
Graphs

What is a Graph? 
	  

	


Informal definition: 
· A graph is a mathematical abstraction used to represent "connectivity information". 
· A graph consists of vertices and edges that connect them, e.g., 
[image: http://www.seas.gwu.edu/~simhaweb/cs151/lectures/module7/figures/g1.gif]
· It shouldn't be confused with the "bar-chart" or "curve" type of graph. 
	  


Formally: 
· A graph G = (V, E) is: 
· a set of vertices V 
· and a set of edges E = { (u, v): u and v are vertices }. 
· Two types of graphs: 
· Undirected graphs: the edges have no direction. 
· Directed graphs: the edges have direction. 
· Example: undirected graph 
[image: http://www.seas.gwu.edu/~simhaweb/cs151/lectures/module7/figures/g2.gif]
· Edges have no direction. 
· If an edge connects vertices 1 and 2, either convention can be used: 
· No duplication: only one of (1, 2) or (2, 1) is allowed in E. 
· Full duplication: both (1, 2) and (2, 1) should be in E. 
· Example: directed graph 
[image: http://www.seas.gwu.edu/~simhaweb/cs151/lectures/module7/figures/g3.gif]
· Edges have direction (shown by arrows). 
· The edge (3, 6) is not the same as the edge (6, 3) (both exist above). 
	  


Depicting a graph: 
· The picture with circles (vertices) and lines (edges) is only a depiction 
=> a graph is purely a mathematical abstraction. 
· Vertex labels: 
· Can use letters, numbers or anything else. 
· Convention: use integers starting from 0. 
=> useful in programming, e.g. degree[i] = degree of vertex i. 
· Edges can be drawn "straight" or "curved". 
· The geometry of drawing has no particular meaning: 
[image: http://www.seas.gwu.edu/~simhaweb/cs151/lectures/module7/figures/g4.gif]
	  


Graph conventions: 
· What's allowed (but unusual) in graphs: 
· Self-loops (occasionally used). 
· Multiple edges between a pair of vertices (rare). 
· Disconnected pieces (frequent in some applications). 
Example: 
[image: http://www.seas.gwu.edu/~simhaweb/cs151/lectures/module7/figures/g5.gif]
· What's not (conventionally) allowed: 
· Mixing undirected and directed edges. 
· Re-using labels in vertices. 
· Bidirectional arrows. 
· Most common: 
· No multiple edges. 
· No self-loops. 
· Other terms used: 
· Vertices: nodes, terminals, endpoints. 
· Edges: links, arcs. 
Definitions: 
· Degrees: 
· Undirected graph: the degree of a vertex is the number of edges incident to it. 
· Directed graph: the out-degree is the number of (directed) edges leading out, and the in-degree is the number of (directed) edges terminating at the vertex. 
· Neighbors: 
· Two vertices are neighbors (or are adjacent) if there's an edge between them. 
· Two edges are neighbors (or are adjacent) if they share a vertex as an endpoint. 
· Paths: 
· Undirected: a sequence of vertices in which successive vertices are adjacent. 
· Directed: a sequence of vertices in which every pair of successive vertices has this property: there's a directed edge from the first to the second. 
· A simple path does not repeat any vertices (and therefore edges) in the sequence. 
· A cycle is a simple path with the same vertex as the first and last vertex in the sequence. 
· Connectivity: 
· Undirected: Two vertices are connected if there is a path that includes them. 
· Directed: Two vertices are strongly-connected if there is a (directed) path from one to the other. 
· Components: 
· A subgraph is a subset of vertices together with the edges from the original graph that connects vertices in the subset. 
· Undirected: A connected component is a subgraph in which every pair of vertices is connected. 
· Directed: A strongly-connected component is a subgraph in which every pair of vertices is strongly-connected. 
· A maximal component is a connected component that is not a proper subset of another connected component. 
· Digraph: another name for a directed graph. 
Example: 
[image: http://www.seas.gwu.edu/~simhaweb/cs151/lectures/module7/figures/g6.gif]
	  


