University College of Southeast Norway

Introduction to LabVIEW

Hans-Petter Halvorsen, 2016-09-07

High-Level Design Tools \
Textual Math Simulation Statechart
1c=0.285 + 0.013i; Co| Mow

2[X Y] = meshgrid(x, y); woml
3z=X+i*Y;] o T

Configuration

4for k=1:30
5 z=z"2+c;
| 6end

Linux® Macintosh Windows

oy X

Desktop Platform

Embedded Platform

http://home.hit.no/~hansha

Preface

This document explains the basic concepts of LabVIEW.

You find additional resources, code, etc. here:

http://home.hit.no/~hansha/?tutorial=labview

You need to install the LabVIEW Professional Development System.

For more information about LabVIEW, visit my Blog: http://home.hit.no/~hansha/

LabVIEW Basics Videos:

http://home.hit.no/~hansha/video/labview basics.php

LabVIEW Training and Resources:

http://home.hit.no/~hansha/?training=labview

Table of Contents

e =1 - 1ol OO PR OPRTR PR i
Table OFf CONTENTS ... s e iii
1 INErOAUCTION Lo s 1
1.1 Dataflow Programming.....cccccooiiieiiiciiiirieeeee e e e e eee et rereeeeeeeeeeeeeeeeeeeennnnnns 1
1.2 Graphical Programmingcccoeiiieiieciiiiirieeeee et ee e e e e eeesee st rerreeeeeeeeeeeeeeeeesennnnnnns 1
S T = 1= 0T) PP PR PR PSPPI 2

2 SEArt USING LADVIEW ...oeeeeeeeeeeeeee ettt e e e e e e e e e e a e e e eeeeeeeaeeeee e e e s e s nnnnnes 4
2.1 The LabVIEW ENVIrONMENTeiiiiiiiiieeeeeeeeee e e 4
2.2 FrONT PAn@l oo e 5

D T = 1 [o Yo | = ={ - o FO PP 7
2.4 CONrOlS Paletle ..coueeiiiiieeeeeee e 10
241 NUMeric SUD Palette........ooiiiiiiiiiieece e 12
2.4.2 Bo00lean Sub Palettecooouiiiiiiiiiiiieeee e 12
2.4.3 String & Path SUD Palette c.uuuveeieeiieiiceeeeeeeee e 13

2.5 FUNCHION PalETte. i 13
2.6 TOOIS PAlETLO ..ot 14
N VAV T o o T - PPN 16
2.8 TOOIDAI ... e 16
2.9 EXECUTION ittt 17
2.10 The Objects SNOMt-CUL MENUceeeiiieiiiiii e 18
2.11 DatafloW Programmingccccveeeeeeieeieeeeee et e e e e e e e e e e ee s snrarrreeaeeeeeeas 19
2.12 L 1= PP U PR PR PP 20
EXEICISES oottt 20

iv Table of Contents

3 SUB VIS e et 24
3.1 Create New Sub VI from SCratCh........ccueeiiiiiiiiiiiiec e 25
3.1.1 Input and Output SUBVI CONNECLONSceeveereriiieeeiiiiieee e e 26
3.1.2 1CON EAITON coniiieeeeeee ettt 28

3.2 Create Sub VI from existing COUE.......ccoiveiiiiiiiiiieeieec e e 29
3.3 USING SUD VIS ettt e e e s e e e e e et e e e e e e e aeaaaean 30
(=] ol KT T TSP PPPPTT OO 31

4 CUSEOMIZE LABVIEW ..ottt ettt et st e st e e s snneee s 33
(=] ol KT T OO PPPPT RO 34

I e Yo T 13- [g Lo I) d (U U =L P USPR 35
0 E o To] o L3 PP PP PPOR OO 35
200 0t R o] gl o To T o F OO TR P PO 36

T8 0 V1V o 11 [0 o o T R P PPR 37

5.2 STIUCTUIES et e e e e e e e e s s e e r e e e e e e e e eeeeeesaaas 38
T R 0= 1 I o U [t { U] = T OOPPPPPTPTTP 38
5.2.2 SeQUENCE STIUCTUNE c.eeviicieeee e e 39
5.2.3 EVENE SErUCTUNE ...ttt 40
=] ol T T S PPPPUPPPPT OO 42

6 Troubleshooting and DEDUEEINGcococcuiiiiiiiiiiieee e e e e e e e e e e e e e e s nannes 45
6.1 HOW TO fiNA ©ITOIS ...t esane e s 45
6.2 Highlight EXECULION cccicueeiiieee et e e e e saaaee e e e 45
B.3 PrODES .. et e e e sareee s 46
O = T =T] o Yo [0} £ PPUPUPPRT 47
6.5 Step into/over/out debUBEINGc..cooviueiiieiiieieeee et 48

o =] ol KT TSP PP PPPPT OO 48

Tutorial: An Introduction to LabVIEW

v Table of Contents

7 WOrKing With Data ..cccccuviiiiie et e e e e e e e e st e e e e e e enaaaeas 50
2 R A ¢ - VLT PP TP PP PR 50

/2% 0% R YU o e [o [o V- PP 50
7.1.2 Array FUNCHIONS oeiiiiiiiiiciee et e e e e e e e e e e et ae e e e e e 51

2 O U1 =T PP OPUPTROPPPTRPPP 53
7.2, 1 ClUSTEE OFAEN ..eiiiiiiieeeitee ettt ettt ettt st e e st e e st e e sabe e e enneeenans 54
7.2.2 ClUSEEr EI@MENTS. . .eiiiieiieiiee ettt sttt e e e ee e 55
(=] ol KT TSP PPPPT OO 56

8 WOrKing WIth SEINGS ceceeeeeiiiiie e e e e e e e e s s saaaaee e e e ennnes 58
(=] ol T PP PP P PP 60

S B 1 4 o Yol o - T o | g V- PP PPN 62
S A 10 Vo [T~ 3 o PRSP 62
0.2 EITOFr WITING oottt ettt s e s s s s e e e e e e e e eeeeeeeeesba b seseseeeeeeeesenanes 62
9.3 Error Handling in SUBVISoii ittt ae e e 63
S U oYl o =T o 1T = PRSP 64

o (=] ol KT OO P PP PPPPT OO 65
10 WOrKIiNg WIth ProjJECES ..ccceeiiiiee ettt e e e e e e s aaeeeaeeas 66
10.1 e o Yot = q o] L] o =T SRR SPR 66
10.2 D=7] (o3 V7 01T | PRSP 67

o =] ol KT TSP PP PPPPT OO 69
11 B LT P-4 T =Tl oY oY T UL P PTPR 71
11.1 FOrce Program FIOWeuuiiiiiiiiiieeieecee et ee e e e e e e e e e e e e n e aeeeeeee s 71
11.2 Y g1 o U= =4 1 <] P PTUPTPRP 72
11.3 State Programming Archit@CtUreccoovciiiiiei e 73
114 Multiple Loops/Parallel programmingcccueecveeiieenieeeireeciee e 75

Tutorial: An Introduction to LabVIEW

vi Table of Contents

11.5 =100 o] L =TT PR U 77
=] ol T TSP PPPP OO 78
12 USEE INTEITACE ..o ittt e st e e st e e e e saeeee s 80
121 VI PrOPEITIES eeeiieieeeiee ettt s e s e e s e e e eeeereeeeenesnsanaaans 81
o (=] ol KT OO P PP PPPPT OO 84
13 oY a o= D | - PSR 85
13.1 LOLUE] 0] 0 T4 oV - 87
(=] ol KT TSP PPPPT OO 89
14 THPS & TIICKS 1evvteieeeieiie et e e e e e e e s et e e e e e e s ata e e e e e esnnaaeeeeesnnsnenes 91
14.1 10 functions you need to know abouteeeeiiiiiiiiiii i 91
14.2 The 10 Most USeful SROM-CULSccooviiiiiiiie e 96
15 EXample APPlICAtioNcoii i e 97
16 AdditionNal EXErCISES ..uveeiiiiiiiiiiieeeeiiee ettt sttt s st e st essabe e e s sabeeeeeaes 101
17 WHhat'sS NEXE? ..ottt ettt e e s st e e s sabeeessabeeessnneeesnnns 106
17.1 1Y = o - PR 106
17.2 TULOTIALS ettt et e e e st e e s sabeeesanees 106
17.3 AdditioNal RESOUICESccoiuiiiiiiiiieiiiiiee ettt et st e s e e 106
17.4 T 1001 o] [P 107
QUICK REFEIENCE ...ttt ettt e s bt e s s bt e e e s bt e e s sabteessaseeesnans 108

Tutorial: An Introduction to LabVIEW

1Introduction

LabVIEW (short for Laboratory Virtual Instrumentation Engineering Workbench) is a
platform and development environment for a visual programming language from National
Instruments. The graphical language is named "G". Originally released for the Apple
Macintosh in 1986, LabVIEW is commonly used for data acquisition, instrument control, and
industrial automation on a variety of platforms including Microsoft Windows, various flavors
of UNIX, Linux, and Mac OS X. The latest version of LabVIEW is version LabVIEW 2011. Visit
National Instruments at www.ni.com.

The code files have the extension “.vi”, which is an abbreviation for “Virtual Instrument”.
LabVIEW offers lots of additional Add-Ons and Toolkits.

1.1 Dataflow Programming

The programming language used in LabVIEW, also referred to as G, is a dataflow
programming language. Execution is determined by the structure of a graphical block
diagram (the LV-source code) on which the programmer connects different function-nodes
by drawing wires. These wires propagate variables and any node can execute as soon as all
its input data become available. Since this might be the case for multiple nodes
simultaneously, G is inherently capable of parallel execution. Multi-processing and multi-
threading hardware is automatically exploited by the built-in scheduler, which multiplexes
multiple OS threads over the nodes ready for execution.

1.2 Graphical Programming

LabVIEW ties the creation of user interfaces (called front panels) into the development cycle.
LabVIEW programs/subroutines are called virtual instruments (VIs). Each VI has three
components: a block diagram, a front panel, and a connector panel. The last is used to
represent the VI in the block diagrams of other, calling VIs. Controls and indicators on the
front panel allow an operator to input data into or extract data from a running virtual
instrument. However, the front panel can also serve as a programmatic interface. Thus a
virtual instrument can either be run as a program, with the front panel serving as a user
interface, or, when dropped as a node onto the block diagram, the front panel defines the
inputs and outputs for the given node through the connector pane. This implies each VI can
be easily tested before being embedded as a subroutine into a larger program.

2 Introduction

The graphical approach also allows non-programmers to build programs simply by dragging
and dropping virtual representations of lab equipment with which they are already familiar.
The LabVIEW programming environment, with the included examples and the
documentation, makes it simple to create small applications. This is a benefit on one side,
but there is also a certain danger of underestimating the expertise needed for good quality
"G" programming. For complex algorithms or large-scale code, it is important that the
programmer possess an extensive knowledge of the special LabVIEW syntax and the
topology of its memory management. The most advanced LabVIEW development systems
offer the possibility of building stand-alone applications. Furthermore, it is possible to create
distributed applications, which communicate by a client/server scheme, and are therefore
easier to implement due to the inherently parallel nature of G-code.

1.3 Benefits

One benefit of LabVIEW over other development environments is the extensive support for
accessing instrumentation hardware. Drivers and abstraction layers for many different types
of instruments and buses are included or are available for inclusion. These present
themselves as graphical nodes. The abstraction layers offer standard software interfaces to
communicate with hardware devices. The provided driver interfaces save program
development time. The sales pitch of National Instruments is, therefore, that even people
with limited coding experience can write programs and deploy test solutions in a reduced
time frame when compared to more conventional or competing systems. A new hardware
driver topology (DAQmxBase), which consists mainly of G-coded components with only a
few register calls through NI Measurement Hardware DDK (Driver Development Kit)
functions, provides platform independent hardware access to numerous data acquisition
and instrumentation devices. The DAQmxBase driver is available for LabVIEW on Windows,
Mac OS X and Linux platforms.

This document introducing the following themes:

e Start using LabVIEW
o The LabVIEW Environment
o Front Panel and Block Diagram
o Palettes: Control Palette, Functions Palette, Tools Palette
o Data Types
o Property Nodes
e SubVis
e Loops and Structures
e Troubleshooting and Debugging
e Working with Data

Tutorial: An Introduction to LabVIEW

3 Introduction

o Arrays
= Array Functions
o Cluster
e Working with Strings
e Error Handling
e Working with Projects using Project Explorer
e Design Techniques
o Shift Register
o State Machine
o Multiple Loops
e User Interface
e Plotting Data
e Deployment: Building Executable Applications (.exe)
e Introduction to Add-Ons and Toolkits
o Briefly explanations...
o More detail about Control and Simulation Module in later
e Introduction to DAQ - Data Acquisition
o MAX — Measurement and Automation Explorer
o NI-DAQmx
e Quick Reference with Keyboard Short-cuts

For more information about LabVIEW, visit my Blog: http://home.hit.no/~hansha/

Tutorial: An Introduction to LabVIEW

2 Start using LabVIEW

This chapter explains the basic concepts in LabVIEW.
The topics are as follows:

e The LabVIEW Environment

e Front Panel and Block Diagram

e Palettes: Control Palette, Functions Palette, Tools Palette
e Data Types

e Property Nodes

2.1 The LabVIEW Environment

LabVIEW programs are called Virtual Instruments, or Vls, because their appearance and
operation imitate physical instruments, such as oscilloscopes and multimeters. LabVIEW
contains a comprehensive set of tools for acquiring analyzing, displaying, and storing data, as
well as tools to help you troubleshoot your code.

When opening LabVIEW, you first come to the “Getting Started” window.

[NON] LabVIEW

Ed| abVIEW (=
@ Create Project @ Open Existing

Recent Project Templates - | All Recent Files - 4

Blank VI Temperature Simulator.vi
Temperature.vi

fUsers/hansha/OneDrive/Documents/Software/LabVIEW/Lal
/Users/hansha/OneDrive/Documents/Software/LabVIEW/Lal™]
fUsers/hansha/OneDrive/Documents/Software/LabVIEW/La{

Calculator2.vi

]

L MUsers/hanshalOneDrive/Documents/Software/l abVIEWI| afil

». Find Drivers and Add-ons »/ Community and Support »/| Welcome to LabVIEW
Connect to devices and expand the - Participate in the discussion " Learn to use LabVIEW and upgrade
functionality of LabVIEW. forums or request technical from previous versions.

support.

3 LabVIEW News | Back to the Drawing Board: Investing in Visual Design

5 Start using LabVIEW

In order to create a new VI, select “Blank VI” or in order to create a new LabVIEW project,
select “Empty project”.

When you open a blank VI, an untitled front panel window appears. This window displays
the front panel and is one of the two LabVIEW windows you use to build a VI. The other
window contains the block diagram. The sections below describe the front panel and the
block diagram.

