
Graphs

What is a Graph?
	

	

Informal definition:
· A graph is a mathematical abstraction used to represent "connectivity information".
· A graph consists of vertices and edges that connect them, e.g.,
[image: http://www.seas.gwu.edu/~simhaweb/cs151/lectures/module7/figures/g1.gif]
· It shouldn't be confused with the "bar-chart" or "curve" type of graph.
	

Formally:
· A graph G = (V, E) is:
· a set of vertices V
· and a set of edges E = { (u, v): u and v are vertices }.
· Two types of graphs:
· Undirected graphs: the edges have no direction.
· Directed graphs: the edges have direction.
· Example: undirected graph
[image: http://www.seas.gwu.edu/~simhaweb/cs151/lectures/module7/figures/g2.gif]
· Edges have no direction.
· If an edge connects vertices 1 and 2, either convention can be used:
· No duplication: only one of (1, 2) or (2, 1) is allowed in E.
· Full duplication: both (1, 2) and (2, 1) should be in E.
· Example: directed graph
[image: http://www.seas.gwu.edu/~simhaweb/cs151/lectures/module7/figures/g3.gif]
· Edges have direction (shown by arrows).
· The edge (3, 6) is not the same as the edge (6, 3) (both exist above).
	

Depicting a graph:
· The picture with circles (vertices) and lines (edges) is only a depiction
=> a graph is purely a mathematical abstraction.
· Vertex labels:
· Can use letters, numbers or anything else.
· Convention: use integers starting from 0.
=> useful in programming, e.g. degree[i] = degree of vertex i.
· Edges can be drawn "straight" or "curved".
· The geometry of drawing has no particular meaning:
[image: http://www.seas.gwu.edu/~simhaweb/cs151/lectures/module7/figures/g4.gif]
	

Graph conventions:
· What's allowed (but unusual) in graphs:
· Self-loops (occasionally used).
· Multiple edges between a pair of vertices (rare).
· Disconnected pieces (frequent in some applications).
Example:
[image: http://www.seas.gwu.edu/~simhaweb/cs151/lectures/module7/figures/g5.gif]
· What's not (conventionally) allowed:
· Mixing undirected and directed edges.
· Re-using labels in vertices.
· Bidirectional arrows.
· Most common:
· No multiple edges.
· No self-loops.
· Other terms used:
· Vertices: nodes, terminals, endpoints.
· Edges: links, arcs.
Definitions:
· Degrees:
· Undirected graph: the degree of a vertex is the number of edges incident to it.
· Directed graph: the out-degree is the number of (directed) edges leading out, and the in-degree is the number of (directed) edges terminating at the vertex.
· Neighbors:
· Two vertices are neighbors (or are adjacent) if there's an edge between them.
· Two edges are neighbors (or are adjacent) if they share a vertex as an endpoint.
· Paths:
· Undirected: a sequence of vertices in which successive vertices are adjacent.
· Directed: a sequence of vertices in which every pair of successive vertices has this property: there's a directed edge from the first to the second.
· A simple path does not repeat any vertices (and therefore edges) in the sequence.
· A cycle is a simple path with the same vertex as the first and last vertex in the sequence.
· Connectivity:
· Undirected: Two vertices are connected if there is a path that includes them.
· Directed: Two vertices are strongly-connected if there is a (directed) path from one to the other.
· Components:
· A subgraph is a subset of vertices together with the edges from the original graph that connects vertices in the subset.
· Undirected: A connected component is a subgraph in which every pair of vertices is connected.
· Directed: A strongly-connected component is a subgraph in which every pair of vertices is strongly-connected.
· A maximal component is a connected component that is not a proper subset of another connected component.
· Digraph: another name for a directed graph.
Example:
[image: http://www.seas.gwu.edu/~simhaweb/cs151/lectures/module7/figures/g6.gif]
	

More definitions:
· Euler tour: A cycle that traverses all edges exactly once (but may repeat vertices).
[image: http://www.seas.gwu.edu/~simhaweb/cs151/lectures/module7/figures/g7.gif]
Known result: Euler tour exists if and only if all vertices have even degree.
· Hamiltonian tour: A cycle that traverses all vertices exactly once.
[image: http://www.seas.gwu.edu/~simhaweb/cs151/lectures/module7/figures/g8.gif]
Known result: testing existence of a Hamiltonian tour is (very) difficult.
· Euler path: A path that traverses all edges exactly once.
· Hamiltonian path: A path that traverses all vertices exactly once.
· Trees:
· A tree is a connected graph with no cycles.
· A spanning tree of a graph is a connected subgraph that is a tree.
[image: http://www.seas.gwu.edu/~simhaweb/cs151/lectures/module7/figures/g9.gif]

