embedded data acquisition systems to a PC, or to other embedded
processors.

In our project, UART is used to transfer data to a PC at 4800 baud.

8051 UART can work in one of four modes, three of them being asynchronous and one of
them synchronous. For the simplicity of the project, we will give the receipt of how to
work in mode-1 at 4800 and 9600 baud rates.

In mode-1, the baud rate is determined by the overflow rate of Timer 1 or Timer 2. If we
use Timer 1, the baud rate is determined by the overflow rate and the value of SMOD as
follows:

Assemblers and Development Tools for 8086 and 8051 Microprocessors 73

(SMOD+1) - Fosc
32 . CPI - (256 - TH1)
where SMOD is the ‘double baud rate’ bit in the PCON register;
Fosc is the oscillator (or resonator) frequency (in Hz);
CPI is the number of machine cycles per instruction (e.g. 12 or 6)
TH1 is the reload value for Timer 1.

BaudRate =

With SCON=0x50, Using TH1= FAh (=250 =—5), and oscillator frequency 11.06 MHz, the
baud rate becomes 4800. TH1=FDh (= — 3) sets the baud rate to 9800. Thus, the

initialization procedure INIT() contains
void INIT(void){

// Serial port initialization

TMOD=0X20; TH1=0xOFA; // select baud rate 4800
SCON=0x50; // set mode-1

TR1=1; // start timer.

TI=0;}

which sets Timer-1 to automatic load mode, and serial port to 4800 baud receive/transmit
mode so that writing a character to SBUF transmits the character. Further, the char
putchar(char) procedure in stdio.h is canceled, and then putchar is declared in the
program code as

char putchar(char ch){ // For serial output
SBUF=ch; while(!TI); TI=0; return 0;}

so that the int printf(*char, ..) prints directly to the serial port by calling putchar.

9.2.,5. ADC interfacing

ADCO0801 is a single channel successive approximation register (SAR) AD converter

compatible to micro processor system bus interfacing.
~CS is set to low for both RD and ~WR pulses

o
=

— L
& vee o B
8 1 beoss) R 2 cs I—I
JUA WR -
Bom CLKN - R Read Delay
L oe3 INTR |—— I
14 8 I_
—=— DB4 AGND |—= D[.7]= === === === = = ————— —-_———_— D@---
B— DB5 D GND —;O (0.1 [
= pBs VREF/2 |—= :
U permss) CLKR —2 ~INTR I
6
ViN+ h
VIN- RD
ADC0801 Conversion starts Conversion ends Dats transfer over

Fig.3. ADCO0801 pin layout and control timing

The Pins DB[1..7] are connected to system data bus, the control pins ~CS,~RD, ~WR, are
used for chip-select, conversion data read, and ADC start purposes as described in timing
chart given in Fig.3. The following port-bits and variables are declared to implement this

timing.

sbit ADCS = P2A0; // ADC chip select

sbit ADRD = P2Al; // ADC read enable

sbit ADWR = P2A2; // ADC write enable

sbit ADINTR P2A3; // ADC conversion over
unsigned char ADCVAL;

The ADCRead ADCO0801 conversion cycle starts by making the port PO an input-port.
Then, the conversion starts after making ~CS low, and ~WR low. delay(2) is placed there

74 Assemblers and Development Tools for 8086 and 8051 Microprocessors

to observe the port easily on the digital analysis window. The code stays in a loop while
~INTR is high, which means conversion is not completed.
void ADCRead(void){ // Analog Digital Converter

// Reads ADC into ADCVAL

//Make the ADC port Input port

PO=0xOFF;

// start conversion

ADCS =0; ADWR =0; ADWR =1;

// wait till conversion 1is over

do{}while(ADINTR);

// read data of ADC into ADCVAL

ADRD =0; ADCVAL =P0; P2=0xO0FF; }
Then, the reading of the conversion is written to the global variable ADCVAL. Parameter
transfer in global variables is frequently seen in microcontroller programming because it is

code-efficient.

9.2.6. Switches and Operation of the System

The lower four pins of P2 port are used for ADC interfacing. ADC read procedure makes
P2 an input port after it completes ADC read operation. The higher 4 pins of P2 are
interfaced to four pushbutton switches, SW1, SW2, SW3, and SW4. The detection of the
press and release instants are obtained by reading the switch states into SW, and keeping the
old switch states in SWP. Both SW and SWP are 8-bit unsigned global integers.

unsigned char SW, SWP;
For the consistency of operation in the mainloop P2 is read into SW only once at the
beginning of the mainloop. For coding simplicity, the lower 4-bits are purged out by the
shift operation

SWP=SW; SW=P2>>4; // past and present value of switches
The switch readings are converted to binary sequence of “0” and “1” characters by

jLOJ=(SW>>3&1)|'0"; j[11=(SW>>2&1)|'0"';

j[2]=(SW>>1&1)|'0"'; j[3]1=SW&1|'0'; j[4]1=0;
You can test the switch status by an if statement

if(SW&0x01) { .. ;} // while SW1 released

to execute a block of code on switch is open, and
1 (SW&0x02A0x02) { .. ;} // while Sw2 pressed

to execute the code on switch is closed.

If you need to execute a code only once when a switch is pressed or released. Then, before
reading the states of switches into SW you shall store the past value of SW in SWP.
if((SW&(SWASWP)&0x04) { // once only when SW3 released
to execute only once when switch is released (opened).
1f(~SW&(SWASWP)&0x08) { // once only when Sw4 pressed
and the test for both pressing and releasing is
if((SWASWP)&0x01) { // once whenever SW1l released or pressed
In these three cases, SW=0xOF must be initialized (all buttons are released) before the

mainloop.
The template code given for this project does the followings in its mainloop

void main (void) {
char num[16]; int 1i; char j[5];
delay(20000); // we need 200ms delay for LCD
INITQ; // LCD initialized
printf("Ready\r'"); // This goes to UART
while(1l) {

Assemblers and Development Tools for 8086 and 8051 Microprocessors 75

ADCRead(); i= (unsigned) ADCVAL;
SWP = SW; SW=P2>>4; // past and present value of switches
if(((SWASWP)&~SW)&0x01) // only once when swl 1is pressed
printf(" %u \r" , i);
jL01=(SW>>3&1)|'0"'; jL[11=(SW>>2&1)|'0";
j[2]1=(SW>>1&1)|'0"'; j[31=SW&1|'0'; j[4]1=0;
sprintf(num, '""\x080ADC=%4u\x0COSW=%s", i, j); PrintLCD(num);
delay(20000); // 200ms delay
}
}

1. It waits 200 ms before initializing LCD unit.
2. It initialize serial port for 4800 baudrate operation and prints Ready to the terminal.
3. in the endless while loop (mainloop)
it reads ADC into unsigned 1,
It reads switch status into SW, and converts SW into binary ASCII string j[].
It displays i and j on LCD;
Whenever SW1 is pressed, it prints i to serial port when switch is pushed (only
once).
It updates past switch status to SWP for next pass to detect when SW1 is pushed.
It stays in delayloop for 200 ms.