2.2 Front Panel

When you have created a new VI or selected an existing VI, the Front Panel and the Block
Diagram for that specific VI will appear.

! Untitled 1 Front Panel * [._HEH;|
File Edit View Prolect Operate Tools Window Help ae-
|_

| 13pt Application Font |'!I£‘|Ml_‘ I_' -

& | | @

In LabVIEW, you build a user interface, or front panel, with controls and indicators. Controls
are knobs, push buttons, dials, and other input devices. Indicators are graphs, LEDs, and
other displays.

You build the front panel with controls and indicators, which are the interactive input and
output terminals of the VI, respectively. Controls are knobs, push buttons, dials, and other
input devices. Indicators are graphs, LEDs, and other displays. Controls simulate instrument

Tutorial: An Introduction to LabVIEW

6 Start using LabVIEW

input devices and supply data to the block diagram of the VI. Indicators simulate instrument
output devices and display data the block diagram acquires or generates.

E.g., a “Numeric” can either be a “Numeric Control” or a “Numeric Indicator”, as seen below.

w N

eric Control Numeric Indic. ..

| you select a “Numeric Control”, it can easy be changed to an “Numeric Indicator” by right
click on the object an select “Change to Indicator”

Change to Indicator

Description and Tip...

Create

Replace

Data Operations
Advanced

Fit Control to Pane
Scale Object with Pane

Representation
Data Entry...
Display Format...

Properties

Or opposite, | you select a “Numeric Indicator”, it can easy be changed to an “Numeric
Control” by right click on the object an select “Change to Control”

Tutorial: An Introduction to LabVIEW

7 Start using LabVIEW

Change to Control

Description and Tip...

Create
Replace

Data Operations
Advanced

Fit Control to Pane
Scale Object with Pane

Adapt To Source
Representation
Display Format...

Properties

The difference between a “Numeric Control” and a “Numeric Indicator” is that for a
“Numeric Control” you may enter a value, while the “Numeric Indicator” is read-only, i.e.,
you may only read the value, not change it.

The appearance is also slightly different, the “Numeric Control” has an increment and an
decrement button in front, while the “Numeric Indicator” has a darker background color in
order to indicate that its read-only.

2.3 Block Diagram

After you build the user interface, you add code using VIs and structures to control the front
panel objects. The block diagram contains this code. In some ways, the block diagram
resembles a flowchart.

Tutorial: An Introduction to LabVIEW

8 Start using LabVIEW

B! Untitled 1 Block Diagram * E]@@

File Edit View Project Operate Tools Window Help
> I@' @1@ |l.nll3|0j} | 13pt Application Font |+ ”;Dv' Tll:v‘ |e§3v| ‘ e
A
:Numeric
AAAAAAAAA £ g e
\
% >

After you build the front panel, you add code using graphical representations of functions to
control the front panel objects. The block diagram contains this graphical source code. Front
panel objects appear as terminals, on the block diagram. Block diagram objects include
terminals, subVIs, functions, constants, structures, and wires, which transfer data among
other block diagram objects.

The Figure below shows a front panel and its corresponding block diagram with front panel
and block diagram components.

Tutorial: An Introduction to LabVIEW

Start using LabVIEW

® O

©

P> Using Temperature.vi Front Panel * H=1E3
Eile Edit Operate Tools Browse Window Help 11':;1;
> |C)||EI [130t Application Font |+ || ;pv||ﬁv”ﬂjv. y @
E|
Del < 2
P Lumber of Measurements id i O
p 40 6.0
20)
A z.u_(' 8.0
” ~
0.0 10.0 @

®

P Temperature Graph
90,0-

Temp Plot m -4

85.0-

> Using Temperature.vi Block Diagram *

File Edit Operate Tools Browse Window Help

@[] (@] loa]®] 2 [130t Applcation Fort — + []

Murnber of Measurements

TEMP

1 MOH

5] [©
=

yd
| 23] N
I
P> /:

Temperature Graph

®

| o [
Delay (sec) E%—, =
H Temp -
| e . L
rz.'(D
P 1000.00
|

ORQNO)

Kl

ONORSIE

The different components are as follows:

O O N A WN R

Toolbar
Owned Label
Numeric Control
Free Label

10. Knob Control

11. Plot Legend
12. XY Graph

Numeric Control Terminal
Knob Terminal

Numeric Constant
Multiply Function

Tutorial: An Introduction to LabVIEW

10 Start using LabVIEW

13. Wire Data Path
14. XY Graph Terminal
15. Bundle Function
16. SubVI

17. For Loop Structure

2.4 Controls Palette

The Controls and Functions palettes contain sub palettes of objects you can use to create a
VI. When you click a sub palette icon, the entire palette changes to the sub palette you
selected. To use an object on the palettes, click the object and place it on the front panel or
block diagram. The Controls palette is available only on the front panel. The Controls palette
contains the controls and indicators you use to build the front panel.

Mumeric Boolean String & Path
» » E. »
[z]1 2] [S==2] e
Array, Matrix... List & Table Graph
Fina=]" » »
= B &=
Ring & Enum Containers I,fT
@ » ' L o .&’
m OO
Refnum Yariant & Class Decorations
P System
P Classic
P Express
» Control Design & Simulation
P .MNET & ActiveX
P Signal Processing
P Addons
>

User Controls
Select a Control...

The most used Sub Palettes are the Numeric Sub Palette, the Boolean Sub Palette and the

String & Path Sub Palette.

You may change the appearance and the contents of the Controls palette:

Tutorial: An Introduction to LabVIEW

11 Start using LabVIEW

You may Pin the palette, so it is always visible, just click the little pin button 1 in the
upper left corner of the palette:

<x] Controls g Search ‘I

If you want to change the content and appearance of the palette, click the “View” button.

Controls [%]
Q, search | 3 view~

Here you may change the way the palette should look.

Controls

e
g Cotegory (standard)
> Sort Alphabetically # Category (Icons and Text)
ﬁ@ i Icons
Change Visible Categories... Icons and Text
MNumeric : Text
ﬂgg » Options... Tree
lﬁl E E‘T't. , i *?!r
Arrav. Matrix... List.Table &T... Graoh I

If you click “Change Visible Categories...” you may change which Categories you want to have
visible.

P! Change Visible Categories

Modern
System
Classic | Deselectal |
Express

Control Design & Simulation
JNET & Activex

Signal Processing

Addons

User Controls

Select a Control...

DSC Module

RF Communications

Sound & Vibration

Vision

|®

l Select Al ,]

v

[QK][Cancel][Help]

Tutorial: An Introduction to LabVIEW

12 Start using LabVIEW

2.4.1 Numeric Sub Palette

“Numerical Control” and “Numerical Indicator” are the most used objects in the numeric sub
palette.

o Miew ™

: [iz3] ’;‘IZ:OO 1200
123 B (T 11207

Mumeric Control Mumeric Indic... Time Stamp C... Time Stamp L...

F: I :

Vertical Fill Slide Vertical Point... Yertical Progr... VYertical Grad...

T T — —
Horizontal Fill ... Horizontal Poi... Horizontal Pr... Horizontal Gr...
8 [
4 4 a2
L A N
Knob Dial Meter Gauge

100~
= g
0-

Thermometer Horizontal Scr... Vertical Scroll...

Framed Color...

2.4.2 Boolean Sub Palette

This palette has lots of different buttons you may use. OK, Cancel and Stop buttons are
useful.

Tutorial: An Introduction to LabVIEW

13 Start using LabVIEW
Bdolean
o \igw
<> @ 8]
Push Button Rocker Vert Rocker
o » [{
Round LED Horizontal To... Yertical Togal...
Square LED Slide Switch Vertical Slide ...
Lok |
OK Button Cancel Button Stop Button
=3
Lol
Radio Buttons
2.4.3 String & Path Sub Palette

In the String and Path palette we have String Controls, Combo Box, etc.

Strring & Path
Q Search | oo View™
abe abe IW
String Control String Indicator ~ Combo Box
File Path Con... File Path Indi...

2.5 Function Palette

The Functions palette is available only on the block diagram. The Functions palette contains
the Vis and functions you use to build the block diagram.

Tutorial: An Introduction to LabVIEW

14 Start using LabVIEW

Functions

Q, search | & view
| ¥ Programming

> »
kT1]2]
E| &E e
Structures Array Cluster, Class...
» > 4
[& 3]
Mumeric Boolean String
D » e » P »
(> A
Comparison Timing Dialog & User...
=n" 3 »
[1] Wt
File 1/O ‘Waveform Application C...
L4 » oo M
b’ &) 52
o o P
Synchronization Graphics & So... Report Genet...

| » Measurement IO
| Instrument IjO

| » vision and Mation
| » Mathematics

| » Signal Processing

| » Data Communication

| » Connectivity

| » Control Design & Simulation

| » SignalExpress

| » Express
| » addons
| » Favorites

| » User Libraries
Select a VI...
| » Statechart

2.6 Tools Palette

You can create, modify, and debug VIs using the tools located on the floating Tools palette.
The Tools palette is available on both the front panel and the block diagram. A tool is a
special operating mode of the mouse cursor. The cursor corresponds to the icon of the tool
selected in the Tools palette. Use the tools to operate and modify front panel and block
diagram objects.

Tutorial: An Introduction to LabVIEW

15 Start using LabVIEW

i

o |+

Ry

@

®|+[Z]

r'd

The Tools palette is available from the View menu:

Untitled 1 Front Panel

File Edit Project Operate Tools Window Help
E Controls Palette

Tools Palette
Quick Drop Ctrl+Space

Breakpoint Manager
Probe Watch Window
Error List Chrl+L

B
4

VI Hierarchy
LabVIEW Class Hierarchy

- If you make sure “Automatic wiring” is disabled (I recommend you do so!) you may use
the Tab key on your keyboard in order to switch between the most common tools.

The most used tools are:

A ’T Use the Operating tool, shown at left, to change the values of a control or select
the text within a control. The Operating tool changes to the icon shown at left when it
moves over a text control, such as a numeric or string control.

& Use the Positioning tool, shown at left, to select, move, or resize objects. The

Positioning tool changes to resizing handles when it moves over the edge of a resizable

object.

A ’E Use the Labeling tool, shown at left, to edit text and create free labels. The

Labeling tool changes to the following icon ’E when you create free labels.

® Use the Wiring tool, shown at left, to wire objects together on the block diagram.

Tutorial: An Introduction to LabVIEW

16 Start using LabVIEW

2.7 Wiring

In order to create the logical flow between the object on the Block Diagram, you need to use
the Wiring tool in order to connect the different objects together.

@ Use the Wiring tool to wire objects together on the block diagram.

Available Keyboard Shortcuts when dealing with Wiring:

Ctrl-B Removes all broken wires.

Esc, right-click, or While wiring, cancels a wire you
click terminal started.

Single-click wire Selects one segment.
Double-click wire Selects a branch.

Triple-click wire Selects entire wire.

A While wiring, disables automatic

wire routing temporarily.

While wiring, tacks down wire

Double-click without connecting it.
While wiring, switches the direction
spacebar of a wire between horizontal and
vertical.
spacebar While moving objects, toggles

automatic wiring.

Ctrl-click input on function Switches the two input wires.
with two inputs

T While wiring, undoes last point
Shift-click where you set a wire.

= Ctrl-B is very useful. This short-cut removes all broken wires on the Block Diagram.

2.8 Toolbar

Below we see the LabVIEW Toolbar:

[>][@] @[] [130t Appication Fort |~ [85]

The behaviors of the different buttons are as follows:

][]

Tutorial: An Introduction to LabVIEW

17 Start using LabVIEW

@ Click the Run button to run a VI. LabVIEW compiles the VI, if necessary. You can run a VI
if the Run button appears as a solid white arrow. The solid white arrow, shown above, also
indicates you can use the VI as a subV!I if you create a connector pane for the VI.

@ While the VI runs, the Run button appears as shown at left if the VI is a top-level VI,
meaning it has no callers and therefore is not a subVI.

lg If the VI that is running is a subVI, the Run button appears as shown at left.

@ The Run button appears broken, shown at left, when the VI you are creating or editing
contains errors. If the Run button still appears broken after you nish wiring the block
diagram, the VI is broken and cannot run. Click this button to display the Error list window,
which lists all errors and warnings.

@ Click the Run Continuously button, shown at left, to run the VI until you abort or pause
execution. You also can click the button again to disable continuous running.

@ While the VI runs, the Abort Execution button, shown at left, appears. Click this button
to stop the VI immediately if there is no other way to stop the VI. If more than one running
top-level VI uses the VI, the button is dimmed.

Note: Avoid using the Abort Execution button to stop a VI. Either let the VI complete its data
ow or design a method to stop the VI programmatically. By doing so, the VI is at a known
state. For example, place a button on the front panel that stops the VI when you click it.

@ Click the Pause button, shown at left, to pause a running VI. When you click the Pause
button, LabVIEW highlights on the block diagram the location where you paused execution,
and the Pause button appears red. Click the button again to continue running the VI.

2.9 Execution

In addition to the Toolbar buttons above the following Keyboard Shortcuts are available
when dealing with Execution:

Tutorial: An Introduction to LabVIEW

18

Start using LabVIEW

Ctrl-R

Ctrl-.t

Ctrl-M

Ctrl-Run button
Ctrl-Shift-Run button
Ctrl-Lf

ctrl-1*

Tab!
Shift-Tab'

T While the VI is running

Runs the VI.

Stops the VI.

Changes to run or edit mode.

Recompiles the current VI.

Recompiles all Vls in memory.

Moves key focus inside an array or cluster.
Moves key focus outside an array or cluster.

Navigates the controls or indicators
according to tabbing order.

Navigates backward through the controls
or indicators.

2.10 The Objects short-cut menu

The most often-used menu is the object shortcut menu. All LabVIEW objects and empty
space on the front panel and block diagram have associated shortcut menus. Use the
shortcut menu items to change the look or behavior of front panel and block diagram
objects. To access the shortcut menu, right-click the object, front panel, or block diagram.

The Numeric control has the following short-cut/right-click menu:

Visible Items
Find Terminal
Change to Indicator

Description and Tip...

Create
Replace

Data Operations
Advanced

Fit Control to Pane
Scale Object with Pane

Representation
Data Entry...
Display Format...

The short-cut menu will be different for the different controls or objects.

Properties

Tutorial: An Introduction to LabVIEW

19 Start using LabVIEW

2.11 Dataflow Programming

LabVIEW follows a dataflow model for running Vls. A block diagram node executes when all
its inputs are available. When a node completes execution, it supplies data to its output
terminals and passes the output data to the next node in the dataflow path.

Visual Basic, C++/C#, Java, and most other text-based programming languages follow a
control flow model of program execution. In control flow, the sequential order of program
elements determines the execution order of a program.