· Weighted graphs:
· Sometimes, we include a "weight" (number) with each edge.
· Weight can signify length (for a geometric application) or "importance".
· Example:
[image: http://www.seas.gwu.edu/~simhaweb/cs151/lectures/module7/figures/g9b.gif]
	

Graph Data Structures
	

First, an idea that doesn't work:
· We have already represented trees (like binary trees) with node instances and pointers between instances.
· Idea: use a node instance for each vertex, and a pointer from one vertex to another if an edge exists between them.
The two fundamental data structures:
· Adjacency matrix.
· Key idea: use a 2D matrix.
· Row i has "neighbor" information about vertex i.
· Undirected: adjMatrix[i][j] = 1 if and only if there's an edge between vertices i and j.
adjMatrix[i][j] = 0 otherwise.
· Directed: adjMatrix[i][j] = 1 if and only if there's an edge from i to j.
adjMatrix[i][j] = 0 otherwise.
· Example: undirected
[image: http://www.seas.gwu.edu/~simhaweb/cs151/lectures/module7/figures/g10.gif]

 0 1 1 0 0 0 0 0
 1 0 1 0 0 0 0 0
 1 1 0 1 0 1 0 0
 0 0 1 0 1 0 1 0
 0 0 0 1 0 0 1 0
 0 0 1 0 0 0 1 1
 0 0 0 1 1 0 0 0
 0 0 0 0 0 1 0 0

Note: adjMatrix[i][j] == adjMatrix[j][i] (convention for undirected graphs).
· Example: directed
[image: http://www.seas.gwu.edu/~simhaweb/cs151/lectures/module7/figures/g11.gif]

 0 1 0 0 0 0 0 0
 0 0 1 0 0 0 0 0
 1 0 0 1 0 1 0 0
 0 0 0 0 1 0 1 0
 0 0 0 0 0 0 1 0
 0 0 1 0 0 0 0 1
 0 0 0 1 0 0 0 0
 0 0 0 0 0 0 0 0

· Adjacency list.
· Key idea: use an array of vertex-lists.
· Each vertex list is a list of neighbors.
· Example: undirected
[image: http://www.seas.gwu.edu/~simhaweb/cs151/lectures/module7/figures/g12.gif]
· Example: directed
[image: http://www.seas.gwu.edu/~simhaweb/cs151/lectures/module7/figures/g13.gif]
· Convention: in each list, keep vertices in order of insertion
=> add to rear of list
· Both representations allow complete construction of the graph.
· Advantages of matrix:
· Simple to program.
· Some matrix operations (multiplication) are useful in some applications (connectivity).
· Efficient for dense (lots of edges) graphs.
· Advantages of adjacency list:
· Less storage for sparse (few edges) graphs.
· Easy to store additional information in the data structure.
(e.g., vertex degree, edge weight)

Breadth-First Search
	

About graph search:
· "Searching" here means "exploring" a particular graph.
· Searching will help reveal properties of the graph
e.g., is the graph connected?
· Usually, the input is: vertex set and edges (in no particular order).
	

Key ideas in breadth-first search: (undirected)
· Mark all vertices as "unvisited".
· Initialize a queue (to empty).
· Find an unvisited vertex and apply breadth-first search to it.
· In breadth-first search, add the vertex's neighbors to the queue.
· Repeat: extract a vertex from the queue, and add its "unvisited" neighbors to the queue.
	

Example:
· Initially, place vertex 0 in the queue.
[image: http://www.seas.gwu.edu/~simhaweb/cs151/lectures/module7/figures/g14.gif]
· Dequeue 0
=> mark it as visited, and add its unvisited neighbors to queue:
[image: http://www.seas.gwu.edu/~simhaweb/cs151/lectures/module7/figures/g15.gif]
· Dequeue 1
=> mark it as visited, and add its unvisited neighbors to queue:
[image: http://www.seas.gwu.edu/~simhaweb/cs151/lectures/module7/figures/g16.gif]
· Dequeue 2
=> mark it as visited, and add its unvisited neighbors to queue:
[image: http://www.seas.gwu.edu/~simhaweb/cs151/lectures/module7/figures/g17.gif]
· Dequeue 2
=> it's already visited, so ignore.
· Continuing ...
[image: http://www.seas.gwu.edu/~simhaweb/cs151/lectures/module7/figures/g18.gif]
· Breadth-first search tree, and visit order:
[image: http://www.seas.gwu.edu/~simhaweb/cs151/lectures/module7/figures/g19.gif]
· Exploring an edge: examining an unvisited neighbor.
· If an unvisited neighbor gets on the queue for the first time, the edge is called a "tree edge".
· Putting the tree edges and all vertices together results in: the breadth-first search tree.
· For a particular graph and its implementation, the tree produced is unique.
· However, starting from another vertex will result in another tree, that may be just as useful.