More definitions: 
· Euler tour: A cycle that traverses all edges exactly once (but may repeat vertices). 
[image: http://www.seas.gwu.edu/~simhaweb/cs151/lectures/module7/figures/g7.gif]
Known result: Euler tour exists if and only if all vertices have even degree. 
· Hamiltonian tour: A cycle that traverses all vertices exactly once. 
[image: http://www.seas.gwu.edu/~simhaweb/cs151/lectures/module7/figures/g8.gif]
Known result: testing existence of a Hamiltonian tour is (very) difficult. 
· Euler path: A path that traverses all edges exactly once. 
· Hamiltonian path: A path that traverses all vertices exactly once. 
· Trees: 
· A tree is a connected graph with no cycles. 
· A spanning tree of a graph is a connected subgraph that is a tree. 
[image: http://www.seas.gwu.edu/~simhaweb/cs151/lectures/module7/figures/g9.gif]

· Weighted graphs: 
· Sometimes, we include a "weight" (number) with each edge. 
· Weight can signify length (for a geometric application) or "importance". 
· Example: 
[image: http://www.seas.gwu.edu/~simhaweb/cs151/lectures/module7/figures/g9b.gif]
	  


Graph Data Structures 
	  


First, an idea that doesn't work: 
· We have already represented trees (like binary trees) with node instances and pointers between instances. 
· Idea: use a node instance for each vertex, and a pointer from one vertex to another if an edge exists between them. 
The two fundamental data structures: 
· Adjacency matrix. 
· Key idea: use a 2D matrix. 
· Row i has "neighbor" information about vertex i. 
· Undirected: adjMatrix[i][j] = 1 if and only if there's an edge between vertices i and j. 
adjMatrix[i][j] = 0 otherwise. 
· Directed: adjMatrix[i][j] = 1 if and only if there's an edge from i to j. 
adjMatrix[i][j] = 0 otherwise. 
· Example: undirected 
[image: http://www.seas.gwu.edu/~simhaweb/cs151/lectures/module7/figures/g10.gif]

      0 1 1 0 0 0 0 0
      1 0 1 0 0 0 0 0
      1 1 0 1 0 1 0 0
      0 0 1 0 1 0 1 0
      0 0 0 1 0 0 1 0 
      0 0 1 0 0 0 1 1
      0 0 0 1 1 0 0 0
      0 0 0 0 0 1 0 0
      
Note: adjMatrix[i][j] == adjMatrix[j][i] (convention for undirected graphs). 
· Example: directed 
[image: http://www.seas.gwu.edu/~simhaweb/cs151/lectures/module7/figures/g11.gif]

      0 1 0 0 0 0 0 0
      0 0 1 0 0 0 0 0
      1 0 0 1 0 1 0 0
      0 0 0 0 1 0 1 0
      0 0 0 0 0 0 1 0 
      0 0 1 0 0 0 0 1
      0 0 0 1 0 0 0 0
      0 0 0 0 0 0 0 0
      
· Adjacency list. 
· Key idea: use an array of vertex-lists. 
· Each vertex list is a list of neighbors. 
· Example: undirected 
[image: http://www.seas.gwu.edu/~simhaweb/cs151/lectures/module7/figures/g12.gif]
· Example: directed 
[image: http://www.seas.gwu.edu/~simhaweb/cs151/lectures/module7/figures/g13.gif]
· Convention: in each list, keep vertices in order of insertion 
=> add to rear of list 
· Both representations allow complete construction of the graph. 
· Advantages of matrix: 
· Simple to program. 
· Some matrix operations (multiplication) are useful in some applications (connectivity). 
· Efficient for dense (lots of edges) graphs. 
· Advantages of adjacency list: 
· Less storage for sparse (few edges) graphs. 
· Easy to store additional information in the data structure. 
(e.g., vertex degree, edge weight) 

Breadth-First Search 
	  


About graph search: 
· "Searching" here means "exploring" a particular graph. 
· Searching will help reveal properties of the graph 
e.g., is the graph connected? 
· Usually, the input is: vertex set and edges (in no particular order). 
	  


Key ideas in breadth-first search: (undirected) 
· Mark all vertices as "unvisited". 
· Initialize a queue (to empty). 
· Find an unvisited vertex and apply breadth-first search to it. 
· In breadth-first search, add the vertex's neighbors to the queue. 
· Repeat: extract a vertex from the queue, and add its "unvisited" neighbors to the queue. 
	  