Example: Dataflow Programming

Mumber 1
i Result
> »
Mumber 2
] 50,00

The Example shows a block diagram that adds two numbers and then subtracts 50.00 from
the result of the addition. In this case, the block diagram executes from left to right, not
because the objects are placed in that order, but because the Subtract function cannot
execute until the Add function finishes executing and passes the data to the Subtract
function. Remember that a node executes only when data are available at all of its input
terminals, and it supplies data to its output terminals only when it finishes execution.

Example: Dataflow Programming

Murmber 1 Result 1
: 25l
B
Mumber 2
[}
i
Munber 3 In?ﬁ". Resulk 2
[}
3
I>' -—="-i5TH|
Munber 4

L

In this example, consider which code segment would execute first-the Add, Random
Number, or Divide function. You cannot know because inputs to the Add and Divide
functions are available at the same time, and the Random Number function has no inputs. In
a situation where one code segment must execute before another and no data dependency

Tutorial: An Introduction to LabVIEW

20 Start using LabVIEW

exists between the functions, use other programming methods, such as error clusters, to
force the order of execution.

2.12 Help

@The Context Help window (Ctrl +H) displays basic information about LabVIEW objects
when you move the cursor over each object. The Context Help window is visible by default.
To toggle display of the Context Help window, select Help-Show Context Help, press the Ctrl-
H keys, or click the Show Context Help Window button on the toolbar.

When you move the cursor over front panel and block diagram objects, the Context Help
window displays the icon for subVls, functions, constants, controls, and indicators, with
wires attached to each terminal. When you move the cursor over dialog box options, the
Context Help window displays descriptions of those options. In the window, required
connections are bold, recommended connections are plain text, and optional connections
are dimmed or do not appear. The Figure below shows an example of the Context Help

window.
EE Context Help H=]
fFormat (%36 new File path (Mak & Pathi,.. j‘
file path {dialog if emply) Tz, all raves
number of rows (all-1) Firsk ron
: ¢ —mark after read (chars.}
branspose I:I'II:I:F} H e ECF?
Read From Spreadsheet File.yi
Reads a specified number of lines ar rows Fram a numeric kext file beginning at a
specified character offset and conwerts the data to a 20, single-precision arraw of
numbers.,
Click here for more help. -
| 4

Exercise: Create your first LabVIEW application (VI)

Create a simple LabVIEW application (VI) with a Front Panel with some Controls and
Indicators. Create the logic by connecting the Terminals on the Block Diagram

The Front Panel could look something like this:

Tutorial: An Introduction to LabVIEW

21 Start using LabVIEW

B) Thermometer.vi Front Panel [:I@”Xl

File Edit View Project Operate Tools Window Help
1
ol

Iﬂ& 13pt Application Font | v!lh;._v'l‘.'ﬁ'i‘l&' m

The Block Diagram could look something like this:

®. Thermometer.vi Block Diagram

File Edit View Project Operate Tools Window Help

linl'a’lo’ | 13pt Application Font |~ |

hermometer

Start the program with the Run button.

Exercise: Create a simple Calculator

Create a simple calculator that Add and Subtract 2 numbers like this:

Tutorial: An Introduction to LabVIEW

22 Start using LabVIEW

) Calculator.vi Front Panel E|@|g|

File Edit Yiew Project Operate Tools Window Help @}
M@I 13pt Application Font |v. ;‘;v‘ ‘.'|']:v. ﬁv‘ I

] [Il |

Start the program with the Run button.

Exercise: Write Data to File

Create a VI that writes data to a Text File.

Use Vis or functions from the File 1/0O palette

O‘ Search | oo View ™

&

aea =[5l
0 '

=\
=

‘Write Spread... Read Spread... ‘Writ

e Meas File Read Meas File
D S
o & [oan)

OpenjCreate... Close File Form.

k

‘Write Text File Read Text File ‘Write Binary File Read Binary File

A ’

Build Path Strip Path File Constants Config File ¥

t Into File Scan From File

[

[
=]
2P

&o
0101

=l

—

s

B 4 g
- 8] &
TDM Streaming Storage Zip XML

3¢/

Adv File Funcs

The program could look something like this:

Tutorial: An Introduction to LabVIEW

23 Start using LabVIEW

®) Write To File.vi Front Panel [;”E|g|

File Edit View Project Operate Tools Window Help @
=
A

‘2'@' | 13pt Application Font Ivl ;nv! =3

L C:\Temp)\Test.txt =

This text should be saved to a File

Filetame]

| open or create v——

__ OpenjCreate/Replace File | Write to Text File| [Close File|

. P B error ouk

yror in (no error ‘

@ () D g ﬁ Poec]
Biing
[abcl

Exercise: Read Data from File

Create another VI that read the text file you created in the previous VI.

Tutorial: An Introduction to LabVIEW

3Sub Vs

This chapter explains the basic concepts of creating and using Sub Vls in LabVIEW.
Topics:

e Create New Sub VI from Scratch
e Create Sub VI from existing code
e Using Sub Vls

When you place a VI on the block diagram, LabVIEW considers the VI to be a subVIl. When
you double-click a subVl, its front panel and block diagram appear, rather than a dialog box
in which you can configure options. The front panel includes controls and indicators. The
block diagram includes wires, front panel icons, functions, possibly subVls, and other
LabVIEW objects. The upper right corner of the front panel and block diagram displays.

Below we see an example of a bad Block Diagram. This example does not make use of the
SubVI functionality in LabVIEW at all! This makes the Block diagram hard to read and
understand. The size of the diagram is also too large! The Block Diagram should always fit
into the screen. Both the Front Panel and the Block Diagram should fit into a screen
resolution of 1024x768.

B N bioreactors 04,0ct. 2009.vi Block Diagram

Ele Edt View Project Operate ook Window Help

1] [10] (@]] ol [0 et

B e

b stop(n)

rror out
task, out

[EZauto contral

ManusliAuto
ozl hoose control method

e Fenalconol

24

25 Sub VIs

With use of SubVls, the example above could turn into, e.g.:

BN Bioreactors [N Bioreactors.vi] Block Diagram

Fie Edt View Project Operate Took Window Help

[T 1] 1 5 el [s o] [

Tnialization] Control Looy
uuuuuuuuuuuuuuuu

[DAQ Assistant-Valvel

[DAQ Assistant-ValveZ

[Read from Serial Port 1

uuuuuuuuuuuuuuuu

As you can see, much of the code in the Main VI have been replaced and put into SubViIs.
The program is now more readable.

Another approach is to use a so-called State Machine principle (more about this in chapter
11 - Design Techniques).

Available Keyboard Shortcuts when dealing with Sub Vis:

Double-click subVI Displays subVI front panel.

Ctrl-double-click Displays subVI block diagram and front
subVI panel.

DragVlicontoblock Places that VI as a subVI on the block
diagram diagram.

Places that VI as a subVI on the block
diagram with constants wired for controls
that have non-default values.

Shift-drag Vl icon
to block diagram

Ctrl-right-click block
diagram and select Opens the front panel of that VI.
VI from palette

3.1 Create New Sub VI from Scratch

Tutorial: An Introduction to LabVIEW

26 Sub Vs

Select “Blank VI” in the “Getting Started” window when opening LabVIEW, or when LabVIEW
is already opened select File > New V” or use the short-cut Ctrl+N.

3.1.1 Input and Output SubVI Connectors

Most SubVIs will have input and output “connectors”. This is similar with functions or
methods in other programming language that have input arguments and an output/result.

In order to create connectors, Right-click on the icon in the upper right corner of the VI and
select “Show Connector”.

59=e3

VI Properties
R

-
@l Show Connector
—_—

Find all Instances

You may select different Patterns, i.e., how many input and output connectors you need.

Tutorial: An Introduction to LabVIEW

27 Sub Vs

EBX

E Y1 Properties | recommend that
[Edit Icon... you standarize on
Show Icon this pattern.

Find All Instances

Add Terminal

Remove Terminal

Rotate 90 Degrees 1.
Flip Horizontal
Flip Vertical —
Disconnect all Terminals

[
[

H H{1]]

[TT

11

11
I

[1]

T

1

1
T1TT
TITIT
TTITT

S e i
mm%’lll]

Make sure you select a Pattern with enough connectors even if you don’t need all the
connectors at the moment. | recommend that you standardize on the pattern in the Figure
above.

Select the Wire tool and click on the wanted connector, then click on the Control or
Indicator on the Front Panel you want to connect to this connector.

You should always follow these connector rules:

e Upper left connector: “Reference” In
e Upper right connector: “Reference” Out
e Lower left connector: Error In Cluster

e Lower right connector: Error Out Cluster

Example: SubVI Connectors

See example below about these connector rules:

Tutorial: An Introduction to LabVIEW

28 Sub Vis

P Untitled 2 Block Diagram *

File Edit View Project Operate Tools Window Help Context Help

(51 10 91 5] [Tt B (-1

TCP Refnum In TCP Refrum Out
DataIn Result Out
Array In g error out
error in (no error) s
B! Untitled 2 Front Panel * EEX /
,
n

File Edit View Project Operate Tools Window Help

(m

I 3 ::

Most common Vs that exits follow these rules, see example below.

DAQmx Write.vi
auto start E
task/channels in task out
_data e number of samples written p...
timeout error out
error in

If you follow these connector rules it’s much easier to create a clean and neat code like this:

raskfchannels in

, - DAQmx Start Task.vi DAQmx Write. vi DAQmx Stop Task.vi
> N rror out
{3 DO {= =

55

By doing this it’s also clear how the Data flows in the program. It should always flow from
left to right.

3.1.2 Icon Editor

You should also create a suitable icon for your SubVI.

In order to open the Icon Editor, double-click on the icon in the upper right corner of your VI.

Tutorial: An Introduction to LabVIEW

29 Sub Vs

B! Icon Editor @
File Edit Tools Layers Help
Templates | Icon Text ‘ Glyphs | Layers
] | Givohs | Lavers | Va4
Line 1 text ‘ | ‘ . Line 1 color O m
Line 2 text l] . Line 2 color oN]
Line 3 text l] . Line 3 color <) T
Line 4 text ‘ ‘ . Line 4 color +‘
=N
Font [V] Center text vertically <a» <¢
Small Fonts v
Capitalize text
A!ignment Size
center v 9 =
R: 0 X0
‘ gg ;? OK] [Cancel] [Help]

["Simulation", Default_vPf™ SubVIs with your
own icons created
with the Icon Editor

cm] - 0-20cm
Low-
Pazz [
Filter

Filter time-constant TF [s
[(DBL ¥

3.2 Create Sub VI from existing code

If you find out that you code is getting messy, you could consider put some code into a
SubVI.

The procedure is as follows:

1. Select the part of your code you want to turn into a SubVI
2. From the Edit menu, select “Create SubVI”

Tutorial: An Introduction to LabVIEW

30

Sub Vs

3. LabVIEW will automatically create a SubVI for the selected code.

4. Clean up automatically created wires, etc.

5. Create a suitable icon for your SubVI

B Untitled 2 Block Diagram *

lication Font

b [N [| 0

File View Project Operate Tools Window Help
Undo Move Ctri+Z
Cut Chrl+x
Copy Chri+C
Paste Chri+y
Remove From Project
Select all Chrl+a

Make Current Yalues Default
Reinitialize Values to Default

Import Picture to Clipboard...
Set Tabbing Order...

Remove Broken Wires Ctr+B

Clean Up Diagram Ctrl+U ‘/ m

Remove Breakpaints from Hierarchy 2:

Enable Diagram Grid Alignment Chri+#

Align Items Ctrl+Shift+a
Distribute Items Ctrl4+D

VI Revision History... Chrl+Y
Run-Time Menu...

Find and Replace... Ctri+F

® g

rra
DSt)
rray 2

[D i)

2]

farray 3]
ez

Although this is quite easy to do this, | do not recommend that you use this functionality to

much. This is because you should create and use SubVIs from the first moment you start

creating your application and not afterwards when you find out that you have been creating

a messy code.

So you should structure and design your code with the use of SubVIs from the beginning!

3.3 Using Sub Vls

Below we see an example of how to use SubVls in a program (Top VI or SubVIs):

raskfchannels in

DAQmx Start Task,vi

DAQmx Write.vi

error in (no error error out
- ()= c

You may open a SubVI from the File menu, select a SubVI from the Functions palette or use

drag and drop in different ways, e.g., you may drag a VI from the File Explorer in Windows

directly into an existing VI you have already opened in LabVIEW

Tutorial: An Introduction to LabVIEW

31 Sub VIs

Exercises

Exercise: Convert C to F VI

Create a SubVI that convert a Temperature in Celsius to a Temperature in Fahrenheit

deg C Multipl
deqg C deq @ " g deaF
. ¥BL]
& 0
[1]
I .
1. Create the SubViI
2. Create the Front Panel and the Block Diagram as shown above
3. Create necessary Connectors
4. Create a suitable icon, e.g.:
File Edit Tools Layers Help
Templates ‘ Icon Text ‘ Glyphs | Layers ‘ / /
u 7 A
Lineltext -Linelcnlor . O m
Lineztext: .LinechIor O ‘
Line3textl:| .Line3color (7 T
Line4text|: . Line 4 color ;.:E
Font [V] Center text vertically 5’) <¢
Small Fonts v
Capitalize text ‘
Alignment Size o
left v| 11 2]
— R:255 X:22
g g_r?g ;é [oK][Cancel][Help]

5. Use the SubVl in another VI
6. Runthe program to see if it works

7. Expand the program so you can select if you want to convert from Celsius to
Fahrenheit or from Fahrenheit to Celsius

| | |
st =S
— deqg C 1oz | 0 I
- E
deg F 60=
4 -
2

Exercise: Convert existing code into a SubVI

Tutorial: An Introduction to LabVIEW

32 Sub Vs

Convert a part of your application into a SubVI by using the Create SubVI function in
LabVIEW.

B

|J D I‘ks.r.r.r.r.r.r-t

e L E | :I
s P L———
[\
[\
P ¢’
|I» l]i‘&'ﬂ_—_—_—_—_—_—J
[
]
[(DBL ¥ ntitled 5 {SubvI) -
'
:. »OEL j'
3 L J

Tutorial: An Introduction to LabVIEW

4 Customize LabVIEW

LabVIEW has lots of possibilities for customizing the appearance and the use of the LabVIEW
environment. Select “Options...” from the Tools menu.