9.3 About Keil C51 compiler

REG51.H declares the ports, special function registers, and special function bits of the 8051
processor. STDIO.H provides declarations of the procedures _getkey getchar
ungetchar putchar printf sprintf vprintf vsprintf *gets scanf sscanf
puts which are necessary to format the integer and char types into the desired strings.

The sbit type is used to declare single bits of special function registers such as EN, RS,
ADCS, ADRD. A bit variable declares bits in RAM (i.e., RSF). The char type is used for 8-
bit signed integers, int is used for 16-bit signed integers. The type qualifier unsigned
makes both char and int an unsigned number. The type qualifier const makes them
constants allocated in RAM area. They are initialized only once at the start of the program.
The qualifier code allocates the constants in ROM. For example:

code char test[] = "This is a text string in ROM";
allocates the character string test[] in ROM, along with the program code. The type
qualifier volatile allocates them in registers, and can be used for very short term
temporary purposes.
The _at_ keyword allows you to specify the address for uninitialized variables in your C
source files. It can be used to overlap a memory location for two different data types.

Keep the conditional tests as simple as possible. Use complement (~), and (&), or (|), and
ex-or (A) for bitwise operations between the char and int variables or constants. not (!)
operation complements a single bit, or a relational result. You can test the bits of a char
variable S by using a proper and-mask, i.e., S&0x40 is nonzero if bit-6 of S is high, and
similarly ~S&0x40 is nonzero if bit-6 of S is low.

9.4 Design Requirements

You will work in Keil C51 microVision-3 environment. You shall set the target options of
your microVision project to have

device: Generic 8051

target: Xtal 11.06 MHz ; Memory Small; Code ROM Size Small; Op.Sys. None.

76 Assemblers and Development Tools for 8086 and 8051 Microprocessors

output: Create Hex file, Name of Executable “proj”

listing: check C compiler listing, check Assembly Code.

C51: add the project folder to the include path
so that it will generate proj.hex and proj.Ist files which contains complete assembler coding
of the C source using the modified stdio.h.

You will design a service terminal system for restaurants that will have a scale to weigh
one of three kinds of food labeled A, and B. The electronic scale has its own zeroing
system, with output voltage in millivolts Vsc = 5 ML, where M. is the mass on the scale in
grams. It is connected to analog input of ADC801. The restaurant uses only one kind of
dish plate, which is 100 gram in weight. The ADC801 circuit has Vref=4.8V.

In explaining the requirements, we will use the following symbols

NP1ate = ADC reading of the food plate, (unsigned char)

GrP1ate = Weight of the food plate in grams, (unsigned char)

GrFoodPTlate = Measured Weight of the plate with food (int in grams).

GrEmptyPlate = Measured Weight of the empty plate (int in grams).

WeightCoeff = 16*Weight coefficient to calculate weight from ADC reading.

1.e. GrPlate = NPlate*WeightCoeff/16

GrFoodA = Weight of the food-A (integer in grams).

GrFoodB = Weight of the food-B (integer in grams).

KrPerl0GrA = Price of 10 gram food-A (integer in kr)

KrPer10GrB = Price of 10 gram food-B (integer in kr)

KrP1ateA = Price of food A (integer in kr)

KrP1ateB = Price of food B (integer in kr)

KrTotal = Total price of the food in the plate (integer in kr).

NewCustomer = New Customer bit. (a flag not to delete the last transmitted
readings.)

Your software and hardware design shall satisfy the following requirements.

-The reading NPTate is not in grams. It needs to be converted to GrP1ate using the voltage

steps AVA=18.75mV and the coefficient of the scale output (Vsc/M=5), .

GrPlate = WeightCoeff x NPlate /256 = 18.75/15 xNPlate
Thus,

WeightCoeff =16*16*(GrP1ate/NPlate)* 1.25 =20,
For example, the net weight of food-A can be obtained by calculating GrPT1ate for the
plate with food into GrFoodPlate, and then drop GrEmptyPlate from the calculated
value.

GrFoodA = GrFoodPlate - GrEmptyPlate.

-Each food type will have a pre-determined constant (Kr (Kurus) per 10 gram) price
declared in integer form, typically A is 1.5 Kr/gram (KrPer10GrA =15) , B is 2.5 Kr/gram
(KrPer10GrB =25). The price of the plate shall be calculated depending on the food type.
For example, the food-B plate price will be

KrPlateA = GrFoodA x KrPerlOGrA /10 .

The following algorithm may be used in coding these requirements.

-Before the main loop your code shall initialize LCD print “Ready\r\r” to the terminal,
and set GrFoodA =0, GrFoodB =0, KrTotal =0.

In the main loop, it shall test the switches for the following actions:

Assemblers and Development Tools for 8086 and 8051 Microprocessors 77

-read ADC to get NP1ate, calculate GrP1ate , display it on the first line of the LCD (Add
some extra blanks to clear the previously written text, and set the cursor to the beginning of the

second line).
-if SW1 is pressed (it indicates that a plate of food-A is on the scale),
-Store GrP1ate into GrFoodP1ateA. Calculate GrFoodA.
Display GrFoodA on LCD, set NewCustomer,
-if SW2 is pressed, it points that a plate of food B is on the scale,
-Store GrP1ate into GrFoodP1ateB. Calculate GrFoodB.
Display GrFoodB on LCD, set NewCustomer,
-if SW3 is pressed, it means that the total price shall be reported to cashbox,
-Calculate KrP1ateA using KrPerlOGrA and GrFoodA. Also calculate KrPlateB
similarly. Find KrTotal =KrPT1ateA +KrPlateB , and print the following report to
the serial port

A- #i### gr
B- #### gr
#i#t## Kr

Bon Appetite.
-if SW4 is pressed, it means the empty plate will be stored,
-Store GrP1ate into GrEmptyPlate, and display “Empty “ on the second
line of the LCD. (The extra space characters aim to clear that part of the LCD.)
-continue to looping in the mainloop forever.

There are some challenges in this design. You shall keep the LCD messages short and
easy to understand. Student version of Keil-C51 compiles maximum 2.06k code. The
template already consumes 1.4 k code. You shall code your program in code efficient
manner to complete the project in 2.1 k code. The followings are remedies for code
efficient programming:

1- Do not pass more than a single argument to a procedure, and do not return values from a
procedure. Instead, use all variables global, so that you can address them in the procedures
freely.

2- Write procedures for all repeating parts of the code, for example to test the switch
conditions.

3- PrintLCD, sprintf, and printf uses lots of code. Combine them to each other; i.e., instead
of

printf(“A= %u gr\r” ,WFA); printf(“B= %u gr\r”,WFB); use

printf(“A= %u gr\rB= %u gr\r” ,WFA,WFB);

9.5 Reporting

You shall write a very short report into the file proj.txt about :

- Goal of the developed system.

- Any difficulties you faced in writing your project code.

- Any explanations for the software coding.

- Any ideas to improve this project in hardware and in software.

- A conclusion about the contributions of each member to the project.

