
Chapter 4

Abstract data types II: trees, graphs

and heaps

4.1 Essential reading

Duane A. Bailey Java Structures: Data Structures in Java for the principled

programmer. (McGraw-Hill Companies, Inc. 1999, McGraw-Hill

International editions) [ISBN 0-13-489428-6]. Chapter 10, 11

Michael T. Goodrich and Roberto Tamassia, Data Structures and Algorithms

in Java. (John Wiley & Sons, Inc., 2001, fourth edition)

[ISBN 0-201-35744-5]. Chapter 7, 8, 13

Anany Levintin Introduction to the design and analysis of algorithm.

(Addison-Wesley Professional, 2003) [ISBN 0-201-743957].

Chapter 6.4

Michael Main, Data Structures and Other Projects Using Java. (Addison

Wesley Longman Inc., 1999) [ISBN 0-201-35744-5]. Chapter 9

Russell L Shachelford Introduction to Computing and Algorithms. (Addison

Wesley Longman, Inc., 1998) [ISBN 0-201-31451-7]. Chapter 5

Mark Allen Weiss Data Structures and Problem Solving Using Java. (Addison

Wesley Longman Inc., 1998) [ISBN 0-201-54991-3].

Chapter 6, 17, 18, 20

4.2 Learning outcomes

This chapter introduces one of the most important abstract data

structures which is called a binary tree.

Having read this chapter and consulted the relevant material you

should be able to:

explain the importance of binary trees, graphs and heaps

implement the binary tree data structure in Java or other

languages

describe some applications of binary trees.

demonstrate how to represent a graph in computers

describe the two main algorithms of graph traversal

outline the algorithms for solving some classical graph
problems.

4.3 Trees

A tree (also called a free tree) is defined as a set of vertices (also
called nodes) connected by their edges so that there is exactly one

way to traverse from any vertex to any other vertex.

75

CIS226 Software engineering, algorithm design and analysis (vol.2)

Trees are a very important and widely used abstract data structure

in computer science. Recall arrays, linked lists, stacks and queues.
Each of these data structures represents a relationship between data.

A tree represents a hierarchical relationship. Each node in a tree

spawns one or more branches that each leads to the top node of a
subtree. Almost all operating systems store sets of files in trees or

tree-like structures.

Example 4.1 The file system in a user account (Figure 4.1).

/usr

/ida

/mail /teaching

/bill /martin

cis208sorting

/paper

soda06 bctcs05

cis206

/research
....

Figure 4.1: A tree structure in a file system

Trees are very rich in properties. We shall find out later that there

are actually many ways to define a tree.

4.3.1 Terms and concepts

To ease the discussion, we first define some terms and concepts
about trees and look at an example in Figure 4.1.

root The top most node is called the ‘root’. For example, ‘usr’ is the

root of the (free) tree.

leaf A node that has no children is called a leaf. For example,
‘soda06’ is a leaf.

parent The predecessor node that every node has (except the root).

For example, ‘ida’ is the parent of ‘research’ and ‘research’ is

the parent of ‘sorting’.

child A successor node that each node has (except leaves). For

example, ‘sorting’ is a child of ‘research’.

siblings Successor nodes that share a common parent. For example,

‘sorting’ and ‘paper’ are siblings.

subtrees A subtree is a substructure of a tree. Each node in a tree
may be thought of as the root of a subtree. For example, ‘paper’

is the root of a three-nodes subtree consisting of ‘paper’,
‘soda06’ and ‘bctcs05’.

degree of a tree node The number of children (or subtrees) of a

node. For example, the node ‘ida’ has a degree of 3.

degree of the tree The maximum of the degrees of the nodes of the

tree, which is 3 in the example.

ancestors of a node All the nodes along the path from the root to
that node. For example, the ancestors of node ‘research’ are

‘usr’ and ‘ida’ (or ‘usr/ida’).

76

Trees

path from node n1 to nk A sequence of nodes from n1 to nk. The

length of the path is the number of edges on the path. For
example, the length from ‘research’ to ‘cis208’ is 3.

depth of a node The length of the unique path from the root to the
node. For example, the depth of node ‘cis208’ is 3.

In addition,

forest A collection of trees is called a forest.

binary trees The trees in which every node has at most two
subtrees, although either or both subtrees could be empty.