Categary A New and Changed for LabVIEW 8.x
MNew and Changed for LabYIEW 8.x]
Paths New Environment Options New pages:
Front Panel [Enable automati naf |
Block Diagram nable automatic saving for recovery SoUrceIGontro

Block Diagram: Cleanup
Alignment Grid
ControlsfFunctions Palettes
Source Control

() Save before a VI runs
() Save before a Y1 runs and periodically

I
5 % minues

New Block Diagram Options

Block Diagram: Cleanup

Menu Shortcuts

MathScript: Search Paths
MathScript: Script Highlighting

Revision History
Menu Shortcuts

VI Server: Configuration

VI Server: Machine Access
VI Server: User Access

VI Server: Exported YIs
‘Web Server: Configuration
Web Server: Visible ¥Is

‘Web Server: Browser Access
Statechart

Web Services: Security

[Juse transparent free labels
Labels snap to preset positions on terminals

Environment [] Labels locked by default
Security -
Shared Yariable Engine Default label position

[Defau[t v

New Front Panel Options
[] Connector pane terminals default to Required

Labels snap to preset positions on controls
[[] Labels locked by default

Default label position
[Default v

Controls/Functions Palette Options
[[Jsort palette items

Yiew the complete list of New and Changed For LabYIEW 8.x

Debugging

Colors Changed Default Since Lab¥IEW 8.2 Security

Fonts [[Juse transparent name labels Shared Variable Engine
Printing New

VI Server: User Access

[o

][Cancel][

Help

]

The default settings is not necessary the best, here are some recommendations for setting

up the LabVIEW environment.

Category: Block Diagram

34 Customize LabVIEW

B Options @
Category ~ Block Diagram

Mew and Changed For LabVIEW 8.x

Eath: Panel Enable automatic error handling in new YIs

ront Panel

Block Diagram Enable automatic error handling dialogs

Block Diagram: Cleanup [_IEnable automatic wire routing

Alignment Grid ["]Enable auto wiring Minimum distance e e
4 32

Controls{Functions Palettes

Source Control [[JUse transparent free labels
Debugging [[JUse transparent name labels
Colors

Labels snap to preset positions on terminals

Fents [[] Labels locked by default

Printing

Revision History Default label position

Menu Shortcuts lDefauIt 3 l
Environment (2l Deletecopy panel terming amdiaaram
Securit: o 0
Sharedy\lariable Engine
VI Server: Configuration EE R e A

VI Server: Machine Access Place structures with Auto Grow enabled
VI Server: User Access Show red Xs on broken wires

VI Server: Exported VIs Show dots at wire junctions

Web Server: Configuration Show tip strips over terminals

Web Server: Visible V1s []Use contral caption For subVI tip strips
Web Server: Browser Access Shaw subVI names when dropped

Statechart

Show constant folding of wires
Web Services: Security D .

[] Show constant Folding of structures
Configure Express YIs immediately
Auto-insert Feedback Node in cycles

v [oK][Cancel][Help]

e Disable “Enable auto wiring” option. This prevents LabVIEW from automatically
connecting adjacent blocks. Although it seems useful to have auto wiring enables, it
is my experience that the auto wiring is a little annoying since it tends to draw wires
between blocks when you do not want any wire.

e Disable “Place front panel elements as icons” option. This causes LabVIEW to use
small terminal icons on the block diagram. If you, instead, activate this option, the
terminal icons are larger, with a mimic of the element as it appears at the front
panel.

Category: Controls/Functions Palettes
e Inthe Format list: select “Category (Icons and Text)”
Category: Alignment Grid

e Turn off “Show Front Panel Grid” and “Show Block Diagram Grid”

Exercises

Exercise: Customize LabVIEW

Try the different settings explained in this chapter. Turn them on and off and watch the
different.

Tutorial: An Introduction to LabVIEW

5Loops and Structures

This chapter explains the basic concepts of Loops and Structures in LabVIEW.
The topics are as follows:

e For Loop

e While Loop

e (Case Structure

e Sequence Structure
e Event Structure

The different Loops and Structures available are located in the “Structures” sub palette in
the Functions palette on the Block Diagram.

Structures

O~
O

5.1Loops

The most important loops are:

e For Loop
e While Loop

35

36 Loops and Structures

These loops will be explained in detail below.

5.1.1 For Loop

A For Loop executes a sub diagram a set number of times. The Figure below shows an empty
For Loop in LabVIEW.

[d

A For loop executes its sub diagram n times, where n is the value wired to the count (E)
terminal. The iteration (|I|) terminal provides the current loop iteration count, which ranges
from 0 to n-1.

After you create a For Loop, you can use shift registers to pass values from one iteration to
the next. If you wire an array to a For Loop, you can read and process every element in that
array by enabling auto-indexing. You also can enable auto-indexing by configuring a For
Loop to return an array of every value generated by the loop.

You can add a conditional terminal to configure a For Loop to stop when a Boolean
condition or an error occurs. A For Loop with a conditional terminal executes until the
condition occurs or until all iterations complete, whichever happens first. To add a
conditional terminal to a For Loop, right-click the For Loop border and select Conditional
Terminal from the shortcut menu. You must wire the conditional terminal and either wire
the count terminal or auto-index an input array for the loop to execute and for the VI to run.

To convert a For Loop to a While Loop, right-click the For Loop and select Replace with While
Loop from the shortcut menu.

Example: For Loop

The following example uses a For Loop in order to create an array with 10 elements and fill it
with random numbers.

Tutorial: An Introduction to LabVIEW

37 Loops and Structures

N , Jl Arra

»POEL

umber (O to 1

PDBL |

Mumeric

[0z 100

5.1.2 While Loop

A While loop repeats the sub diagram inside it until the conditional terminal, an input
terminal, receives a particular Boolean value. The Boolean value depends on the
continuation behavior of the While Loop. Right-click the conditional terminal and select Stop
if True or Continue if True from the shortcut menu. You also can wire an error cluster to the
conditional terminal, right-click the terminal, and select Stop on Error or Continue while
Error from the shortcut menu. The While Loop always executes at least once.

Below we see an empty While loop:

[

After you create a While Loop, you can use shift registers to pass values from one iteration

to the next. If you wire an array to a While Loop, you can read and process every element in
that array by enabling auto-indexing.

In order to convert a While Loop into a For Loop, right-click the While Loop and select
“Replace with For Loop” from the shortcut menu. To convert a While Loop into a Timed

Loop, right-click the While Loop and select “Replace with Timed Loop” from the shortcut
menu.

Example: While Loop

Tutorial: An Introduction to LabVIEW

38 Loops and Structures

This example run until either the user clicks the stop button or number of iterations is
greater than 10.

5.2 Structures

5.2.1 Case Structure

The Case Structure has one or more sub diagrams, or cases, exactly one of which executes
when the structure executes. The value wired to the selector terminal determines which
case to execute and can be Boolean, string, integer, or enumerated type. You may right-click
the structure border to add or delete cases. Use the Labeling tool to enter value(s) in the
case selector label and configure the value(s) handled by each case.

Below we see an empty Case structure:

Below we see an example of a Case structure with 2 cases, a “True” case and a “False” case.
Depending of the Boolean input value, the Numericl and Numeric2 is either Added or
Subtracted.

Tutorial: An Introduction to LabVIEW

39 Loops and Structures

i '-.'--.'-.'--.'-.'--.'-.'--.'-.'--.'n:.'.».'.-.'.».'.-.'.».v.-.r.-.v.-,r.-,v.-,r. ot
- elector Labe
= S s

4 Result

] b : = »OEBI
[Humeric 2 q

5.2.2 Sequence Structure

A Sequence structure Consists of one or more sub diagrams, or frames, that execute
sequentially. Right-click the structure border to add and delete frames or to create sequence
locals to pass data between frames. Use the Stacked Sequence structure to ensure a sub
diagram executes before or after another sub diagram.

Below we see an empty Sequence structure.

'DDDDDDhlu[DIIEJTFFDDDDD

OO0O000000000000000a00

Tutorial: An Introduction to LabVIEW

40 Loops and Structures

Below we see an example where we use “Sequence Local”, i.e., we pass a value from one

) 0000000 n[p, 3] vpfOO00000

umericl Result

(o5 =) [&>

|CoBL K]

|

i
1 I

0000000000000 00000000

sequence to the next

Note! To take advantage of the inherent parallelism in LabVIEW, avoid overusing Sequence
structures. Sequence structures guarantee the order of execution, but prohibit parallel
operations. Another negative to using Sequence structures is that you cannot stop the
execution part way through the sequence.

5.2.3 Event Structure

An Event structure has one or more sub diagrams, or event cases, exactly one of which
executes when the structure executes. The Event structure waits until an event happens,
then executes the appropriate case to handle that event. Right-click the structure border to
add new event cases and configure which events to handle. Wire a value to the Timeout
terminal at the top left of the Event structure to specify the number of milliseconds the
Event structure should wait for an event to occur. The default is —1, indicating never to time
out.

Below we see an example:

Tutorial: An Introduction to LabVIEW

41 Loops and Structures

T["Event Handler", Default_v}]
> _: Case Selector
v |-Previous Sel Case I
- iU [,—\ A
0 i:lt: |~ Event structure 1=
inlka |
71 hiot in U |
Jo[[2] "Exit™: value Change v}
Exit
error in (no error) error out
55 v} F [
= 1

Right-click on the border in order to Add/Edit Event Cases, see the dialog box below.

Tutorial: An Introduction to LabVIEW

42 Loops and Structures

B! Edit Events (%]

Events Handled for Case:

Event Specifiers
(Exit [ValecChange _________[P8
o

v

Warning: An event you have specified is already handled by case 2. Duplicate event
handlers are not allowed.

Event Sources Events
= Controls -~ = KeyUp ~
= errorin (no error) 0 = Mouse Down 0
<All Elements> = Mouse Down?
status = Mouse Enter
code = Mouse Leave
source = Mouse Move
= error out = Mouse Up
<All Elements> = Shortcut Menu Activation?
status = Shortcut Menu Selection? (App)
code = Shortcut Menu Selection {App)
source = Shortcut Menu Selection {User)
- -
v v
< | 3 |« >

Lock front panel until the event case for this event completes

[oK] [Cancel] [Help]

Exercises

Exercise: For Loop

Create a VI with a For Loop. Create the logic to find out if a number in an array is greater
than 10. See Front Panel below:

Tutorial: An Introduction to LabVIEW

43 Loops and Structures

A
Al
A

A |

£
o

T

Al L~

2By
(4]

T

Exercise: While Loop

Create a VI with a While Loop. Create the logic to find out which (the first) index in the array
that have a number greater than 30. See Front Panel below:

Al
B

EES ER R EY EEY EEY e ERS

2|
20
s |
[
F—
Hes |
CH

Al

Exercise: Case Structure

Create a VI with a Case Structure.

Use a Case structure inside a For Loop to write the text “The Number is greater than 10” if
value is greater than 10. See Front Panel below:

Tutorial: An Introduction to LabVIEW

44 Loops and Structures

Exercise: Sequence Structure

Create a VI with a Sequence Structure. See Front Panel below:

Exercise: Event Structure

Create a VI with an Event Structure. See Front Panel below:

B Untitled 1 (=1E3

File Edit View Project Operate Tools Window Help
BE0n
Al
String

You pushed B button
|
. !
- |
_
| v
< — MR —]l 3.

Tutorial: An Introduction to LabVIEW

6Troubleshooting and
Debugging

This chapter explains the basic concepts of troubleshooting and debugging in LabVIEW.
Topics:

e How to find errors

e Highlight Execution

e Probes

e Breakpoints

e Step into/over/out debugging

6.1 How to find errors

@ If a VI does not run, it is a broken, or “nonexecutable”, VI. The Run button often
appears broken, shown at left, when you create or edit a VI. If it is still broken when you
finish wiring the block diagram, the VI is broken and will not run. Generally, this means that a
required input is not wired, or a wire is broken.

Click the broken Run button to display the Error list window, which lists all the errors.
Double-click an error description to display the relevant block diagram or front panel and
highlight the object that contains the error.

6.2 Highlight Execution

@ View an animation of the execution of the block diagram by clicking the Highlight
Execution button. Execution highlighting shows the flow of data on the block diagram from
one node to another using bubbles that move along the wires. Note! Execution highlighting
greatly reduces the speed at which the VI runs.

45

46 Troubleshooting and Debugging

B Application Template Block Diagram *

Fle Edt View Project Operate Took Window Help
.
2] ko ¥ o
Running] &
T CheckErro ~H]

[Checkheck Er-of FHOF e
eck Erro*jel Case-
[ot In
s ot
e e
ot

i

EExit]

] B
Initial

error in (o error)

=
=i

B
(&2

6.3 Probes

@ Use the Probe tool to check intermediate values on a wire as a VI runs.

When execution pauses at a node because of single-stepping or a breakpoint, you also can
probe the wire that just executed to see the value that flowed through that wire. You also

can create a custom probe to specify which indicator you use to view the probed data. For
example, if you are viewing numeric data, you can choose to see that data in a chart within
the probe. To create a custom probe, right-click a wire and select Custom Probe-New from

the shortcut menu.

B Application Template Block Diagram *
File Edt View Project Operate Tools Window Help
B[S][@[1][]] ol o]
~
["Open Front Panel" P
| Case Selector vent Handler] &l
{Z}-Previous Sel Case
g f]-Hot i U B
- {x]-Not in Us (]
Nk in | =
{¥]-Not in L (o]
P Merorout [[X]
Emor | Condition
Status Code
%]
Explanation
Error 1 occurred at Open VI Referencein A
State Machine 1.vi
Possible reason(s):
¥
Breakpoint I
error in (no error) error out
3 = 3
0] :
L)
< >

Tutorial: An Introduction to LabVIEW

47 Troubleshooting and Debugging

6.4 Breakpoints

@ Use the Breakpoint tool to place a breakpoint on a VI, node, or wire on the block
diagram and pause execution at that location. When you set a breakpoint on a wire,
execution pauses after data pass through the wire. Place a breakpoint on the block diagram
workspace to pause execution after all nodes on the block diagram execute. When a VI
pauses at a breakpoint, LabVIEW brings the block diagram to the front and uses a marquee
to highlight the node or wire that contains the breakpoint. LabVIEW highlights breakpoints
with red borders for nodes and block diagrams and red bullets for wires. When you move
the cursor over an existing breakpoint, the black area of the Breakpoint tool cursor appears
white. Use the Breakpoint tool to click an existing breakpoint to remove it.

You may also right-click on the wire in order to set a breakpoint or open the Breakpoint
Manager.

E;?J‘: Clean Up Wire

0 Create Wire Branch
Delete Wire Branch
Insert >
Application Control Palette p
Create >
Probe
Custom Probe »
Breakpoint » Set Breakpoint
Description and Tip... Breakpoint Manager
L L

Breakpoint Manager is a tool for enable, disable and delete breakpoints.

Tutorial: An Introduction to LabVIEW

48 Troubleshooting and Debugging

P! Breakpoint Manager

Y1 Name Object Name State A

State Machine 1.vi _

State Machine 1.vi Wire

X Q@

| £
++
AR

[Close][Help

6.5 Step into/over/out debugging

Available Keyboard Shortcuts when Debugging:

Ctrl-d Steps into node.

Ctrl-=> Steps over node.

Ctrl-d Steps out of node.
Exercises

Exercise: Highlight Execution

Enable “Highlight Execution” in one of your programs, and see how it works.

Exercise: Probes

Set Several Probes around in your application and watch how it works. Use the Probe watch
Window and check out the functionality this tool offers.