Enumerate the team leader and members, and denote each statement by (idea-
owner, editor) in the following manner.
Team Leader: (1) Ibrahim Kisaparmak 012345
Members (2) Rustem Habersiz 054321
(3) Hanefi Hamamci 053412

78 Assemblers and Development Tools for 8086 and 8051 Microprocessors

 other supporters
Combining the LCD messages saved large amount of code memory’"“(2§&i\).

The calibration of the weight might create problem because the sequence of the

multiplication and division operations are critical in calculating WFP (11).

Here, the statement “Combining ... (23).” is Rustem’s idea, and Hanefi is

author or editor of the statement. Next statement “The calibr.... WFP (11)”. is

owned by Ibrahim both in idea and in wording.

After you complete the project, please pack the -.txt report file C code (-.C and -.H
files), the -.hex file, the -.Ist file, and the -.DSN file of your project into a zip file
with the name proj.zip and e-mail it using your student e-mail account to
cmpe323lab@gmail.com with the subject line “proj” before the Final Exam
Day.

Last day of delivery is Final Exam Day. No excuse acceptable.

79

Sample Design Project Specifications and Requirements

10.

Design and Coding of
an Intelligent Human Weight Scale

10.1 Objective

The aim of this project is to use an A/D converter, four switches, an LCD and the serial
output port of an 8051 to construct an intelligent Body Mass Index (BMI) calculator.

10.2 Introduction

This project needs the hardware system and template files described in Chapter 9 for a
restaurant terminal design application. Please apply from Sections 9.2 to (including) 9.3 for
the preliminary of the project. The technical project specifications of the Body Mass Index

Calculator will start from Section 10.4.

10.2.1. Installing KC51 on your drive

Please see Section 9.2.1.

10.2.2. Starting a project in KC51 for 8051 or 8052 projects.

Please see Section 9.2.2.

10.2.3. LCD display

Please see Section 9.2.3.

10.2.4. Serial Port

Please see Section 9.2.4.

10.2.5. ADC interfacing

Please see Section 9.2.5.

10.2.6. Switches and Operation of the System

Please see Section 9.2.6.

10.3 About Keil C51 compiler

Please see Section 9.3.

80 Assemblers and Development Tools for 8086 and 8051 Microprocessors

10.4 Design Requirements

You shall develop a human body weight scale that shall measure the weight of a person by
the ADC reading into the 8-bit integer ADCVAL.

There are four switches (SW1, SW2, SW3, SW4) in the system hardware. The switches
SW1 Sw2 and SW3 shall be used to set the 8-bit integer height Height. They shall act only
once they are pushed down. The switch S1 shall toggle an 8-bit integer StepSize between 1
and 10, that is, if switch is pressed while StepSize =1, then StepSize shall be set to 10.
Similarly if switch is pressed while StepSize =10, then StepSize shall be set to 1. The switch
SW2 shall decrement the body height setting Height, StepSize amount down to 120. The
switch SW3 shall increment the body height setting Height, StepSize amount up to 210.

The LCD module of the unit shall display the following information
Linel: |W=120 kg BMI= 53
Line2: |[H=150 cm

where, the height H is the value set by switches SW1, SW2 and SW2, the weight Weight is

calculated from the ADC reading ADCVAL by the expression
Weight = (ADCVAL+80)/2 ,

which gives minimum 40 kg while ADCVAL=0, and maximum 167 kg while ADCVAL=255.

Considering the overflow of 16- bit integers, the BMI value shall be calculated as
BMI = 100*Weight /Height*100/Height;

The star “*” on line 2 shall be displayed only if StepSize =10, and shall be replaced by a

dot ““.” if StepSize =1.

The switch SW4 shall print a report to the mini printer which is connected to the serial
terminal. The contents of the report shall be

Date:

Name:

W=120 kg

H=150 cm

BMI = 53

where the empty entries for date and name is going to be filled by the health officer who
places the report into the medical file of the person.

There are some challenges in this design. Student version of Keil-C51 compiles maximum
2.06k code. The template already consumes 1.4 k code. You shall code your program in
code efficient manner to complete the project in 2.1 k code. The followings are remedies
for code efficient programming:
1- Do not pass more than a single argument to a procedure, and do not return values from a
procedure. Instead, use all variables global, so that you can address them in the procedures
freely.
2- Write procedures for all repeating parts of the code, for example to test the switch
conditions.
3- PrintLCD, sprintf, and printf uses lots of code. Combine them to each other; i.e., instead
of

printf(“W= %u kg\r” ,WW); printf(“H= %u cm\r”,HH); use

printf(“W= %u kg\rH= %u cm\r”,WW,BB) ;
4- Avoid using single letter variables A, B, ... since they are predefined for 8051 registers.

Assemblers and Development Tools for 8086 and 8051 Microprocessors 81

10.5 Reporting

You shall write a short team report into the file proj.txt . Each team member shall
have at least one or two sentences in the report. The report shall start with
- Team members, and team leaders name, surname and student numbers, in
enumerated listing.
i.e: Team leader: 098760 Kevin Kostner (1),
Members: 098761 Cameron Diaz (2),
098762 Robert Redford (3),
098763 Brad Pitt (4)
At the end of each sentence give the number of the author and other
supporters of that sentence, i.e.“In this project we used a pre-
designed hardware for the development of a body weight scale
that calculates the Body Mass Index, BMI (134). The software is
written in Keil C for a 8051 processor (321). ” . Here, the idea
of the first sentence has been proposed by Kevin (1), and supported
by Robert and Brad. Similarly, idea of the second sentence is owned
by Robert, and it is supported both by Cameron and Kevin.
The remaining part of the report shall contain
- Goal of the developed system.
- Any difficulties you faced in writing your project code.
- Any explanations for the software coding.
- Any ideas to develop this project in hardware and in software.
- A conclusion about the contributions of each member to the project.

After you complete the project,

- Please pack the report proj.txt, the C code (-.C and -.H files), the -.hex file, the -
JIst file, and the -.DSN file of your project into a zip file with the name proj.zip
and e-mail it using your student e-mail account to cmpe323lab@gmail.com
with the subject line “proj” before the June 15, 2010 midnight .

- Please submit a hardcopy of only proj.txt file (no code, only verbal report) to
your instructor, or to lab assistant.

Enjoy the project.

Last day of delivery is Final Exam Day. No excuse acceptable.

82

Assemblers and Development Tools for 8086 and 8051 Microprocessors

83

11.

APPENDIX

Complete 8086 instruction set

Mnemonics

CMPSB JA MOV RCL

AAA INBE JPO SCASB
CMPSW JAE MOVSB RCR

AAD INC S SCASW
cwD JB MOVSW REP

AAM INE Jz SHL
DAA JBE MUL REPE

AAS ING LAHF SHR
DAS 3C NEG REPNE

ADC INGE LDS STC
DEC Jcxz NOP REPNZ

ADD INL LEA STD
DIV JE NOT REPZ

AND HLT 1C INLE LES OR RET STI

CALL INO LODSB STOSB
IDIV JGE ouT RETF

CBW INP LODSW STOSW
IMUL JL POP ROL

CLC INS LOOP SUB
IN JLE POPA ROR

CLD INZ LOOPE TEST
INC JMP POPF SAHF

CLI Jo LOOPNE XCHG
INT INA PUSH SAL

cMC Jp LOOPNZ XLATB

P INTO INAE IPE LOOPZ PUSHA SAR XOR
IRET INB PUSHF SBB

Operand types:

immediate: 5, -24, 3Fh, 10001101b, ctc...