Example 4.2 An arithmetic expression: A ∗B + C can be represented
by a binary tree.

Recall we represented an arithmetic expression by a list to
emphasise the hierarchy of operators, i.e. ∗, / prior to +, −. An

arithmetic expression tree more naturally shows the hierarchy
(Figure 4.2).

An expression tree is a binary tree. The operators, such as ∗, /, +, −,
are stored on the internal nodes and the operands, such as A, B, C,

are on the leaves. The value of the subtree rooted at an internal

node can be derived by applying the operator at the node to the
operands at its children recursively.

A logical diagrammatic view

An implementation view

root

A B

* C

+

tree +

* C

B

pointer char pointer

A

Figure 4.2: An expression tree

For example, consider the node ‘∗’ in Figure 4.2. Let A = 2, B = 3.
The value of the subtree at ‘∗’ is 2× 3 = 6.

4.3.2 Implementation of a binary tree

There are actually many kinds of trees. We are only concerned with

rooted, labelled and binary trees here.

77

CIS226 Software engineering, algorithm design and analysis (vol.2)

First, we need to define a tree node structure. A simple way to

achieve this is to use a similar approach to the node definition for
linked lists in section 2.7.2.

Example 4.3 We need to define three fields, namely left, da,

right, where left and right are the links to the left child and right
child respectively, and da is the data field. In this way, similar to a

linked list represented by its head, a tree can be referenced by its root.

import java.io.*;

// A class of treeNode which allows us to construct

// a tree node

// This defines a ‘simple tree node’ (type).

public class treeNode {

private Object da;

private treeNode left;

private treeNode right;

// This defines a new tree node.

public treeNode(Object newItem) {

da = newItem;

left = null;

right = null;

} // Constructor

// This is to create a ‘normal’ node.

public treeNode(Object newItem, treeNode leftNode,

treeNode rightNode) {

da = newItem;

left = leftNode;

right = rightNode;

}

// This is to update the da field of a node.

public void setItem(Object newItem) {

da = newItem;

}

// This is to read the item field of a node.

public Object getItem() {

return da;

}

// This is to update the left field of a node.

public void setLeft(treeNode leftNode) {

left = leftNode;

}

// This is to read the left field of a node

public treeNode getLeft() {

return left;

}

// This is to update the right field of a node.

public void setRight(treeNode rightNode) {

right = rightNode;

78

Trees

}

// This is to read the right field of a node

public treeNode getRight() {

return right;

}

}

With the tree structure, it is easy to access a tree node.

Example 4.4 In this example, we first display the data field value of

the root, then move to the left child of the root and display the data
field value, finally move to the right child of the left child of the root,

and display the value.

1: print(tree.da)
2: tree← tree.left
3: print(tree.da)

4: tree← tree.right
5: print(tree.da)

Let us look at an arithmetic expression tree, for (a + b)2/(a− b), in
Figure 4.3.

tree

a b a b

a b+ +

∗ −

/

Figure 4.3: Another expression tree

The expression (a + b)2/(a− b) can be thought of as the operator ‘/’
applies to two sub-expressions (a + b)2 and (a− b). This corresponds

to the fact that the root of the expression tree has two subtrees, the

left subtree and the right with their roots ‘∗’ and ‘−’ respectively. If
we move our view from the root ‘/’ to ‘∗’, we see a similar picture

where ‘∗’ applies to two subtrees (a + b) and (a + b) respectively. This

actually applies to every non-leaf node of a tree. In fact, the most
natural and easy way to define a tree is to define the tree recursively.

4.3.3 Recursive definition of Trees

A tree is a collection of nodes. The collection can be empty.
Otherwise, a tree consists of a distinguished node r (for root) and

zero or more subtrees each of whose roots are connected by a

directed edge from r.

Each (non-empty) subtree is called a child of r, and r is the parent of

each subtree of r. Nodes with no children are called leaves. Nodes
with the same parent are called siblings.

A binary tree (see Figure 4.4) is either empty, or it consists of a node
called the root together with two binary trees called the left subtree

and the right subtree of the root.

79

CIS226 Software engineering, algorithm design and analysis (vol.2)

subtree1 subtree2

tree

left data right
treeNode treeNodeobject

treeNode

treeNode

Figure 4.4: Recursive definition

Recall that many problems can be solved by including a subtask that
calls itself as part of the solution. A program that calls itself at some

stage is called a recursive program. An algorithm is called recursive if

it contains a statement that calls itself.