Also check out the “Custom Probe” and the “Find Probe” functionality.

Tutorial: An Introduction to LabVIEW

49 Troubleshooting and Debugging

B! Probe Watch Window

probe Dislay
Probe(s) Value Last Update A || | Numeric
= Untitled 1 B 'U—
[1] Numeric | 0.000E+0 30.10.2009 10:47:08 4|
[2] Probe 49 30.10.2009 10:43:04
[3] milliseconc 1000 30.10.2009 10:45:04
hs

Exercise: Breakpoints

Set some Breakpoint around in your code and check out how it works. Use the Breakpoint
Manager tool.

Example:

|1UD|—

Exercise: Step into/over/out debugging

Use the Step into/over/out functionality together with your Breakpoints and learn how you
can use them and see what the difference between them is.

B[] (@[1][][25][bal B ot]

Tutorial: An Introduction to LabVIEW

7Working with Data

This chapter explains the basic concepts of creating and using Sub Vis in LabVIEW.
Topics:

e Arrays
e Array Functions
e Cluster

/7.1 Arrays

Arrays are very powerful to use in LabVIEW. In all your applications you would probably use
both One-Dimensional Arrays and Two-Dimensional Arrays.

7.1.1 Auto-Indexing

LabVIEW uses a powerful mechanism called “Auto-indexing”.

For Example you may use a For loop to create Array data like this:

EH

Or you may use an Array like this in order to automatically specify number of iterations:

50

51 Working with Data

File Edit OQperate Tools Browse Window Help

:,'}l@l ©E|hullﬁ|'|uj} | 13pt Application Font |vl|;mv|
~
N
Array
[Peil—
m I
v
< B

7.1.2 Array Functions

LabVIEW has lots of built-in functions for manipulating arrays.

o AW ¥

oo
3 A2
Array Size Index Array Delete From ...
B[8-
Initialize Array Build Array Max & Min Reshape Array
1 e -f &

Sort 1D Array Search 1D Ar...

Reverse 1D A... Rotate 1D Ar...

By e B

Interpolate 1... Threshold 1D ... Interleave 1D..
i[izz]

i

Array Constant Array To Clus... Cluster To Ar...

. Decimate 1D ... Transpose 2D...

Array to Matrix Matrix to Array

The most useful Array functions are:

e Array Size

s

Index Array

Tutorial: An Introduction to LabVIEW

52 Working with Data

=+ @| Delete from Array

=t Search 1D Array

Initialize Array

Build Array

Array Subset

Array Constant

All these functions are basic (but very useful) array functions you will probably be using in all
your applications and Vils.

Example: Array functions

array wi subset deleted

F132]

lnltcallzed arra
$132]

Build Arra: appended arra
=

subarra
k132
EHsr

-t

Search 1D Array

The resulting Front Panel is as follows:

Tutorial: An Introduction to LabVIEW

53 Working with Data

£
A 17

o
.
I
B
2
i
CH
B
B

Ii

[

7.2 Cluster

Clusters group data elements of mixed types, such as a bundle of wires, as in a telephone
cable, where each wire in the cable represents a different element of the cluster. A cluster is
similar to a record or a struct in text-based programming languages. Bundling several data
elements into clusters eliminates wire clutter on the block diagram and reduces the number
of connector pane terminals that subVIs need. The connector pane has, at most, 28
terminals. If a front panel contains more than 28 controls and indicators that you want to
use programmatically, group some of them into a cluster and assign the cluster to a terminal
on the connector pane. Like an array, a cluster is either a control or an indicator. A cluster
cannot contain a mixture of controls and indicators.

Tutorial: An Introduction to LabVIEW

54

Working with Data

<X] Contrals

Modern

Q Search‘
»

e

o

[ae<] ¥

Mumeric

Boolean
»

String & Path

{514

Array, Matrix...
el
EfEnum |

Ring & Enum

@ »

Refnum

System

Classic

+X] Array, Matrix & Cluster
Cluste;

RealMatrix.ctl ComplexMatri...

Although cluster and array elements are both ordered, you must unbundle all cluster
elements at once rather than index one element at a time. You also can use the “Unbundle
By Name” function to access specific cluster elements.

Example of a Cluster in LabVIEW:

7.2.1 Cluster Order

You may sort the different elements in the cluster by right-click on the cluster border and

select “Reorder Controls in Cluster...”

Tutorial: An Introduction to LabVIEW

55 Working with Data

= cluster.lilvi

7.2.2 Cluster Elements

In order to manipulate and work with cluster LabVIEW offers lots of functions, such as the
“Bundle” and “Unbundle” functions.

G
Visible Items >
Find Control
Hide Control
Change to Indicator
Change to Constant
Description and Tip...
Create 4 [Commp] [comp] | = —]
Data Operations 3 I% %il = =Ny
Advanced > | Unbundle By ... Bundle By Name Unbundle Bundle
Yiew As T =35
1ew As 1lcon EE E
Fropsities Build Cluster ... Index &Bund... Cluster To Ar... Array To Clus...
- o
-
o =
\ Cluster Const,.,.

In order to write to a cluster from the code, you may use the “Bundle” function or the
“Bundle By Name” function. See example below:

Example: Clusters

Tutorial: An Introduction to LabVIEW

56 Working with Data

put cluster

= FIE
@ifi
[yl

ew Command
= r output cluster
omiman H: =13l
Mew Function Function

Bundlz By Marne

B

In order to get access to the different elements in the cluster, you need to “Unbundle” by
using the “Unbundle” function or the “Unbundle By Name”. See example below:

Marne
Employved?

I C . -

Unbundl
Applicant Cluster L

=14

R i T Comparry Mame

o [DEL

E< {Pakc]

Mame 2

IUnbundle By Mame
Marme Company Marme 2

: Compary Marme e Fabe |

Exercises

Exercise: Arrays

Create some simple VIs where you use these array functions to manipulate array data:

i T?" Array Size
-OB

L

=+ @™ Delete from Array

Index Array

-t Search 1D Array

e Initialize Array

Build Array

Array Subset

Exercise: Arrays

Create a SubVI that find the “peaks” in the input array regarding to an input peak level.

Tutorial: An Introduction to LabVIEW

57 Working with Data

Feak Detectorvi] Peaks
= - Bot]

[0BLY {§DBL] |

Exercise: Clusters

Create a Cluster and get the different values from the controls in the Cluster. See Front Panel
below:

95990077

Tutorial: An Introduction to LabVIEW

8Working with Strings

Working and manipulating with strings is an important part in LabVIEW development.

On the Front panel we have the following String controls and indicators available from the
Control palette:

String & Path

String Control String Indicator ~ Combo Box

.Pqthré IPcﬂlj

File Path Con... File Path Indi...

On the Block Diagram we have the following String functions available from the Functions
palette:

o1 Search | oo View™
Q

g-o
B
String Length Concatenate Additional Stri...
[lexs] [PCRE] [5.0] P
- L0 . 2
u-t e I!:Ill

Replace Subs... Search andR... Match Pattern Match Requla... Format Datef... String/Mumbe...

E% £ E% 8 w2] e b

g Y R :1-9 E E,E

@ _[non] o @
Scan From St... Format Into S... Spreadsheet ... Array To Spr... Conversion

1.3 LEC

L OE=0 |

Build Text Trim Whitesp... ToUpper Case ToLower Case Space Constant
[

String Constant Empty String ... Carriage Ret... Line Feed Co... EndofLine C... Tab Constant

Some of the most important String functions are:

Concatenate Strings

58

59 Working with Strings

Concatenate Strings

string 0
string 1 lms| (e concatenated string
string n-1

Concatenates input strings and 1D arrays of strings
into a single output string. For array inputs, this
function concatenates each element of the array.

This function concatenates several strings into on string:

oncatenated string|

IThis i

Search and Replace String

Search and Replace String

input string J’M“'W result string
12, o number of replacements

search string
replace string (") "'“E : L‘;offset past replacement

offset (0) error out
error in (o error) weoced
Replaces one or all instances of a substring with another substring. To
include the multiline? Boolean input, right-click the function and
select Regular Expression.

Use this when you want to replace or remove a certain text in a string.

kesult strin

IPlease remave the fish From this tring |
fish

Match Pattern

Tutorial: An Introduction to LabVIEW

60 Working with Strings

Match Pattern

before substring
match substring
after substring
offset past match

string

regular expression .
offset (0) —

Searches for regular expression in string beginning at
offset, and if it finds a match, splits string into three
substrings. A regular expression requires a specific combination
of characters for pattern matching. For more information about
special characters in reqular expressions, refer to the regular
expression input description in the detailed help.

This is the most useful function when it comes to string manipulation.

efore substring

i

{This is a long string f~~~~{EE3 3

:

[sfter substring

bibc]
Format Into String
Format Into String
format string
initial string E% &; resulting string

error in {no error) =2 L& I S grror out

input 1 {0)] —r P

input n {0)
Formats string path, enumerated type, time stamp,
Boolean, or numeric data as text.

Example:
lMy Mame is %s. My phone is %s
Exercises

Here are some exercises using some of the String functions that are available in LabVIEW.

Exercise: SubVI: Remove leading zeros in string.vi

Create a SubVI which removes leading zeros in a string. Create a Test VI that uses the SubVI.

Tutorial: An Introduction to LabVIEW

61 Working with Strings

Exercise: SubVIl: Remove space from end of string.vi

Create a SubVI which removes all spaces from the end of the string. Create a Test VI that
uses the SubVI.

Exercise: SubVI: Add 2 String.vi

Create a SubVI which adds 2 strings into one. Create a Test VI that uses the SubVI.

Tutorial: An Introduction to LabVIEW

9Error Handling

This chapter explains the basic concepts of handle errors in your code.
Topics:

e Finding Errors
e Error Wiring
e Error Handling

9.1 Finding Error

@If a Vl does not run, it is a broken, or “nonexecutable”, VI. The Run button often appears
broken, shown at left, when you create or edit a VI. If it is still broken when you finish wiring
the block diagram, the VI is broken and will not run. Generally, this means that a required
input is not wired, or a wire is broken. Click the broken Run button to display the Error list
window, which lists all the errors. Double-click an error description to display the relevant
block diagram or front panel and highlight the object that contains the error.

9.2 Error Wiring

Error handling is important in all programming languages. LabVIEW has powerful mechanism
for handling errors and error wiring.

You should always wire the Error cluster between all SubVls, nodes, etc. that support this,
see example below.

raskfchannels in

DAQmx Stark Task.vi DAQM Write.vi DAQmx Stop Task.vi
b T
[oach {an Do {m beat]

pivivd

The Error cluster is located in the Controls palette here:

62

63 Error Handling

Mumeric Boolean String & Path

d B 14
[:] [29] <] Array, Matrix & Cluster

Array, Matrix... Error In 3D.ctl

s 2] ==
~ |4} =
EfEnum | (1] o=
Ring & Enum Array Cluster
ol

Refrum

System

Classic

Express Error In 3D.ctl Error Out 3D.ct

The Error Cluster:

error in {no error)
status code
g o

source:

The Error cluster contains of the following parts:

e Status — True/False. False: No Error, True: Error

e Code - Error Code
e Source — Textual Error message

9.3 Error Handling in SubVIs

When creating SubVIs you should always create an Error In and an Error Out. In the SubVI
code you should also use a Case structure and wire the Error in cluster to the Case Selector

as shown below.

Tutorial: An Introduction to LabVIEW

64 Error Handling

[Mo Error 'E

Create your code in the No

Error Case
Tt 3 -
[Errar™ ~p

Pass the Error to the next part
of the code, next SubVI, etc.

9.4 Error Handling

LabVIEW has several useful SubVls, etc. for Error Handling:

Tutorial: An Introduction to LabVIEW

65

Error Handling

>

Dialog & User...

Application C...

Save

&

;DH
v

. Report Gener...

These are:

Simple Error Handler vil

Merge Errors.vi|
a1

? '\":n
A"

(& Dialog & User Interface

—
One Btn Dialog Two Btn Dialog

¥

NIC
Three Btn Dlg

&

£

Simple Error ... General Error... Clear Errors
B
e Ny,
A" A 21711
Merge Errors Errvor Cluster ... Find First Error

@

Display Msq

e

Prompt User

General Error Handler . vi

Clear Errors.vi

4

?

Error Cluster From Error Code.vil

Find First Error.vi

ESv
BVl

Ur
b S H
NAN

In general you should always show the error to the user. See LabVIEW Help for more details

of how to use these SubViIs.

Exercises

Exercise: Error Handling

Check out the different Error Vis in LabVIEW. Use them in some of your previous Vis.

Tutorial: An Introduction to LabVIEW

10 Working with Projects

This chapter explains the basic concepts of the project Explorer in LabVIEW.
Topics:

e Project Explorer
e Building .exe (executable) applications
e Deployment: Create an Installer

10.1 Project Explorer

It is not necessary to use the Project Explorer when developing your LabVIEW code, but it is
an easy way to structure your code, especially for larger projects.

P Project Explorer - N Bioreactors. lvproj E]@

File Edit VYiew Project Operate Tools Window Help

H S| XD X ||| b B o

Items \ Files |

[=) @, Project: M Bioreactors.lvproj
= B My Computer

= [Subvls

- |m, Parse Serial String.vi
-) Read Serial Port.vi
- [m) Serial Configuration1.vi
- |l Serial Configuration2.vi
- [m, Show Data,vi
- [timeconstant_lowpass_filter. vi
- [m Valve Auto Control.vi
= [MainyI
#- %' Dependencies
- . Build Specifications

The project Explorer is necessary when you want to deploy your code into, e.g., an
executable (.exe) application, build a setup, etc.

66

67 Working with Projects

The Project Explorer is also very useful when you integrate a source control tool, such as
Team Foundation Server, Visual Source Safe, etc. Then you may easily check files in and out
of the source code system.

In order to create a new Project in LabVIEW, simply select “Empty Project” from the Getting
Started window when you open LabVIEW.

[] O LabVIEW

Ed | abVIEW (

») »)
4 _[//j Create Project |_[2 Open Existing
Recent Project Templates — All Recent Files v o
Blank VI Temperature Simulator.vi
Temperature.vi

{Users/hansha/OneDrive/Documents/Software/LabVIEW/LaQ
{Users/hansha/OneDrive/Documents/Software/LabVIEW/Lal™]

{Users/hansha/OneDrive/Documents/Software/LabVIEW/LaQ

Calculator2.vi

». Find Drivers and Add-ons »+ Community and Support >+ Welcome to LabVIEW
Connect to devices and expand the - Participate in the discussion B Learn to use LabVIEW and upgrade
functionality of LabVIEW. forums or request technica from previous versions.

support.

J LabVIEW News | Back to the Drawing Board: Investing in Visual Design

10.2 Deployment

When your application is finished, you may want to distribute or deploy your application and
share it with others.