Registers REG: AX, BX, CX, DX, AH, AL, BL, BH, CH, CL, DH, DL, DI, SI, BP,
SP

Segment Registers SREG: DS, ES, SS, and only as second operand: CS.

memory: [BX], [BX+SI+7], variable, etc....

Notes:

When two operands are required for an instruction they are separated by comma, i.e.,
REG, memory
When there are two operands, both operands must have the same size (except shift and
rotate instructions). For example:
registers
AL, DL
DX, AX
ml DB ?
AL, ml
m2 DW ?
AX, m2
Some instructions allow several operand combinations. For example:
memory, immediate
REG, immediate
memory, REG
REG, SREG

84 Assemblers and Development Tools for 8086 and 8051 Microprocessors

These marks are used to show the state of the flags:
1 - instruction sets this flag to 1.

0 - instruction sets this flag to 0.

r - flag value depends on result of the instruction.
u - flag value is undefined (maybe 1 or 0).

n — flag value is not changed.

Some instructions generate exactly the same machine code, so disassembler may have a
problem decoding to your original code. This is especially important for Conditional Jump
instructions

Instructions in alphabetical order:
|Only selected instructions are explained in detail.

AAA No operands ASCII Adjust after Addition.
Corrects result in AH and AL after addition when working with BCD
values.
if low nibble of AL > 9 or AF = 1 then
AL=AL+6; AH=AH+1;AF=1;CF=1;
else AF =0 ; CF = 0 endif
AL = AL & 0x0F;

Example:
MOV AX, 15 ; AH = 00, AL = OFh
AAA ; AH = 01, AL = 05
Flags: r{C, A}

AAD No operands ASCII Adjust before Division.

Prepares two BCD values for division.
AL=(AH*10)+ AL ;AH=0;

Example:
MOV AX, 0105h ; AH = 01, AL = 05
AAD ; AH = 00, AL = OFh (15)
Flags: r{z,S,A}
AAM No operands ASCII Adjust after Multiplication.

Corrects the result of multiplication of two BCD values.
AH=AL/10; AL = remainder ;

Example:
MOV AL, 15 ; AL = OFh
AAM ; AH = 01, AL = 05
Flags: r{z,S,P}
AAS No operands ASCII Adjust after Subtraction.
Corrects result in AH and AL after subtraction when working with BCD
values.

if low nibble of AL > 9 or AF = 1 then:

AL=AL-6; AH=AH-1;AF=1; CF=1;
else AF=0;CF=0 endif
AL = AL & 0x0F;

Example:
MOV AX, 02FFh ; AH = 02, AL = OFFh
AAS ; AH = 01, AL = 09

Flags: r{C, A}

Assemblers and Development Tools for 8086 and 8051 Microprocessors 85

ADC opl,op2
REG, memory
memory, REG
REG, REG
memory, immediate
REG, immediate

Add with Carry.
operandl = operand]1 + operand2 + CF
Example:
STC ; set C 1

MOV AL, 5 ; AL
ADC AL, 1 ; AL
Flags: r{C,2,S,0,P,A}

F =
5
7

ADD opl,op2
REG, memory
memory, REG
REG, REG
memory, immediate
REG, immediate

Add.
operandl = operand1 + operand2
Example:

MOV AL, 5 ; AL = 5
ADD AL, -3 ; AL =
Flags: r{C,Z,S,0,P,A}

AND opl,op2
REG, memory
memory, REG
REG, REG
memory, immediate
REG, immediate

Logical AND between all bits of two operands.
Result is stored in operandl.

These rules apply:
I1AND 1 =1
1ANDO0=0
0OAND1=0
0ANDO0=0

Example:

MOV AL, 'a’ ; AL
AND AL, 11011111b ; AL
Flags: 0{C,0}, r{Z,S,P}

01100001b
01000001b ('A")

CALL addr
procedure name
label

4-byte address

Transfers control to procedure,
IP (return address) is pushed to stack.
For 4-byte address first value is a segment second value is an
offset (this is a far call, so CS is also pushed to stack).

Example:
ORG 100h ; for COM file.
CALL pl
ADD AX, 1
e ; continue to code.
pl PROC ; procedure declaration.
MOV AX, 1234h
RET ; return to caller.
pl ENDP

Flags: not changed

CBW No operands

Convert byte into word.
if high bit of AL =1 then AH = 255 (0FFh) else AH =0 endif
Example:

MOV AX, O ; AH=0, AL=0
MOV AL, -5 ; AX = O000FBh (251)
CBW ; AX = OFFFBh (-5)
Flags: not changed
CLC No operands Clear Carry flag.
CF=0
Flags: C=0

CLD No operands

Clear Direction flag. SI and DI will be incremented by chain
instructions: CMPSB, CMPSW, LODSB, LODSW, MOVSB, MOVSW,
STOSB, STOSW.

Flags 0{D}

86

Assemblers and Development Tools for 8086 and 8051 Microprocessors

CLI No operands

Clear Interrupt enable flag. This disables hardware interrupts.

Flags: 0{I}
CMC No operands Complement Carry flag. Inverts value of CF.
Flags: r{C}
CMP opl,op2 Compare.
REG, memory operandl - operand2
memory, REG result is not stored anywhere, flags are set (OF, SF, ZF, AF, PF,
REG, REG CF) according to result.

memory, immediate
REG, immediate

Example:

MOV AL, 5

MOV BL, 5

CMP AL, BL ; AL = 5, ZF = 1 (so equal!)
Flags: r{C,Z,S5,0,P,A }

CMPSB No operands

Compare bytes: ES:[DI] from DS:[SI].
Flags: r{C,2z,S,0,P,A }

CMPSW No operands

Compare words: ES:[DI] from DS:[SI].
Flags: r{C,Z,S,0,P,A }

CWD No operands

Convert Word to Double word.
if high bit of AX =1 then DX=65535 (OFFFFh) else DX =0

endif
Example:
MOV DX, O ; DX =0
MOV AX, O ; AX =0
MOV AX, -5 ; DX AX = 00000h:O0FFFBh
CWD ; DX AX = OFFFFh:0FFFBh

Flags: not changed

DAA No operands

Decimal adjust After Addition.
Corrects the result of addition of two packed BCD values.