Trees are recursive in nature and it is natural to write tree

algorithms (programs) that use recursion. A recursive algorithm can
be simpler and more elegant than a non-recursive equivalent, but

one needs to be careful to make sure to implement recursion

correctly. The reader is encouraged to undertake some revision of
recursive algorithms (Chapter 3) before moving on to the next

section.

4.3.4 Basic operations on binary trees

1. initialise() - create an empty binary tree.

2. empty() - true if the binary tree is empty, false otherwise.

3. create(x) - create a one-node binary tree T, where T.da=x.

4. combine(l,r) - create a tree T whose left subtree is l and right

subtree is r.

5. traverse() - traverse every node of a tree T (see Section 4.3.5).

Algorithm 4.1 object initialise()

1: return null

Algorithm 4.2 boolean empty(treeNode t)

1: return (t = null)

Algorithm 4.3 treeNode combine(l,r)

1: t← null
2: setLeft(l), setRight(r)
3: return t

4.3.5 Traversal of a binary tree

Traversal of a data structure means visiting each node exactly once.
This is more interesting in trees than in lists because trees offer no

natural linear sequence to follow.

80

Trees

There are three particularly important traversals of a binary tree,

namely preorder, inorder and postorder traversal. A binary tree may
be empty, in which case there is no node to visit. Otherwise, the tree

consists of a root node, left subtree and right subtree which must be

visited. The only difference between the three traversals is the order
of the steps: preorder visits the root first, postorder visits it last

and inorder visits it in between the two subtree traversals. The left

subtree is always visited before the right.

The recursive algorithms for the three traversals are as follows

(Algorithms 4.4– 4.6):

Algorithm 4.4 preorder(treeNode T)

1: if not empty(T) then
2: print(T.da);

3: preorder(T.left);

4: preorder(T.right)
5: end if

Algorithm 4.5 inorder(tree T)

1: if not empty(T) then
2: inorder(T.left);

3: print(T.da);
4: inorder(T.right)

5: end if

Algorithm 4.6 postorder(tree T)

1: if not empty(T) then
2: postorder(T.left);
3: postorder(T.right);

4: print(T.da)

5: end if

The three traversals, i.e. the preorder, inorder and postorder traversal

on an expression tree can result in three forms of arithmetic
expression, namely, prefix, infix and postfix form respectively.

Example 4.5 A*B+C (See Figure 4.2)

Traversal Nodes visited Arithmetic expression

postorder: AB*C+ postfix form

preorder: +*ABC prefix form
inorder: A*B+C infix form

4.3.6 Construction of an expression tree

As an example, we show how to construct an arithmetic expression
tree given the expression in its postfix form. The postfix form is an

expression where the operator is placed after both operands.

For example, the postfix form of an arithmetic expression a + b is

ab+, and the postfix form of (a + b) ∗ c is ab + c∗.

The normal form of an arithmetic expression such as a + b and

(a + b) ∗ c is called the infix form. Similarly, an expression can also

81

CIS226 Software engineering, algorithm design and analysis (vol.2)

be written in prefix where the operator is placed before operands.

For example, the prefix form of the above expressions are +ab and
∗ + abc respectively. Brackets are not needed in the postfix or prefix

form and therefore are economical for computer storage. However,

they are not easily recognisable by humans.

Suppose the expression is stored in an array and a stack, initially

empty, is used to store the partial results.

Algorithm 4.7 treeNode construct()

INPUT: An expression in array
RETURN: The root of the expression tree

1: Read the expression one symbol at a time.

2: if the symbol is an operand then
3: create a one-node tree and push the pointer to it onto a stack.

4: else if the symbol is an operator then
5: pop pointers to two trees T1 and T2 from the stack and form

a new tree whose root is the operator and whose left and right

children point to T2 and T1 respectively.

6: A pointer to this new tree is then pushed onto the stack.
7: end if
8: return the top of the stack

Example 4.6 We first write the arithmetic expression

(a + b) ∗ c ∗ (d + e) in the postfix form (by hand for the moment):

ab + c ∗ de + ∗, and store it in an array S.

We use the standard procedures and functions defined earlier for trees

(Section 4.3.4), and stacks (Section 2.8.1), where simple variables l, r
point to the left and the right subtree respectively, T is the root of the

expression tree to be built.