The Project Explorer gives you several choices when it comes to distribute and deploy your
application. Some of the options are:

e Create an executable application (.exe) — this means that the target doesn’t need to
have LabVIEW installed on their computer. All the target need is LabVIEW Run-Rime,
which is a small installation package.

e You may create your own installer, so all the target need is to run a setup.exe in
order to use your application

e Other possibilities is to create a Web Service or a Shared Library (DLL) of your
application

Tutorial: An Introduction to LabVIEW

68 Working with Projects

All these options are available from the Project Explorer, just right-click on your “Build
Specifications” node.

B Project Explorer - N Bioreactors. lvproj

File Edit View Project Operate Tools Window Help

H S| % e bk @~ o

Items | Files j

= [’gg, Project: M Bioreactors.lvproj
= B My Computer
[Subvls
= [MainVI
L. [ml N Bioreactors.vi
_'“'g' Dependencies

SR~ build Spi Application (EXE) '

Installer

~ L Shared Library (DLL)
Source Distribution
\Web Service (RESTFul)
Zip File

We will go through how we create an executable application. Click Build
Specifications—>New->Application (EXE).

In the Properties window fill in your name of the application.

P Biorector Properties @

Source Files
Destinations
Source File Settings lBinrector ‘
Icon

Advanced arget filename
Additional Exclusions l Biorector.exe j ‘
 ——

Build specification name

Version Information
Run-Time Languages Destination directory

Previ
review M:\wWork) TraininglLab¥IEW TrainingIntroduction to LabYIEW\Code\ExamplesiN Bioreactors ProjectiDeployment

Build specification description

[Build] [OK] [Cancel] [Help]

Tutorial: An Introduction to LabVIEW

69 Working with Projects

Make sure you select a Startup VI.

P Biorector Properties @

Category Source Files
Information
= e ~
Destinations Project Files Startup VIs N\ ~
Source File Settings =8 m], N Bioreactors.vi
Icon @) Subvis
Advanced =) MainvI /
Additional Exclusions M
Wersion Information = ‘ = ‘
Run-Time Languages —
Preview ‘ : ‘
>
Always Included ~
(=]
=]
b
[Build] [OK] [Cancel] [Help]

There are lots of properties and setting you may use in order to create your application, go
through all the Categories in the Properties window.

When you have finished all the steps, just select “Build” in order to create your application.

When you make changes in your application, it is easy to rebuild your application:

=- &), Project: N Bioreactors.lvproj
= B My Computer

b [Subvls

= [MainyI

L. |l N Bioreactors.vi

5= Dependencies

-, Build Specifications

Ry o —p e —
Run
Duplicate
Explore

|.E|...

Remove from Project

Properties

Exercises

Exercise: Project Explorer

Create a new Project and put on of your existing application into the project

Tutorial: An Introduction to LabVIEW

70 Working with Projects

Exercise: Deployment

Create an executable application

Tutorial: An Introduction to LabVIEW

11 Design Techniques

This chapter explains some useful techniques to use when creating your application.
Topics:

e Force the Program Flow using an Error cluster
e Shift Register

e State Machine

e Multiple Loops

e Templates

11.1 Force Program Flow

As mentioned earlier, LabVIEW follows a dataflow model for running Vis. A block diagram
node executes when all its inputs are available. When a node completes execution, it
supplies data to its output terminals and passes the output data to the next node in the
dataflow path.

In the example below we cannot be sure that the DAQmx Write.vi executes before the
DAQmx Stop Task.vi executes. LabVIEW will in this case randomly execute one of these first.
If the Stop VI happens to execute first then the Write VI will failed because task has been
stopped.

askfchannels in 2 DA :
mx Start Task.vi

Analog DBL - -
1Chan 15amp Which Vf|| :ns/lt Irl) execute

In the example below we wire the Error cluster through all the Vls, and there will be no
doubt that the Write VI will execute before the Stop VI.

71

72 Design Techniques

askjchannels in

170 DAQMmX Start Task. vil DAQMX Write, vi
Error in =
DO

I

§
= = poet]
Analog DBL
1Chan 15amp M
N

This approach will also take care of the error handling in your program, which is very
important in real-world applications.

11.2 Shift Register

Use shift registers on For Loops and While Loops to transfer values from one loop iteration
to the next. Shift registers are similar to static variables in text-based programming
languages. A shift register appears as a pair of terminals, directly opposite each other on the
vertical sides of the loop border. The right terminal contains an up arrow and stores data on
the completion of an iteration. LabVIEW transfers the data connected to the right side of the
register to the next iteration. Create a shift register by right-clicking the left or right border
of a loop and selecting Add Shift Register from the shortcut menu.

A shift register transfers any data type and automatically changes to the data type of the
first object wired to the shift register. The data you wire to the terminals of each shift
register must be the same type.

To initialize a shift register, wire any value from outside the loop to the left terminal. If you
do not initialize the shift register, the loop uses the value written to the shift register when
the loop last executed or the default value for the data type if the loop has never executed.

Use a loop with an uninitialized shift register to run a VI repeatedly so that each time the VI
runs, the initial output of the shift register is the last value from the previous execution. Use
an uninitialized shift register to preserve state information between subsequent executions
of a VI. After the loop executes, the last value stored in the shift register remains at the right
terminal. If you wire the right terminal outside the loop, the wire transfers the last value
stored in the shift register. You can add more than one shift register to a loop. If you have
multiple operations within a loop, use multiple shift registers to store the data values from
those different processes in the structure.

Tutorial: An Introduction to LabVIEW

73 Design Techniques

= o B
4]

11.3 State Programming Architecture

Creating VIs using the State Machine approach is very useful when creating (large)
applications.

In general, a state machine is a model of behavior composed of a finite number of states,
transitions between those states, and actions. It is similar to a "flow graph" where we can
inspect the way in which the logic runs when certain conditions are met.

state—___

transition—___

close_door open_door

/\

transition condition

Closed

E: close door
entry action

Sometimes, you may want to change the order of the sequence, repeat one item in the
sequence more often than the other items, stop a sequence immediately, or have items in
the sequence that may execute only when certain conditions are met. Although your
program may not have any such requirements, there is always the possibility that the
program must be modified in the future. Therefore, a state programming architecture is a
good choice, even if a sequential programming structure is sufficient. The following list
describes more complex programming requirements that justify the use of a state
programming architecture for an application.

Tutorial: An Introduction to LabVIEW

74 Design Techniques

e You need to change the order of the sequence
e You must repeat an item in the sequence more often than other items

e You want some items in the sequence to execute only when certain conditions are
met

e

Campare

Temperatures

The State Machine approach in LabVIEW uses a Case structure inside a While loop to handle
the different states in the program, and the transitions between them. The Shift Register is
used to save data from and between the different states.

Below we see examples of a state machine principle implemented in LabVIEW.

Simple State Machine principle

St Defaul <Py

State Machine with multiple transitions depending on the State:

Tutorial: An Introduction to LabVIEW

75 Design Techniques

|"Startup” p
0 w0

Start Up.vi L®Shutdown ~

Beginning State -
 Startup ¥ v 2

|0 Idle 'I

More advanced State Machine using Shift Registers:

B Application Template [State Machine.vi] Block Diagram

File Edit Yiew Project Operate Tools Window Help .
.
DIl T i [= []
2
EI ‘Check Error” 't

[Case Selector —onr]
ious Sel Case

? Not in Use
o Not in Use
* Not in Use
[l Not in Use

PDDDLD]

=ty v} =
b4
i i l

11.4 Multiple Loops/Parallel
programming

Often, you need to program multiple tasks so that they execute at the same time. In
LabVIEW tasks can run in parallel if they do not have a data dependency between them, and

Tutorial: An Introduction to LabVIEW

76 Design Techniques

if they are not using the same shared resource. An example of a shared resource is a file, or
an instrument.

‘v/ Tasks can run in parallel [Task 11— [Resource 1|

o~ Tasks can run in parallel [Task 2|—— [Resource 2|

Tasks cannot run in parallel Shared
are
x Tasks cannot run in parallel Resource

LabVIEW

Using multiple While loops is sometimes useful in applications that need to handle User
interactions in parallel with, e.g., DAQ operations, etc.

Below we see an example of how this structure could look like. The upper loop could handle
interaction with the user, while the lower loop could handle DAQ operations, such as
reading and writing to some /O equipments.

[This Loop do User Interface Interaction]

5 Tl"Start", Default vl

Eartl=1 (Goto Next Case i A

M)
T
Ihl

Etop]
[This Loop do DAQ Operations (1f0}]
E ["Do Something” v 4
Start [-~{=t Goto Next Case [~ e

Error in (no error
Fu o :

A
pacceza s
el

Nyl

Tutorial: An Introduction to LabVIEW

77 Design Techniques

In order to pass data between the loops, you may e.g. use local variables. The loop may have
different time cycles. The /0O may require faster cycles than the User interaction loop.

11.5 Templates

You should create your own templates for such VI you use a lot. It is easy to create your own
templates for scratch, just create a VI as you normally do and then save it as a template with
the ending “.vit”. You may also convert a VI you already made just by changing the extension
to “.vit”.

You should copy your templates to the LabVIEW template folder which is default located in
“C:\Program Files\National Instruments\LabVIEW X.X\Templates\”.

& My Templates

Fil Rediger V¥is Favoritter Verktgy Hijelp

@ Tibake ~ > [? /») sk ‘liL Mapper .

Adresse ’h‘:—) C:\ProgramfileriMational InstrumentsiLabYIEW 2010\templatesiMy Templates

Mapper X Mavn Stgrrelse Type
@) Privat A = DialogvL.vit 20k LabVIEY
&) Program Files = MainvT.vit ISKB LabVIEV
=) Programfiler =] parallellv. vit 14 kB LabVIEY
&) Fellesfiler =] SimpleSubVL.vit 9kB LabVIEV
= [C3) National Instruments @StateMachineEventStructureV... 19kB LabVIEY
uj Circuit Design Suite 10,1 @StaheMachineVI.vit 1SkB LabvIEV
®) CompactRIO =] Subv.vit 16 kB LabVIEY
@) Datasocket =] Taskvrvit 12kB LabVIEY

) Interfaces
= Ié LabVIEW 8.6

The Templates will then be available from the Getting Started Window or File=>New... in
LabVIEW.

| may case | have created a sub folder called “My Templates” where | place all my templates.

Tutorial: An Introduction to LabVIEW

78 Design Techniques

B! New E@@

Create New Description
=), Blank v1 Al —C
=], Polymorphic 1 i ""g:;:f

=) From Template

/(3 Control and Simulation

®{3 DAQ N —

#/(C5) Frameworks

& () Instrument IfO (GPIB)

=13 My Templates

“£% Application Template

: gg Application Template

%) Dialog

i) MainVIL vit

'ig,g ParallellvI. vit

i) SimpleSubYI.vit

%) StateMachineVl. vit

i) TaskVLvit

Simulated

¥ Tutorial {Getting Started)

() User <

= Project —
") Empty Project

=) Project from Wizard

|>

[=
LW

Preview and
Description Use this Template when you want to create a new
Application

€4

|»

[]add to project

|»
<€

I OK I[Cancel][Help]

Exercises

Here are some exercises about shift-registers, State Machines and parallel programming.

Exercise: Shift-register

Create a VI (see example below) where you have the following states:

e |Initialize
e Write

e Read

e Close

In the VI you will use a shift-register as a temporary storage. In the Write state you Write
Data to the storage (shift-register) while you in the Read state will read the Data from the
Storage.

See Example below:

Tutorial: An Introduction to LabVIEW

79 Design Techniques

P Task.vi Front Panel * |z”§”z‘
File Edit View Project Operate Tools Window Help

(B8] &][5]2

Initialize
 Initialize
Read
Write
Close

‘ ‘)Read L 4 ata Out
----- _— ek ! prror ou
I (5|

This example shows how you can use a shift-register as a temporary storage, which is very
useful in many situations.

Exercise: State Machine

Use the State Machine principle on one of your previous exercises.

Exercise: Parallel Programming

Create a VI that consists of 2 parallel loops. Use local variables and other mechanisms in
order to share data between the 2 loops.

Exercise: Templates

Strip some of yours previous Vis and save them as reusable Templates.

Tutorial: An Introduction to LabVIEW

12 User Interface

This chapter explains the basic concepts of creating user-friendly Graphical User Interfaces
(GUI) in LabVIEW.

Topics:

e Decorations

e Tab Control
e Splitter

e Sub Panel
e Etc.

Below we see a Front Panel (GUI) with a “poor” design.

B’ N bioreactors 04.0ct.2009.vi Front Panel *

Project Operate Tools MWindow Help
@\wptnpphceuunﬁum v”:DV”.’u:v”ﬁvl
0,00 Rl R102 508 mof R102 conce. e
0,00 re A R202 00 mofL. rzozconce. [
do2/dt Chart 02 measurment 2

5,SE+0-

5,5E+0-]
SE+0-|
4,SE+0-]

DO [mgiL]

3

Time [s]
HiEwl |
Control Valves R1 508 R102conce. [
02 Limitation mafL
R2 0,00 rzozconce. [
Valve 1 Valve 2 ot s
I 02_max1 02_max2
ManuallAuto Manuallauto 2 1),? ’)IT

Fi 1 FV2 02_mint 02_min2

o | o [P T Hgs

Start_stop_file_writing button | Wait 30 sec to stop program

Stop| ,* Start.

01:00:00

Serial interface setting

R1_Oxi 340 ‘ R2_0xi340i | Lowpass Filter
saudRate 0 Ts o5 s
oatasis 15 Tf o E
Parity o)l None
StoBits A4l 4
< >

The information (Controls and Indicators) on the Front Panel is not structured. You should
group elements that naturally belong together and use different colors with care.

When creating Graphical User Interfaces (GUI) you should use the controls from the System
palette and not from the Modern or Classic palettes. Modern Controls may be used in Sub
Vis with no visible User Interface (for the user).

80

81 User Interface

The appearance of the controls in the System palette is standard MS Windows look and
feeling and this look is familiar for most users. These controls also change appearance due to
changes in the appearance in the operation system.

o igw ¥

[izz] @ abe [Fing =T labc [Enum =]
System Numeric System Spin ... System String SystemRing System Comb... System Enum
F M] B
System Path ... SystemLabel System Listbox System Multic... System Tree System Table
T £ | :
System Vertic... System Horiz... System Vertic... System Horiz... System Yertic... System Horiz...
Lok | Caneel @® [vlal- l?
System Button System Canc... System Radio... System Chec... System Mixed... System Radio...
=

.

B

System Tab C...

=

HmER

Horizontal Scr...

/

2

Vertical Scroll...

Horizontal Spl...

Vertical Splitt...

System Rece... System Chisel...

12.1 VI Properties

In order to make the appearance of the Window that hosts your application, you should
always make some changes in the “VI Properties”.

You find the “VI Properties” by right-click on the icon in the upper right corner of your VI.