Algorithm:
if low nibble of AL > 9 or AF = 1 then AL = AL+6; AF = 1; endif
if AL > 9Fh or CF = 1 then AL = AL+60h ; CF =1; endif

Example:
MOV AL, OFh ; AL = OFh (15)
DAA ; AL = 15h

Flags: r{C,Z,S,0,P,A }

DAS No operands

Decimal adjust After Subtraction.
Corrects the result of subtraction of two packed BCD values.
if low nibble of AL > 9 or AF=1 then AL =AL-6; AF =1;

endif;
if AL > 9Fh or CF = 1 then AL = AL - 60h ; CF = 1; endif
Example:
MOV AL, OFFh ; AL = OFFh (-1)
DAS ; AL = 99h, CF =1
Flags: r{C,Z2,S,0,P,A }
DEC op Decrement.
REG operand = operand - 1
memory Example:
MOV AL, 255 ; AL = OFFh (255 or -1)
DEC AL ; AL = OFEh (254 or -2)
Flags: r{Z,S,0,P,A }, n{C} Carry flag is not changed.

Assemblers and Development Tools for 8086 and 8051 Microprocessors 87

DIV op
REG
memory

Unsigned divide.
when operand is a byte:
AL = AX / operand; AH =remainder (modulus)
when operand is a word:
AX = (DX AX) / operand ; DX = remainder (modulus)

Example:

MOV AX, 203 ; AX = 00CBh

MOV BL, 4

DIV BL ; AL = 50 (32h), AH = 3

Flags: All Unknown

HLT No operands

Halt the System.

IDIV op Signed divide.
REG when operand is a byte:
memory AL = AX / operand; AH = remainder (modulus)
when operand is a word:
AX = (DX AX) / operand ; DX = remainder (modulus)
Example:
MOV AX, -203 ; AX = OFF35h
MOV BL, 4
IDIV BL ; AL = -50 (OCEh), AH = -3 (OFDh)
Flags: All Unknown
IMUL op Signed multiply.
REG when operand is a byte: AX = AL * operand.
memory when operand is a word: (DX AX) = AX * operand.
Example:
MOV AL, -2
MOV BL, -4
IMUL BL ; AX = 8
Flags: 0{C, 0 }, u{ zZ,S,P,A}
when result fits into operand of IMUL then 0{C, 0} .
IN opl,op2 Input from port into AL or AX.
AL, im.byte Second operand is a port number. If required to access port
AL, DX number over 255 - DX register should be used.
AX, im.byte Flags not affected
AX, DX
INC op Increment.
REG Algorithm: operand = operand + 1
memory Example:
MOV AL, 4
INC AL ; AL =5
Flags r{z,s5,0,P,A}, n{C}
INT imm Interrupt numbered by immediate byte (0..255).

immediate byte

Push to stack: flags register, CS,IP. IF=0.

Transfer control to interrupt procedure

Example:
MOV AH, 4Ch ; Terminate and Exit to DOS.
INT 21h ; BIOS 1interrupt.

Flags n{ C,2,S,0,P,A,I}

INTO No operands

Interrupt 4 if Overflow flag is 1.

IRET No operands

Interrupt Return.
Pop from stack: IP , CS, flags register
Flags C,Z,S,0,P,A,I popped from stack

88

Assemblers and Development Tools for 8086 and 8051 Microprocessors

JA addr Jump if Above. Short Jump relative to IP for Unsigned compare.
label Jump if first operand is Above second operand when used after CMP
instruction.
if (CF =0) and (ZF = 0) then jump endif
Flags not changed
JAE addr Jump if Above or Equal. Short Jump relative to IP for Unsigned
label compare.
Jump if first operand is Above or Equal to second operand when used
after CMP instruction.
if CF = 0 then jump endif
Flags not changed
JB addr Jump if Below. Short Jump relative to IP for Unsigned compare.
label Jump if first operand is Below second operand when used after CMP
instruction.
if CF = 1 endif jump endif
Flags not changed
JBE addr Jump if Below or Equal. Short Jump relative to IP for Unsigned
label compare.
Jump if first operand is Below or Equal to second operand when used
after CMP instruction.
if CF =1 or ZF = 1 then jump endif
Flags not changed
JC addr Jump on Carry. Short Jump if Carry flag is set to 1.
label if CF =1 then jump endif
Flags not changed
JCXZ addr Jump if CXis Zero.
label if CX = 0 then jump endif
Flags not changed
JE addr Jump if Equal. Short Jump relative to IP for Signed and Unsigned
label compare. Jump if first operand is Equal to second operand when used
after CMP instruction.
if ZF = 1 then jump endif
Flags not changed
JG addr Jump if Greater than. Short Jump relative to IP for Signed compare.
label Jump if first operand is Greater than second operand when used after
CMP instruction.
if (ZF = 0) and (SF = OF) then jump endif
Flags not changed
JGE addr Jump if Greater than or Equal to. Short Jump relative to IP for Signed
label compare. Jump if first operand is Greater than or Equal to second
operand when used after CMP instruction.
if SF = OF then jump endif
Flags not changed
JL addr Jump if Less than . Short Jump relative to IP for Signed compare.
label Jump if first operand is Less than second operand when used after CMP
instruction.
if SF <> OF then jump endif
Flags not changed
JLE addr Jump if Less than or Equal to. Short Jump relative to IP for Signed
label compare. Jump if first operand is Less than or Equal to second

operand when used after CMP instruction.
if SF <> OF or ZF =1 then jump endif
Flags not changed

Assemblers and Development Tools for 8086 and 8051 Microprocessors 89

JMP addr
label
4-byte address

Jump Always. This unconditional jump transfers control to another part
of the program. 4-byte address may be entered in this form:
1234h:5678h, first value is a segment second value is an offset.

Flags not changed

INA addr Jump if Not Above . Same as JB (jump below or equal) instruction.
label Flags not changed
INAE addr Jump if Not Above or Equal . Same as JB (jump below) instruction.
label Flags not changed
INB addr Jump if Not Below . Same as JAE (jump above or equal) instruction.
label Flags not changed
JINBE addr Jump if Not Below or Equal . Same as JA (jump above) instruction.
label Flags not changed
INC addr Jump if No Carry. Short Jump if Carry flag is zero.
label if CF = 0 then jump endif
Flags not changed
INE addr Jump if Not Equal . Short Jump relative to IP for Signed or Unsigned
label compare. Jump if first operand is Not Equal to second operand when
used after CMP instruction.
if ZF = 0 then jump endif
Flags not changed
ING addr Jump if Not Greater than . Same as JLE (jump less or equal)
label instruction.
Flags not changed
INGE addr Jump if Not Greater than or Equal . Same as JL (jump less than)
label instruction.
Flags not changed
INL addr Jump if Not Less than . Same as JGE (jump greater or equal)
label instruction.
Flags not changed
INLE addr Jump if Not Less or Equal . Same as JG (jump greater) instruction.
label Flags not changed
JNO addr Short Jump if Not Overflow.
label Flags not changed
INP addr Short Jump if No Parity. Only 8 low bits of result are checked. Set by
label CMP, SUB, ADD, TEST, AND, OR, XOR instructions.
if PF = 0 then jump endif
Flags not changed
INS addr Short Jump if Not Signed (positive). Set by CMP, SUB, ADD, TEST,
label AND, OR, XOR instructions.
if SF = 0 then jump endif
Flags not changed
INZ addr Short Jump if Not Zero. Set by CMP, SUB, ADD, TEST, AND, OR,
label XOR instructions
if ZF = 0 then jump endif
Flags not changed
JO addr Short Jump if Overflow.
label if OF =1 then jump endif
Flags not changed
JP addr Short Jump if Parity (even). Only 8 low bits of result are checked. Set
label by CMP, SUB, ADD, TEST, AND, OR, XOR instructions.
if PF = 1 then jump endif
Flags not changed
JPE addr Short Jump if Parity Even. Same as JP (Jump if Parity) instruction
label Flags not changed

90

Assemblers and Development Tools for 8086 and 8051 Microprocessors

JPO addr Short Jump if Parity Odd. Only 8 low bits of result are checked. Set by
label CMP, SUB, ADD, TEST, AND, OR, XOR instructions. Same as JNP

(jump if no parity) instruction.