Searching an unconnected graph:
· The connected components are explored in order:
· Example:
[image: http://www.seas.gwu.edu/~simhaweb/cs151/lectures/module7/figures/g22.gif]
The tree, and visit order:
[image: http://www.seas.gwu.edu/~simhaweb/cs151/lectures/module7/figures/g23.gif]
	

	

Applications:
· Connectivity:
· Breadth-first search identifies connected components.
· However, depth-first search is preferred (required for directed graphs).
· Shortest paths:
· A path between two vertices in the tree is the shortest path in the graph.
· Optimization algorithms:
· Various problems result in "graph search space".
· BFS together with "exploration rules" is often used to search for solutions (e.g., branch-and-bound exploration).
Note: BFS works on a weighted graph by ignoring the weights and only using connectivity information (i.e., is there an edge or not?).

Depth-First Search on Undirected Graphs
Key ideas:
· Mark all vertices as "unvisited".
· Visit first vertex.
· Recursively visit its "unvisited" neighbors.
	

Example:
· Start with vertex 0 and mark it visited.
[image: http://www.seas.gwu.edu/~simhaweb/cs151/lectures/module7/figures/g24.gif]
· Visit the first neighbor 1, mark it visited.
[image: http://www.seas.gwu.edu/~simhaweb/cs151/lectures/module7/figures/g25.gif]
· Explore 1's first neighbor, 2.
[image: http://www.seas.gwu.edu/~simhaweb/cs151/lectures/module7/figures/g26.gif]
· Continuing until all vertices are visited ...
[image: http://www.seas.gwu.edu/~simhaweb/cs151/lectures/module7/figures/g27.gif]
· Vertices are marked in order of visit.
· An edge to an unvisited neighbor that gets visited next is in the depth-first search tree.
	

	

· Completion order:
· In breadth-first search, once a vertex is processed, it is never processed again.
· In depth-first, we also encounter a vertex after returning from the recursive call.
=> we can record a completion order.
[image: http://www.seas.gwu.edu/~simhaweb/cs151/lectures/module7/figures/g29.gif]

	

	

Depth-First Search in Directed Graphs
Key ideas:
· A straightforward depth-first search is similar to the undirected version
=> only explore edges going outward from a vertex in a directed graph.
· In addition to "back" and "down" edges, it is useful to identify "cross" edges.
	

Example:
· Consider: (slightly different from previous example)
[image: http://www.seas.gwu.edu/~simhaweb/cs151/lectures/module7/figures/g32.gif]
· Applying DFS gives:
[image: http://www.seas.gwu.edu/~simhaweb/cs151/lectures/module7/figures/g33.gif]
	

[bookmark: _GoBack]
image5.gif
Multipte edges

Self-loop

Disconnected
sub graph
QSubgmph afsize 1

image6.gif
Vertex 0
has degree=2

UNDIRECTED

2 gnd 6 are connected

Maximal
component

Vertex 3.

Maximal
component

path from2 to 7
but not from 710 2

DIRECTED

image7.gif
Eulder tour exists Nao Euler tour possible

image8.gif
Haomiltonian tour exists No Hamiltonion tour possible

image9.gif
A TREE Spanning tree of o graph

image10.gif
‘A WEIGHTED GRAPH (Edges have weights)

image11.gif

image12.gif

image13.gif
Array Linked list
ol —11 3
e
41 0 4]
2
i
sl 412
i
o 415
sz 47
i
sl 13
e

image14.gif
Array

<

-

N

Linked list

1

2

[

\
\

w
\
¥

\

image15.gif
QUEUE:

image16.gif
QUEUE:

12

image17.gif

image18.gif
QUEUE:

235

image19.gif
Q)

mﬁmb

@/‘v@

image20.gif
BREADTH—FIRST SEARCH TREE

(5 th in visit order;

image21.gif

image22.gif

image23.gif

image24.gif
@/'o
Q)

image25.gif

image26.gif
B
H
§
3

image27.gif

image28.gif

image29.gif
own edge

@(DFS tree edges in red

0 Cross edge

Back edge

image1.gif
Vertex

Edge

image2.gif
© &G
V={0,1,2,3,4,56,T)
° Q Q E:(((‘:”lzi (O:L (1,2) and 2, 1)

are the same
@3, 2.5
a G4, 3,6)
4,6

UNDIRECTED GRAPH 5.7

image3.gif
V=(0,1,2,3,4,5,6,7)

E={ ©,1),
a,2)
2,0, 2,3), 2,5),
3,4, 3,6),
“,6),
G,7, (3, 6) and (6, 3)
6,3)) are different edges

image4.gif
curved edge

Different labels

Different geometry

Identical (isomorphic) graphs