Example: 
· Initially, place vertex 0 in the queue. 
[image: http://www.seas.gwu.edu/~simhaweb/cs151/lectures/module7/figures/g14.gif]
· Dequeue 0 
=> mark it as visited, and add its unvisited neighbors to queue: 
[image: http://www.seas.gwu.edu/~simhaweb/cs151/lectures/module7/figures/g15.gif]
· Dequeue 1 
=> mark it as visited, and add its unvisited neighbors to queue: 
[image: http://www.seas.gwu.edu/~simhaweb/cs151/lectures/module7/figures/g16.gif]
· Dequeue 2 
=> mark it as visited, and add its unvisited neighbors to queue: 
[image: http://www.seas.gwu.edu/~simhaweb/cs151/lectures/module7/figures/g17.gif]
· Dequeue 2 
=> it's already visited, so ignore. 
· Continuing ... 
[image: http://www.seas.gwu.edu/~simhaweb/cs151/lectures/module7/figures/g18.gif]
· Breadth-first search tree, and visit order: 
[image: http://www.seas.gwu.edu/~simhaweb/cs151/lectures/module7/figures/g19.gif]
· Exploring an edge: examining an unvisited neighbor. 
· If an unvisited neighbor gets on the queue for the first time, the edge is called a "tree edge". 
· Putting the tree edges and all vertices together results in: the breadth-first search tree. 
· For a particular graph and its implementation, the tree produced is unique. 
· However, starting from another vertex will result in another tree, that may be just as useful. 

Searching an unconnected graph: 
· The connected components are explored in order: 
· Example: 
[image: http://www.seas.gwu.edu/~simhaweb/cs151/lectures/module7/figures/g22.gif]
The tree, and visit order: 
[image: http://www.seas.gwu.edu/~simhaweb/cs151/lectures/module7/figures/g23.gif]
	  

	 


Applications: 
· Connectivity: 
· Breadth-first search identifies connected components. 
· However, depth-first search is preferred (required for directed graphs). 
· Shortest paths: 
· A path between two vertices in the tree is the shortest path in the graph. 
· Optimization algorithms: 
· Various problems result in "graph search space". 
· BFS together with "exploration rules" is often used to search for solutions (e.g., branch-and-bound exploration). 
Note: BFS works on a weighted graph by ignoring the weights and only using connectivity information (i.e., is there an edge or not?). 

Depth-First Search on Undirected Graphs 
Key ideas: 
· Mark all vertices as "unvisited". 
· Visit first vertex. 
· Recursively visit its "unvisited" neighbors. 
	  


Example: 
· Start with vertex 0 and mark it visited. 
[image: http://www.seas.gwu.edu/~simhaweb/cs151/lectures/module7/figures/g24.gif]
· Visit the first neighbor 1, mark it visited. 
[image: http://www.seas.gwu.edu/~simhaweb/cs151/lectures/module7/figures/g25.gif]
· Explore 1's first neighbor, 2. 
[image: http://www.seas.gwu.edu/~simhaweb/cs151/lectures/module7/figures/g26.gif]
· Continuing until all vertices are visited ... 
[image: http://www.seas.gwu.edu/~simhaweb/cs151/lectures/module7/figures/g27.gif]
· Vertices are marked in order of visit. 
· An edge to an unvisited neighbor that gets visited next is in the depth-first search tree. 
	  

	 


· Completion order: 
· In breadth-first search, once a vertex is processed, it is never processed again. 
· In depth-first, we also encounter a vertex after returning from the recursive call. 
=> we can record a completion order. 
[image: http://www.seas.gwu.edu/~simhaweb/cs151/lectures/module7/figures/g29.gif]

	  

	  



Depth-First Search in Directed Graphs 
Key ideas: 
· A straightforward depth-first search is similar to the undirected version 
=> only explore edges going outward from a vertex in a directed graph. 
· In addition to "back" and "down" edges, it is useful to identify "cross" edges. 
	  


Example: 
· Consider: (slightly different from previous example) 
[image: http://www.seas.gwu.edu/~simhaweb/cs151/lectures/module7/figures/g32.gif]
· Applying DFS gives: 
[image: http://www.seas.gwu.edu/~simhaweb/cs151/lectures/module7/figures/g33.gif]
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