Flags not changed
JS addr Short Jump if Signed (if negative). Set by CMP, SUB, ADD, TEST,
label AND, OR, XOR instructions.

if SF = 1 then jump endif

Flags not changed
JZ addr Short Jump if Zero (equal).Set by CMP, SUB, ADD, TEST, AND,
label OR, XOR instructions.

if ZF = 1 then jump endif
Flags not changed

LAHF No operands

Load AH from 8 low bits of Flags register.
AH = flags register
flag bits: 7:SF, 6:ZF, 5:0, 4:AF, 3:0, 2:PF, 1:1,
0:CF
bits 1, 3, 5 are reserved.
Flags not changed

LDS op,mem Load memory double word into word register and DS.
REG, memory REG = first word DS = second word
Flags not changed
LEA op,mem Load Effective Address.
REG, memory REG = address of memory (offset)
Example:
MOV BX, 35h
MOV DI, 12h
LEA SI, [BX+DI] ; SI = 35h + 12h = 47h
Assembler may replace LEA with a more efficient MOV where possible.
Flags not changed
LES op,mem Load memory double word into word register and ES.
REG, memory Flags not changed

LODSB No operands

Load byte at DS:[SI] into AL. Update SI.
Flags not changed

LODSW No operands

Load word at DS:[SI] into AX. Update SI.
Flags not changed

LOOP addr Decrease CX, jump to label if CX not zero.
label CX=CX-1
if CX <> 0 then jump else no jump, continue endif
Flags not changed
LOOPE addr Decrease CX, jump to label if CX not zero and Equal (ZF = 1).
label CX=CX-1
if (CX <> 0) and (ZF = 1) then jump else no jump, continue
endif

Flags not changed

LOOPNE addr

Decrease CX, jump to label if CX not zero and Not Equal (ZF = 0).

label CX=CX-1
if (CX <> 0) and (ZF = 0) then jump else no jump, continue
endif
Flags not changed
LOOPNZ addr Same as LOOPNE
label Flags not changed
LOOPZ addr Same as LOOPE
label Flags not changed

Assemblers and Development Tools for 8086 and 8051 Microprocessors 91

MOV opl,op2
REG, memory
memory, REG
REG, REG
memory, immediate
REG, immediate
SREG, memory
memory, SREG
REG, SREG
SREG, REG

Copy operand2 to operandl.

operandl = operand2
Restrictions:
The MOV instruction cannot set the value of the CS and IP registers.
Copying value of one segment register to another segment register
requires first copying to a general register.
Copying an immediate value to a segment register requires first copying
to a general register first.

Flags not changed

MOVSB No operands

Copy byte at DS:[SI] to ES:[DI]. Update SI and DI.
ES:[DI] = DS:[SI]
if DF=0then SI=SI+1,DI=DI+1,
else SI=SI— 1, DI=DI - 1, endif

Flags not changed

MOVSW No operands

Copy word at DS:[SI] to ES:[DI]. Update SI and DI.
ES:[DI] = DS:[SI]
if DF=0then SI=SI+2,DI=DI+2,
else SI=S1-2, DI =DI -2 endif

Flags not changed

MUL op Unsigned multiply.
REG when operand is a byte: AX = AL * operand.
memory when operand is a word: (DX AX) = AX * operand.
Example:
MOV AL, 200 ; AL = 0C8h
MOV BL, 4
MUL BL ; AX = 0320h (800)
Flags r{C, 0}. 0{CF,OF} when high section of the result is zero.
NEG op Negate. Makes operand negative (two's complement).
REG Invert all bits of the operand. Add 1 to inverted operand
memory Flags r{C,Z,S,0,P,A}

NOP No operands

No Operation.
Flags not changed

NOT op Invert each bit of the operand.

REG

memory Flags not changed

OR opl,op2 Logical OR between all bits of two operands. Result is stored in first
REG, memory operand.

memory, REG

REG, REG Flags 0{C, O}, r{ Z,S, P,A}

memory, immediate
REG, immediate

OUT opl,op2
immediate-byte, AL
immediate-byte, AX
DX, AL

Output from AL or AX to port.
First operand is a port number. If required to access port number
over 255 - DX register should be used.

DX, AX Flags not changed

POP op Get 16 bit value from the stack.

REG operand = SS:[SP] (top of the stack)
SREG SP=SP +2

memory Flags not changed

92

Assemblers and Development Tools for 8086 and 8051 Microprocessors

POPA No operands
(80186 +)

Pop all general purpose registers DI, SI, BP, SP, BX, DX, CX, AX
from the stack (SP value is ignored, it is Popped but not set to SP
register).
it works with 80186 and later

POP DI

POP SI

POP BP

POP xx (SP value ignored)

POP BX

POP DX

POP CX

POP AX
Flags not changed

POPF No operands

Get flags register from the stack.
flags = SS:[SP] (top of the stack)

SP=SP+2
Flags popped from stack
PUSH op Store 16 bit value in the stack.
REG PUSH immediate works only on 80186 CPU and later!
SREG
memory Flags not changed
immediate (80186 +)

PUSHA No operands
(80186 +)

Push all general purpose registers AX, CX, DX, BX, SP, BP, SI, DI
in the stack. Original value of SP register (before PUSHA) is used.
Note: this instruction works only on 80186 CPU and later!

PUSH AX

PUSH CX

PUSH DX

PUSH BX

PUSH SP

PUSH BP

PUSH SI

PUSH DI
Flags not changed

PUSHF No operands

Push flags register in the stack.
SP=SP -2
SS:[SP] (top of the stack) = flags
Flags not changed

RCL opl,op2
memory, immediate
REG, immediate

memory, CL
REG, CL

Rotate operandl left through Carry Flag.

The number of rotates is set by operand?2.

When immediate is greater then 1, assembler generates several RCL xx,

1 instructions because 8086 has machine code only for this instruction .
shift all bits left, the bit that goes off is set to CF and previous
value of CF is inserted to the right-most position.

Flags r{C,0} . 0{OF} if first operand keeps original sign.

RCR opl,op2
memory, immediate
REG, immediate

memory, CL
REG, CL

Rotate operandl right through Carry Flag.