T Properties
] Edit Icon...
| Show Connector

Find All Instances

0,00

0,00 :
0,00 Patterns >

Tutorial: An Introduction to LabVIEW

82

User Interface

&) VI Properties @

‘Window title

Window Appearance v ‘

’Air Heater

‘ [[]5ame as ¥I name

(O Dialog
(O Default
(3) Custom

O Top-level application window

Customize. ..

[Dilaview EEE]

m 18

The first thing you should change is the “Window title”. Here you may type appropriate

name of your application or SubVI.

The next you should do is to the “Customize” button in order to customize the Window

appearance.

P! Customize Window Appearance @

Window has title bar
[[]5how menu bar
[[]5how vertical scroll bar*
[]5how horizontal scroll bar*
*applies only to single pane panels

[[]5how toolbar when running
[[]5how Abort buttan
Show Run button
[[]5how Run Continuously button
[[]5how front panel when called
[Close afterwards if originally closed

[]5how front panel when loaded

Window Behavior

(®) Default
(O Floating
[¥]Hide when LabYIEW is not active
O Modal
[]window runs transparently

Allow user to close window

[Jiallow user ta resize window ;

Allow user ko minimize window

Allow default run-time shortcut menus

[JHighlight <Enter> boolean

OK] [Cancel

J

Help

Below we see an application with a simple and neat User Interface and with a Customized

Windows appearance.

Tutorial: An Introduction to LabVIEW

83

User Interface

! Air Heater

Air Heater Control System
Controller Other Settings | Model | Diagram -

PID Parameters
Proportional gain Kp Manual?

3 3
Integral time Ti [s] @

2 v
Derivative time Td [sec] u D_rnan [\ll 1

0 - L —|

Setpoint v_SP [gradC]

50,00

40,00

30,00

Controller Mode
,2 A : Direct =2 Reverse
31,4 2

Measurement Trend

Controller Trend

y_SP 31,38
yran AN | 27,9
y_fit MO | 27,75

15,0 20,0 250 30,0 350 41,4
t[s]

11,4

Below we see a professional application created in LabVIEW that implement common GUI

objects such as a Toolbar, a Tree view, a List view, etc..

uments in the tree structure,

File Tools indows Help :
@New... v ﬂ Add... \y Assign... EE Dpen) ,Q Search... (; Refresh Approved - ? -
Create or View
~ Name l Status | Description Documents for selected
+-g=F Analysis Methods . : tem in the list]
3 ¥ Agilent Electroni... Approv... Varmeplate L—
,5, Parameters ~ - P 5 e
B Autotitrator Approv... Amin titrering, generell titrering
=4 Reagents = Ea
¥ Calculation NPK ApPProv...
,ﬁ Calibration Material s o ! DRy)
'3 Control Material il Carbon residue Approv... Carbon residue
¥ Damptrykksmaler Approv... Damptrykk i ko| Double-click or select Open in
2 3 3 3 Toolbar in order to open an itemin
¥ Deion vannrensi... Approv... Deion vannrens| the list
Click on the different nodes in F.A' Dest. inst. 205 Approv...
order to see the items in the list s " . . -
S £ A
to the right 5; Destillasjon Approv... Destillasjon av kondensat
§: Dresger CMS Approv... Gassmaler
Duggpunktsmal... Approv... Fuktighet, vann duggpunkt
) Fargetallmaler Approv... Fargetall til kondensat
3 Flammepunktsm... Approv... Flammepunkt
¥ Fryseskap Approv... Fryseskap
£ Gas meter Approv... Gas meter
& GC Agilent 6390N Approv...
E GCBTEX Approv... BTEX og amin i vann
£ GCDHA Approv... Detaljert hydrokarbon analyse
§ GC MEG/TEG Approv... MEG/TEG og oksygenater
& ~mowaioee pgzeca vt s b
< ?

Tutorial: An Introduction to LabVIEW

84 User Interface

Exercises

Exercise: User Interface

Create a Dialog Box where you use some of the Controls from the System palette. Make the
necessary settings in VI Properties in order to hide menus, buttons, create a Title, etc.

Create a Test VI from where you open this Dialog Box, enter some data in the Dialog Box,
and then retrieve these data in the calling VI.

Example:

| Pagel | page2

Select:

[v

Values

Valuel: Value2:

Data
Data Data 2 Data 3
O O O

I OK] [Cancel

Tutorial: An Introduction to LabVIEW

13 Plotting Data

This chapter explains the basic concepts when plotting data in LabVIEW.

LabVIEW offers powerful functionality for plotting data. In the Graph palette we have lots of
useful controls for plotting and visualization of data.

00 10

Ex XY Graph

z
1
°.

00 "4

. Mixed Signal ...
o
4 *so

. 3D Picture Co...

Controls

The most useful are:

e Waveform Chart
e Waveform Graph
e XY Graph

Example:

This simple example creates a graph with some random values.

85

86 Plotting Data

IIODI—

"1 PDBI

B Simple Graph.vi Front Panel @@@

File Edit View Project Operate Tools Window Help
> I@I CHEH 13pt Application Font |+ ”:,;,v||7n:v ”&v”f"’vl
A
Waveform Graph Plot 0 |
B
=
=4
3
v
< >

The example below show the basic difference between a “Chart” and a “Graph”.

Tutorial: An Introduction to LabVIEW

87 Plotting Data

|100|—N

»

aveform Chart

You use the “Graph” if you want to plot a set of data, e.g., an array with data, plot data from
a file, etc. Use the “Chart” if you want to plot one data point at a time, e.g., inside a loop,
etc.

13.1 Customizing

The different Chart components in LabVIEW offer a great deal of customizing.

Fiz il You may click on the “Plot Legend” in order to set colors, different line
styles, etc.

1
Waveform Graph Floto r Common Plots
1 -
Color >
0.8- Line Style >
!) Line Width »
806 | / | Anti-aliased
3 2]
? [Bar Plots »
< 0,4- ‘ | Fil Base Line »
Interpolation p
0,2- Point Style »
% Scale >
= Y Scale »
Time -_—

If you right-click on the Graph/Chart, you may set properties such as auto-scaling, etc.

Tutorial: An Introduction to LabVIEW

88 Plotting Data

Waveform Graph

o
E visible Ttems »
o Find Terminal
= Change to Control
Description and Tip...
Create 4
Replace »
Time Data Operations »
Advanced 4
Fit Control to Pane
Scale Object with Pane
Export Simplified Image. ..
X Scale » Marker Spacing »
¥ Scale 4
 Autosize Plot Legend .
Formatting...
Properties Style »
Mapping »
Properties
J AutoScale X
 Loose Fit
J Wisible Scale Label

If you select Properties, you get the following dialog:

®) Graph Properties: Waveform Graph

Display Format | plots | Scales | Cursors | Documentation | DataBinding | Sect € »

Time (X-Axis) v
Type Digits Precision Type
Floating paint Al [0 > Digits of precision v
Scientific
Automatic Formatting ; .
o1 notation [] Hide trailing zeros
Exponent in multiples of 3
Decimal
Hexadecimal [use minimum Field width
Octal =
Binary -

Pad with spaces on left
Absolute time b "

Relative time v

(®) Default editing mode
(O Advanced editing mode

[OK][Cancel][Help]

You may also select which items that should be visible or not.

Tutorial: An Introduction to LabVIEW

89 Plotting Data

Visible Items I 4

Find Terminal Caption
Change to Control DataSocket LED
Description and Tip... J Plot Legend
Cres] N Scale Legend

reate Graph Palette
Replace 4

. Cursor Legend
Data Operations >
% Scrollbar

Advanced >
Fit Control to Pane J X Scale
Scale Object with Pane ¥ Scale

Export Simplified Image...

¥ Scale 4

B 2o The “Graph Palette” lets you zoom in and out on the Graph, etc.

Exercises

Exercise: Graph

Create a VI that reads data from a file and plot the data in a Graph component.

Exercise: Chart

Create a VI where you use Data Binding in order to retrieve data from an OPC demo.

Data Binding is set in the Properties = Data Binding tab:

Tutorial: An Introduction to LabVIEW

90 Plotting Data

) Chart Properties: Waveform Chart @

‘ Appearance ‘ Display Format | Plots ‘ Scales ‘ Documentation ‘ Data Binding ‘ <>

Data Binding Selection
DataSocket v
Unbound
Shared Yariable Engine (NI-PSP)
 DataSocket

Path

opc:/flocalhost/Mational

Instruments.OPCDemofYT_I2:1.0..1000.0

Mational Instruments recommends that vou use data binding through the Shared
Variable Engine. Refer to the LabYIEW Help for more information about data
binding controls.

[OK][Cancel][Help]

Exercise: Customizing

Customize the Graph and the Chart in the examples above in order to set colors, line
thickness, etc.

Tutorial: An Introduction to LabVIEW

14 Tips & Tricks

This chapter gives you some useful Tips & Tricks regarding LabVIEW.

14.1 10 functions you need to know
about

These are the 10 most useful functions in LabVIEW, so you could already now learn how to
use them and where to find them!

Build Array

array
element
element

appended array

element

Concatenates multiple arrays or appends
elements to an n-dimensional array.

This example using the Build Array function inside a For loop in order build an array with 10
elements.

Jarra
F132]

Index Array

91

92 Tips & Tricks

Index Array

n-dimension array ,E
index 0 i element or subarray

. .t
index n-1 = Hge

Returns the element or subarray of n-dimension array
at index.

It is always useful to find a specific value in an array:

array
[x32 @ element

.., o b3z

The Index Array is extendible, so you can drag it out to find more than one elements:

Jarra
[x32

0

_]| ’
o

11
o

aan
i
ooo

Array Size

array size(s)

Returns the number of elements
in each dimension of array.

Find the size of an arbitrary array:

Array
[x32)

Select

Tutorial: An Introduction to LabVIEW

93 Tips & Tricks

Select

t
o % s?b:f
F—

Returns the value wired to the tinput or f
input, depending on the value of 5. If s is
TRUE, this function returns the value
wired to t. If s is FALSE, this function
returns the value wired to f.

Depending on the input data, go to the Alarm case or the Write Data case.

:Numericl
DBL &

|Alarm! f"

*Write Data ¥

Concatenate Strings

Concatenate Strings

string 0 ’
string 1 ‘ma| ;°°°°°°°°° concatenated string

Concatenates input strings and 1D arrays of strings
into a single output string. For array inputs, this
function concatenates each element of the array.

string n-1

This function concatenate several strings into on string:

oncatenated string|

IThis i

Search and Replace String

Tutorial: An Introduction to LabVIEW

94 Tips & Tricks

Search and Replace String

input string Fi@ result string
search string 12, JS——— " number of replacements
replace string (") J L toffset past replacement
offset (0} error out

error in (No error) weoeed

Replaces one or all instances of a substring with another substring. To
include the multiline? Boolean input, right-click the function and
select Regular Expression.

Use this when you want to replace or remove a certain text in a string.

result string

Match Pattern

before substring
match substring
after substring
offset past match

string

regular expression .
offset (0) —

Searches for regular expression in string beginning at
offset, and if it finds a match, splits string into three
substrings. A regular expression requires a specific combination
of characters for pattern matching. For more information about
special characters in reqular expressions, refer to the regular
expression input description in the detailed help.

This is the most useful function when it comes to string manipulation.

pefore substring

i

{This is a long string f~~~~{EE3 3

-

[after substring

Format Into String

Tutorial: An Introduction to LabVIEW

95 Tips & Tricks

Format Into String

format string
initial string
error in {no error) =4

input 1 {0) TJ

resulting string
B=grror out

input n {0)

Formats string path, enumerated type, time stamp,
Boolean, or numeric data as text.

Example:

lMy Mame is %s. My phone is %s

Hans-Petter

Fract/Exp String to Number

number

Interprets the characters 0 through 9, plus,
minus, e, E, and the decimal point {usually
period) in string starting at offset as a
floating-point number in engineering
notation, exponential, or fractional format
and returns it in number.

This function converts a string into a number:

urneric
POEL

Number To Fractional String

number

7
F-format string

Converts number to an F-format
(fractional notation), floating-point string at
least width characters wide or wider if
necessary.

Example:

Tutorial: An Introduction to LabVIEW

96 Tips & Tricks

Plumeric

T % kring

7

14.2 The 10 most useful Short-cuts

These are the 10 most useful short-cuts in LabVIEW, so you could already now learn how to

use them!
Short-Cut Description

Ctrl+B Deletes all broken wires in a VI

Ctrl +. Stops the Running VI

Ctrl + E Toggle between the Front Panel and Block Diagram

Tab Cycles through the most common Tools (Automatic Tool Selection
should be disabled!)

Ctrl + Mouse Scrolls through subdiagrams in Case, Event or Sequence structures

wheel

Ctrl+H Displays the Context Help window

Ctrl + Mouse Opens the Block Diagram directly

Double-click on a

SubVI

Ctrl + Arrows Move faster. You first have to select a SubVI, a Function, Object, etc

(¢l)

Ctrl + W Close the SubVI

Double-click on a Selects the hole wire

wire

Tutorial: An Introduction to LabVIEW

15 Example Application

In this example we will go through an example application. The application uses most of the
LabVIEW features you have learned in this Tutorial.

The application is called “Glossary”. It is a simple application that learns kid’s words in
English. Since the application is for kids, the user interface is create with a “childish” look
and feel.

.
ar Glossary

This is an example of how to create a user-friendly application in LabVIEW that uses most of
the functionality in LabVIEW, such as State-machine principles, reading and writing to files,
dialog boxes, graphics and sound effects. Basic functions for string and array manipulation,
and of course while loops, case structures, subVls, etc. The example also uses the Project
Explorer to collect all the files in one place and to create an executable file of the solution.
Finally it uses the Project Explorer to create a setup package you can use to install the
application easily on other computers.

97

98 Example Application

| created this application for my kids in the Primary school who had problems with learning
their homework in English.

Use the code as an example for creating your own stunning LabVIEW applications. The code
is available for download at my blog: http://home.hit.no/~hansha.

Below we see the Glossary List:

g If you click on the little book symbol in your application, this window will pop up:

pig-gis EN@
cow-ku

house-hus Q
car-bil

bus-buss

bike-sykkel

cooker-ovn

bed-seng 1
livingroom-stue

kitchen-kjokken

harse-hest v

@ Click tis symbol and you can enter new words:

Tutorial: An Introduction to LabVIEW

99

Example Application

English:

CoOw

Norwegian:

ku

The application uses the Project Explorer:

P Project Explorer - Glossary. lvproj

File Edit View Project Operate Tools Window Help

hed xboX|ER IR

|

Items

‘ Files J

=- & Project: Glossary.lvproj
& B My Computer

-) MainvI
&) Subvis

- [Z] Morsk.txt
- [£] Engelsk.txt
- ofe uk.ico

- | @] bird.wav
-~] cow.way

T’ﬁ Glossary User Manual. pdf
RP

&= Dependencies

= - Build Specifications
- & Glossary Setup

“ ™ Glossary

Tutorial: An Introduction to LabVIEW

100 Example Application

This makes it easy to keep an overview of all your files in your project. You may also use the
Project Explorer to create an executable file of your application. In addition you may also
create an installation package so you can easily install the application on other computers.
As part of the installation the LabVIEW Run-time engine will be installed.