The number of rotates is set by operand?2.

When immediate is greater then 1, assembler generates several RCL xx,

1 instructions because 8086 has machine code only for this instruction .
shift all bits right, the bit that goes off is set to CF and previous
value of CF is inserted to the left-most position.

Flags r{C,0} . 0{OF} if first operand keeps original sign.

Assemblers and Development Tools for 8086 and 8051 Microprocessors 93

REP chain instruct

Repeat following MOVSB, MOVSW, LODSB, LODSW, STOSB,
STOSW instructions CX times.
if CX<>0 then
do repeat
execute next chain instruction; CX =CX —1;
until CX==0 enddo
endif
Flag r{Z}

REPE chain instruct
REPZ chain instruct

Repeat following CMPSB, CMPSW, SCASB, SCASW instructions
while ZF =1 (result is Equal), maximum CX times.

if CX<>0 then
do repeat
execute next chain instruction;
CX=CX-1;
until ZF==0 && CX==0 enddo
endif
Flag r{Z}

REPNE chain instruct
REPNZ chain instruct

Repeat following CMPSB, CMPSW, SCASB, SCASW instructions
while ZF = 0 (result is Equal), maximum CX times.

if CX<>0 then
do repeat
execute next chain instruction,;
CX=CX-1;
until ZF==1 && CX==0 enddo
endif
Flag r{Z}

RET No operands
or even immediate

Return from near procedure.

Pop from stack: IP

if immediate operand is present: then SP = SP + operand endif
Flags not changed

RETF No operands
or even immediate

Return from Far procedure.

Pop from stack: IP, CS

if immediate operand is present: then SP = SP + operand endif
Flags not changed

ROL opl,op2
memory, immediate
REG, immediate

memory, CL
REG, CL

Rotate operandl left. The number of rotates is set by operand2.

When immediate is greater then 1, assembler generates several ROL xx,

1 instructions because 8086 has machine code only for this instruction .
shift all bits left, the bit that goes off is set to CF and the same
bit is inserted to the right-most position.

Flags r{C, 0}, OF=0 if first operand keeps original sign.

ROR opl,op2
memory, immediate
REG, immediate

memory, CL
REG, CL

Rotate operandl right. The number of rotates is set by operand?2.

When immediate is greater then 1, assembler generates several ROR xx,

1 instructions because 8086 has machine code only for this instruction .
shift all bits right, the bit that goes off is set to CF and the same
bit is inserted to the left-most position.

Flags r{C, 0}, OF=0 if first operand keeps original sign

SAHF No operands

Store AH register into low 8 bits of Flags register.
flags register = AH
flag bits: 7:SF, 6:ZF, 5:0, 4:AF, 3:0, 2:PF, 1:1,
0:CF
bits 1, 3, 5 are reserved.
Flags r{C,Z,S,0,P,A}

94

Assemblers and Development Tools for 8086 and 8051 Microprocessors

SAL opl,op2
memory, immediate
REG, immediate

memory, CL
REG, CL

Shift Arithmetic operandl Left. The number of shifts is set by
operand?.
When immediate is greater then 1, assembler generates several SAL xx,
1 instructions because 8086 has machine code only for this instruction .
Shift all bits left, the bit that goes off is set to CF.
Zero bit is inserted to the right-most position.
Flags C, O updated. OF=0 if first operand keeps original sign.

SBB opl, op2
REG, memory
memory, REG
REG, REG
memory, immediate
REG, immediate

Subtract with Borrow.
operandl = operand] - operand2 - CF

Flags: r{C,Z,S,0,P,A}. CF is used as Borrow-flag.

SCASB No operands

Compare bytes: AL from ES:[DI].
AL - ES:[DI]; set flags according to result: OF, SF, ZF, AF, PF,
CF
if DF =0 then DI=DI + 1 else DI = DI - 1 endif

Flags: r{C,Z,S,0,P,A}

SCASW No operands

Compare words: AX from ES:[DI].
AX - ES:[DI]; set flags according to result: OF, SF, ZF, AF, PF,
CF
if DF =0 then DI = DI+ 2 else DI = DI - 2 endif

Flags: r{C,Z,S,0,P,A}

SHL opl,op2
memory, immediate
REG, immediate

memory, CL
REG, CL

Shift operand1 Left. The number of shifts is set by operand?2.
When immediate is greater then 1, assembler generates several SHL xx,
1 instructions because 8086 has machine code only for this instruction .
Shift all bits left, the bit that goes off is set to CF.
Zero bit is inserted to the right-most position.
Flags C, O updated. OF=0 if first operand keeps original sign.

SHR opl,op2
memory, immediate
REG, immediate

memory, CL
REG, CL

Shift operandl Right. The number of shifts is set by operand2.
When immediate is greater then 1, assembler generates several SHR xx,
1 instructions because 8086 has machine code only for this instruction .
Shift all bits right, the bit that goes off is set to CF.
Zero bit is inserted to the left-most position.
Flags r{C, O} OF=0 if first operand keeps original sign.

STC No operands

Set Carry flag.
Flags: 1{C}

STD No operands

Set Direction flag. SI and DI will be decremented by chain instructions:
CMPSB, CMPSW, LODSB, LODSW, MOVSB, MOVSW, STOSB,
STOSW.

Flags: 1{D}

STI No operands

Set Interrupt enable flag. This enables hardware interrupts.
Flags: 1{1}

STOSB No operands

Store byte in AL into ES:[DI]. Update DI.

ES:[DI] = AL

if DF =0 then DI = DI + 1 else DI = DI - 1 endif
Flags are not changed

STOSW No operands

Store word in AX into ES:[DI]. Update DI.

ES:[DI] = AX

if DF =0 then DI=DI + 2 else DI=DI - 2 endif
Flags are not changed

Assemblers and Development Tools for 8086 and 8051 Microprocessors 95

SUB opl,op2
REG, memory
memory, REG
REG, REG
memory, immediate
REG, immediate

Subtract.
operandl = operand] - operand2

Flags: r{C,Z,S,0,P,A}

TEST opl,op2
REG, memory
memory, REG
REG, REG
memory, immediate
REG, immediate

Logical AND between all bits of two operands for flags only.
These flags are effected: ZF, SF, PF. Result is not stored anywhere.

Flags: 0{C,0}, r{z,S,P}

XCHG opl,op2
REG, memory
memory, REG
REG, REG

Exchange values of two operands.
operand]l < - > operand2

Flags are not changed

XLATB No operands

Translate byte from table.

Copy value of memory byte at DS:[BX + unsigned AL] to AL register.
AL =DS:[BX + unsigned AL]

Flags are not changed

XOR opl,op2
REG, memory
memory, REG
REG, REG
memory, immediate
REG, immediate

Logical XOR (Exclusive OR) between all bits of two operands.
Result is stored in first operand.

Flags: 0{C,0}, r{Z,S,P}. AF is unknown.