Block Diagram:

The application uses the state machine principle, which makes it easy to create large
applications:

P Glossary [Glossary.vi] Block Diagram on Glossary. lvproj/My Computer
File Edit View Project Operate Tools Window Help

-
©][@] (2] [bal]9 [130t Applcstion ot~ [2[5~ [¢5~ 1] L1 Q2]

T[‘Event Handler”, Default v}

[Check Errarle 157 Case Selector we-rv!
Previniis Sel Case

Question:
A

DDPDDLD]

7}-tumber
(& 7]-Not in Use

3] "Next": Value Change v

INexl

Source
Type
Time

CHRef

Oldval

NewVal

error in (no error) error out
53 beat]

]

[Glossary.lvproj/My Computer < >

Tutorial: An Introduction to LabVIEW

16 Additional Exercises

This chapter lists lots of additional exercises you could try out in order to improve your
LabVIEW skills.

Exercise: vCard Reader

Create an application that reads information from a vCard.

vCard is a file format standard for electronic business cards. vCards are often attached to e-
mail messages, but can be exchanged in other ways, such as on the World Wide Web. They
can contain name and address information, phone numbers, URLs, logos, photographs, and
even audio clips.

Example:

BEGIN:VCARD

VERSION:2.1

N:Gump; Forrest

FN:Forrest Gump

ORG:Bubba Gump Shrimp Co.

TITLE:Shrimp Man

TEL;WORK;VOICE: (111) 555-1212

TEL; HOME; VOICE: (404) 555-1212

ADR;WORK:; ;100 Waters Edge;Baytown;LA;30314;United States of America

LABEL; WORK; ENCODING=QUOTED-PRINTABLE:100 Waters Edge=0D=0ABaytown, LA 30314=0D=0AUSA
ADR;HOME:; ;42 Plantation St.;Baytown;LA;30314;United States of America

LABEL; HOME ; ENCODING=QUOTED-PRINTABLE:42 Plantation St.=0D=0ABaytown, LA 30314=0D=0AUSA
EMAIL; PREF; INTERNET: forrestgump@example.com

REV:20080424T195243%2

END:VCARD

For more information about the vCard format, see http://en.wikipedia.org/wiki/VCard.

The application should look something like this:

Path:

(=3

When the user click Open, then a dialog box like this should appear:

101

102 Additional Exercises

‘ Contact | Address | Other

MName

First Name:

Last Name,

Full Name:

Phone

Work:

Home:

Cell:

OK ' [Cancel]

Requirements:

e Use the Project Explorer

e Use the State Machine principle

e Use the Event Structure

e Use System Controls

e Set the appropriate settings in the VI Properties.
e Create a executable application (vCard.exe)

Exercise: vCard Write & Read

Extend the application in the previous example. You should now be able to both write and
read vCard files. The application could look something like this:

Tutorial: An Introduction to LabVIEW

103 Additional Exercises

B vCard Application E],

Contacts:
Nils Pettersen ~
Arne Jensen b |
Bjgrn Hansen
Hans-Petter Halvorsne

™

[wew [Eat |

When the user clicks New, the dialog box in the previous exercise appears. The user may
enter a new vCard. If the user clicks Edit, a dialog box with the selected contact should
appear.

Exercise: Read/Write from .ini files

sty o e e e 2
i By’ “B B
Open Config ... Read Key.vi Write Key.vi Remove Key.vi Remove Secti... Close Config...
p NE @2
bl R
Get Key MNam... Get Section M... Mot & Config ...

Exercise: ActiveX

Create a simple Web Browser using ActiveX and the Internet Explorer ActiveX control
(Microsoft Web Browser)

Use the ActiveX Container from the Containers control palette:

Tutorial: An Introduction to LabVIEW

104 Additional Exercises

Containers

Hor Splitter Bar Vert Splitter Bar

O @

Tab Control SubPanel

Use the ActiveX function palette:

o Niew ¥

= (3 o
* oo K=}
o' ch
Automation O... Close Refere... To Yariant Variant To Data

=5 e I !

Property Mod... Invoke Mode ... Register Eve... Unregister Fo...

o

Static VI Refe...

The application could look something like this:

B Web Browser, Q@

URL:
[http: ffwww,vg.no l

WebBrowser

Nyhet! - Na er det enklere a finne riktig fors

Vﬁ‘] Forfatterne bak bq
! ~

4o/ NOKAS-ran
5t sporsml om okas-boka! R
Vzret hos VG na: 7.4 grader Nedber: 0.0

TIPS Wi —
. & .
>

< |

Exercise: Themes

Tutorial: An Introduction to LabVIEW

105 Additional Exercises

In e.g., ASP.NET we have something called Themes. Themes are used to change the
appearance of your whole application regarding to color, font, pictures, etc.

LabVIEW do not offer such a functionality , but try to create your own Theme Configurator,
so you can change the appearance of your VI instantly.

Here is an example of how Windows XP handles different Themes:

Egenskaper for Skjerm

| Temaer | Skiivebord | Skiermbeskytter| Utseende | Innstilinger |

Inaktivt vindu

Aktivt vindu

Vinduer og knapper:

[windows XP-stil v/
Fargevala:

| Standard (bl3) v/

Skriftstarrelse: Effekter...

ol v

[ok || avbwt | Brul

Create a similar Theme Configurator so you may easily change the appearance of your Vis.

Tutorial: An Introduction to LabVIEW

17 What’'s Next?

17.1 My Blog

For more information about LabVIEW, visit my Blog: http://home.hit.no/~hansha/

LabVIEW Basics:

http://home.hit.no/~hansha/video/labview basics.php

LabVIEW Training and Resources:

http://home.hit.no/~hansha/?training=labview

17.2 Tutorials

This Tutorial is a part of a series with other Tutorials | have made, such as:

e Introduction to LabVIEW

e Data Acquisition in LabVIEW

e Control and Simulation in LabVIEW

e LabVIEW MathScript

e Linear Algebra in LabVIEW

e Datalogging and Supervisory Control in LabVIEW
e Model Predictive Control in LabVIEW

e Wireless Data Acquisition in LabVIEW

e etc.

These Training Kits are available for download (.pdf files, source code, additional resources,
etc.) from my blog: http://home.hit.no/~hansha

17.3 Additional Resources

You find lots of information about LabVIEW in National Instruments web site:

WWW.ni.com

106

107

What’s Next?

17.4

Examples

In the NI example Finder (Help = Find Examples...) you find lots of useful examples that you
can play with or use as a start when creating your own applications.

* NI Example Finder

Browse ‘ Search || Submit ‘ Double-click an example to open it. Information
) Analyzing and Processing Signals ~ ~
Browse according to:) Building User Interfaces
@ Task =) Communicating with External Applications
%) Distributing and Documenting Applications
(_:' Directory Structure :] Favorites
3 Fundamentals
- 2 Arrays and Clusters --
n - "
) LabVIEW Zone| | Sochwars
CONNECT TO YOUR COMMUNITY: __J File Input and Output
) Graphs and Charts
.' '-t::u"i"l &jj“ Articlas) Local and Glabal Yariables
) Loops and Structures
% Discussion || [y | Resources) Mumeric and Boolean
) Object-Oriented
& Code R | User = R
%)) Sharing & G ; Shared Variable 3
] Strings —
O’. SD::::") Time and Date Requirements
) Waveforms
Visit LabVIEW Zone Tj Hardware Inpyt énd Qutput
) Industry Applications
) Most Recent
[[Jinclude ni.com examples 22 Networking
L. ni.com query timeout) Mew Examples For LabVIEW 8.x n
) Optimizing Applications
Hardware (ZJ Printing and Publishing Data
[Find hardware M] 21 Programmatically Controlling VIs s
[C]Limit results to hardware Add to Favorites l [Setup...] [Help] [Close]

Tutorial: An Introduction to LabVIEW

Quick Reference

LabVIEW

Keyboard Shortcuts

Objects and Movement

Selects multiple objects; adds object to

Shift-click current selection.
14 - «{amrow keys) :Ilnt:;ﬂ selected objects one pixel at a
. Moves selected objects several pixels
Shift-14 >« at a time. o P
Shift-click (drag) Moves selected objects in one axis.
Ctrl-click (drag) Duplicates selected objects.
Cul-Shift-click (drag) ~ juPhcaies seected objects and moves
Segiooe Resizes object while maintaining
Shift-resize aspect ratio.
- Resizes object while maintaining
Ctrl-resize center point.
Resizes selected object while
Ctrl-Shift-resize maintaining center point and aspect
ratio.
Ctrl-drag a rectangle Adds more working space to the front
in open space panel or block diagram.
Ctrl-A Sg:séts all front panel or block diagram
Ctrl-Shift-A m last alignment operation on
Performs last distribution operation on
Ctrl-D objects.
Adds a free label to the front panel or
Double-click open space block diagram if automatic tool
selection is enabled.
Scrolls through wbdlagam ofaCase,
Ctrl-mouse wheel Event, or Stacked Sequence structure.
Disables preset alignment positions
Spacebar (drag) when moving Iabeg or captions.
Carl-U Reroutes all wires and rearanges
block diagram objects automatically.
Debugging
Ctl-4 Steps into node.
Ctrl-— Steps over node.
Crl-4 Steps out of node.

Basic Editing

Cul-Z Undoes last action.

Ctrl-Shift-Z Redoes last action.

Ctrl-X Cuts selected objects.

Cul-C Copies selected objects

Ctrl-v Pastes last cut or copied objects.

Navigating the LabVIEW Environment

Curl-E Displays block diagram or front panel windows.
Curl-# Enables or disables grid alignment.

{Mac 0S) Press the Command-* keys.
Ctrl-/ Maximizes and restores window.
Ctrl-T Tiles front panel and block diagram windows.
Ctrl-F Finds objects or text.
Curl-G Searches Vls for next instance of object o text.
Ctrl-Shift-G Searches Vls for previous instance of object or text.
Ctrl-Shift-F Displays the Search Results window.
Ctrl-Tab Cycles through LabVIEW windows.
Ctrl-Shift-Tab Cycles through LabVIEW windows in reverse order.
Ctrl-Shift-N Displays the Navigation window.
Ctrl-1 Displays the VI Properties dialog box.
Ctrl-L Displays the Error list window.
Ctrl-Y Displays the History window.
Ctrl-Shift- W Displays the All Windows dialog box.
el

Navigating the VI Hierarchy Window

Ctrl-D Redraws the window.
Ctrl-A Shows all Vis in the window.

- Displays the subVls and other nodes that make up
Curl-click VI the VI you select in the window.
Enter ! Finds next node that matches the search string.
Shift-Enter ! Finds previous node that matches the search string.

1 After initiating a search by typing in the VI Hierarchy window.

Ctrl-N Creates a new, blank VI.
Ctrl-0 Opens an existing V.
Ctrl-W Closes the VI.

Cul-S Saves the VI.
Ctrl-Shift-S Saves all open files.
Cul-P Prints the window.
Cul-Q Quits LabVIEW.

f
gi

Ctrl-H Displays the Context

(Mac 0S) Press the Command-Shift-H keys.
Ctrl-Shift-L Locks the Context Help window.
Ctirl-?or F1 Displays the LabVIEW Help.

Refer to the LabVIEW Help for keyboard shortcut variations on other
system locales and keyboard layouts.

108

Quick Reference

Tools and Palettes '

Ctrl Switches to next most useful tool.
Shift Switches to Positioning tool.
Ctrl-Shift over open Switches to Scrolling tool.

space

Toggles between two most common
Spacebar' tﬁ&
Shift-Tab' Enables automatic tool selection.

Cycles h four most common tools if
you disabled automatic tool selection by

Tab' clicking the Automatic Tool Selection
button. Otherwise, enables automatic
tool selection.

Navigates temporary Controls and

L s Functions palettes.

Enter Navigates into a temporary palette.

Esc Navigates out of a temporary palette.
Displays a temporary version of the

Shift-right-click Tools palette at thtray location of the
CUrSOF.

! If automatic tool selection is disabled.

Double-click subVl Displays subV! front panel.

Ctrl-double-click Duplays subVl block diagram and front
subVI panel.

DragVliconto block Places that Vl as a subV! on the block
diagram

diagram.
- - Places that VI as a subVl on the block
Shift-drag Vl icon
diagram with constants wned for controls
to block i that have non-default values.
Ctrl-right-click block

diagram and select Opens the front panel of that V1.
VI from palette

Ctrl-R Runs the V1.

Ctrl-* Stops the VI.

Ctrl-M Changes to run or edit mode.

Ctrl-Run button Recompiles the current VI.

Ctrl-Shift-Run button Recompiles all Vls in memory.

Ctrl-41 Moves key focus inside an array or cluster.
Ctrl-11 Moves key focus outside an array or cluster.
Tab' m't:ags tg‘?a mﬂ;l;g;lﬂlmors
Shift-Tabt 2ax‘|g?£$dtwad through the controls

" While the VI is running

Double-click
Triple-click
Ctrl-—»
Ctrl-«

tIn the Font dialog box.

Selects a single word in a string.
Selects an entire string.

Moves forward in string by one word.
Moves backward in string by one word.

Moves to beginning of current line in
string.

Moves to end of current line in string.
Moves to beginning of entire string.
Moves to end of entire string.

Adds new items when entering items in
enumerated type controls and constants,
ring controls and constants, or Case
structures.

Cancels current edit in a string.
Ends text entry.

Increases the current font size.
Decreases the current font size.
Displays the Font dialog box.
Changes to the Application font.
Changes to the System font.
Changes to the Dizlog font.
Changes to the current font.

Ctrl-B

Esc, right-click, or
click terminal

Single-click wire
Double-click wire
Triple-click wire

A

Double-click

spacebar

spacebar

with two inputs
Shift-click

Ctrl-click input on function Switches the two input wires.

Removes all broken wires.
While wiring, cancels a wire you
started.

Selects one segment.

Selects a branch.

Selects entire wire.

While wiring, disables automatic
wire routing temporarily.

While wiring, tacks down wire
without connecting it.

While wiring, switches the direction
of a wire between horizontal and
vertical.

While moving objects, togales
automatic wiring.

While wiring, undoes last point
where you set a wire.

Note: The Ctrl key in these shortcuts corresponds to the Option or
Command key on Mzc 0S and the Alt key on Limux.

Tutorial: An Introduction to LabVIEW

Hans-Petter Halvorsen, M.Sc.

E-mail: hans.p.halvorsen@hit.no

Blog: http://home.hit.no/~hansha/

[m] s [m]

[=]

University College of Southeast Norway

WWW.uUsSNn.Nno