96

Assemblers and Development Tools for 8086 and 8051 Microprocessors

Summary Sheet for Assembly Programming

INT 10h BIOS services
AH=00h Set video mode
AL=03, CGA text mode
AL=04, 320x200 graphics mode 4-color.
AL=06, 640x200 hi-res graph.mode B/W.
AL=07, monochrome text mode
AH=02h Set cursor location
DH=row, DL=col. BH=page
AH=03h Get cursor location, It retums
DH=row, DL=col. BH=page. CX=cursor
AH=06h Clearing the screen
AL=0 for entire page, BH=7 attributes,
CH=0, CL=0, row and col to start.
DH=24, DL=80, row and col to end.
AH=0Ch Set a pixel in graphics screen.
AL=(0 black, or 1 for white),
CX=col; DX=row,

INT 21h DOS services

AH=01h wait and echo a single character.
AL returns char keyed to the keyboard.
AH=02h display a character on the monitor
L= ASCII coded char to be displayed.
AH=09h display a string to the monitor
DX= offset of ASCII string ending with “$”.
AH=0Ah wait a string input ending with <cr>
DX=offset of buffer area .
Input returns in the buffer
buffer area = {size, length, contents}
0500 20 20 20 20 20 is buffer of 5 char,
0503 3332380D 20 contains “328<cr>".
INT 16h Keyboard Service
AH=01h (checks if any key is pressed)
ZF=1 if no keys pressed).
AH=00h (itis used only after AH=01h, it returns
the pressed key in AL).

Assembler Directives
.model [tiny|smalllcompact|medium|large|huge]
.data (defines the start of data segment)
.code (defines the start of code sector)
.stack n (defines the size of stack segment)
@data (data segment allocated by OS.)
<name> equ value (assigns name=value)
db value (allocate byte with value)
dw, dd, dq alloc.word, double-word, quad-
word
dt (allocate 10 digit unpacked-BCD.)
n dup(value) (duplicate value for n times.)
<proclabel> proc [short|near|far]...endp
(define procedure)
end (end of assembler source.)
<macrolabel> macro argumentlist...endm
(define macro).
include filename.extension (include a file)

80x86 Instruction formats

mov dst,src (move data)

movsx - movzx (move 8-bit into16-bit reg, 386)
cbw reg (convert byte to sign ext. word, 386)
cwd reg (convert word to sign ext. double, 386)
cbw (convert byte al to word ax)

cwd (convert word ax to doubleword dx:ax)
clc / stc (clear / set carry flag)

add dst,src (dst=dst+src ; add)

adc dst,src (dst=dst+src+CF ; add with carry)
sub dst,src (dst=dst - src ; subtract)

sbb dst, src (dst=dst - src - CF; sub with carry)

ror dst, 1; rordst, cl; roldst, 1;roldst, cl;
(rotate right and rotate left)

rerdst, 1; rerdst, cl; rcldst, 1;rcldst, cl;
(rotate right and left, over carry flag)

mul op (unsigned ax=al x op or dx:ax=ax x op)

div op (unsigned al=ax/op, ah=reminder, or
ax=dx:ax/op dx=reminder)

imul op (signed ax=al x op or dx:ax=ax x op)

idiv op (signed, execution is similar to div)

loop nearaddress (decrement cx, if not zero then
go to nearaddress.)
jmp nearaddress (jump to near address)

call procaddr (calls near subroutine procaddr)
ret [n] (removes n bytes from stack and
returns from subroutine)

push rx - pop rx (push - pop16-bit reg. on
stack.)

pushf - popf (push - pop flags onto stack)
xchg dst,src (swaps registers dst and src)

Some ASCII control characters

07h =<BEL> (bell) ; 08h =<BS> (backspace) ;
09h =<TAB>; 0Ah =<LF> Linefeed; 0Ch =<FF>
formfeed ; 0Dh =<CR> Carriage-Return;

Printable ASCII Table:

daa (decimal adjust add); test op1,0p2 sets flags by op1 AND op2 oF12-3l-al-5F6]-7T-8[-9F-AF-BI-CF-DI-E[-F
das (dec.adjust sub) cmp op1, op2 (compare operands for branch) ARNNEEZEHINEE T
aaa (ascii or unpacked-BCD adjust addition.) |jxx shortaddress (jump for equal, above, below, 310 1 RNEEHEORE BB
and dst,src ; or dst,src ; xor dst,src (logical) greater-than, less-than, and flag conditions) 1 R Il ol el I
neg dst (negation of binary by 2's complement) signed and unsigned: je, jne |4-|@AIBIC[D E_rF G[H[T[J|K|L[M[N|O
shldst,1 - shl dst,cl (shift left 1-bit, cl bits); signed: jg, jng, jge, jnge, jl, jnl. jle, jnle 5-|P|QIR|S[TIUIVIWIXIY]Z] [{\|]1]*]-
shr dst,1 - shr dst,cl (shift right 1-bit, cl bits); unsigned: ja, jna, jae, jnae, jb, jnb, jbe,jnbe 6-| " alb]c|d[e[f]g|nli]j[k|IImin]o
sar dst,1 - sar dst,cl (arithmetic shift right) on-flags jz, jnz, jc, jnc, js, jns, jo, jno, jp, 7Iplalr[s[tluVwx[y Tz [T [TTT Bl
jpo, .
8255 PPI Mode-0 Control Byte: b7 b6 b5 b4 b3 b2 bl bo
(for PA, PCH, PB, PCL use 0:output, 1:input) 1 0 O PA PCH 0O PB PCL

8251 USART

Mode Register format for asynchronous mode:

b7 b6 ={S2S1: nr.of stop bits
b5 ={EP: parity type

b4 ={PEN:; parity enable
b3b2 ={L2L1: nr.of data bits
b1b0 ={B2B1: baud rate factor

Control Register format for asynchronous mode:

b7 ={EH: Enterhuntmode 1:
b6 ={IR: Internal reset 1:
b5 ={RTS: Requesttosend, 1:
b4 ={ER: Eror Reset 1:
b3 ={SBRK: Send break char 1:
b2 ={RxE: Receiverenable 1:
b1 ={DTR: Dataterminal ready 1:
b0 ={TxE: Transmitter enable 1:

00: invalid / 01:1stop / 10: 1.5stop [11: 2stop },
0:0dd / 1:even},
0: no-parity-bits / 1: parity-bits-present },

00: 5-bit / 01:6-bit / 10: 7-bit / 11: 8-bit },
00: sync-mode / 01:/1 /10: /16 [11: /64}

Status Register format for asynchronous mode:
enable / 0: disable } b7 ={DSR 1: DSR pin s active (low)}
resets the 8251A } b6 ={SY/BD 1: sync-or-break char detected}
RTS-output-forced-to-low} | b5 ={FE 1: Framing error detected}
reset error flags PE,OE,FE} | b4 ={OE 1: Overrun error detected}
forces TxD low } b3 ={PE 1: Parity error detected}
enable, 0: disable } b2 ={TxE 1: Tx finished transmitting all data}
DTR-output-forced-to-low} | b1 ={RxRDY 1: Data-in buffer is full}
enable, 0: disable } b0 ={TxRDY 1: Data-out buffer is empty}