1. Read a, create(‘a’,T), push(S,T) read b, create(‘b’,T), push(S,T)

(Figure 4.5(a))

2. Read +, pop(S,r), pop(S,l), combine(l,r) and push(S,T)

(Figure 4.5(b))

3. Read c, create(‘c’,T), push(S,T) (Figure 4.5(c))

a

b

(a) step 1

a b

+

(b) step 2

a b

c

+

(c) step 3

Figure 4.5: steps 1–3

4. Read *, pop(S,r), pop(S,l), combine(l,r) and push(S,T)
(Figure 4.6(a))

5. Read d, create(‘d’,T), push(S,T)

6. Read e, create(‘e’,T), push(S,T) (Figure 4.6(b))

7. Read +, pop(S,r), pop(S,l), combine(l,r) and push(S,T)

(Figure 4.7(a))

82

Trees

a b

c

*

+

(a) step 4

a b

c

*

d

e

+

(b) step 5,6

Figure 4.6: steps 4–6

8. Read *, pop(S,r), pop(S,l), combine(l,r) and push(S,T)

(Figure 4.7(b))

e

a b

c

* d

+

+

(a) step 7

a b

c d e

*

*

+

+

(b) step 8

Figure 4.7: steps 7–8

Applications

There are too many tree applications to list completely here. We will
look at some of them in later chapters. The reader is encouraged to

study more examples in the text books.

Activity 4.3

TREES

1. What is the difference between a tree and a binary tree?

2. Draw an expression tree for each of the following expressions:

(a) 5

(b) (5+6*4)/2

(c) (5+6*4)/2-3/7

(d) 1+9*((5+6*4)/2-3/7)

(e) A×B − (C +D)× (P/Q)

3. Hand draw binary expression trees that correspond to the

expressions for which

83

CIS226 Software engineering, algorithm design and analysis (vol.2)

(a) The infix representation is P/(Q +R) ∗X − Y

(b) The postfix representation is XY ZPQR ∗ +/− ∗

(c) The prefix representation is + ∗ −MNP/RS

4. For each expression tree drawn in the above question, list the

sequence of elements encountered in inorder, preorder and

postorder traversals.

5. Describe, with an example of 5 nodes, the topological
characteristics that distinguish a tree from a linked list.

6. Define a treeNode class for tree nodes that each consists of

following 4 fields:

parent leftChild rightChild data

7. Following the above node definition, define and implement a
binary tree class with necessary access methods for the 4-field

treeNodes, for example, setXXX, getXXX, isEmpty, etc..

8. Write a method that takes two binary trees t1, t2 and a binary

tree node v as the arguments. It constructs and returns a new
binary tree that has v as its root and whose left subtree is t1 and

whose right subtree is t2. Both t1 and t2 should be empty on

completion of the execution.

4.4 Priority queues and heaps

A priority queue is a queue with a conditional dequeue operation in

addition to the FIFO principle. The elements in the queue have
certain orderable characteristics which can be used to decide a

priority.

For example, given a queue of integers, we want to

1. remove the smallest number from the queue

2. add a new integer to the queue according to the pre-defined

priority.

The priority means the smallest (or biggest) in some comparable
value. This task is such a common feature of many algorithms that

the generic name of a Priority Queue has been given to such a queue.

A priority queue can be realised by a partially ordered data structure

called heap.

4.4.1 Binary heaps

A binary heap is a partially ordered complete binary tree. Similar to

a binary search tree, a heap1 has an order property as well as a 1In this module, we use ‘heap’ to

mean a binary heap unless stated

otherwise.
structural property. We first look at the structural property.

4.4.1.1 Structural property

The structure of a heap is as a complete binary tree. A complete
binary tree is a binary tree in which every level is full except

possibly the last (bottom) level where only the rightmost leaves may

84

Priority queues and heaps

be missing. A complete binary tree is referred as a full binary tree if

all the leaves are at the same level.

Example 4.7 The binary tree in Figure 4.8 is a complete binary tree,

and a full binary tree in which all its leaves are at the same level.

14 8

6

1

12

5

10

Figure 4.8: A full binary tree

A complete binary tree can be derived from a full binary tree by

deleting some right most leaves (and edges leading to them). For

example, if we delete the right most leaf ‘8’ in the full binary tree in
Figure 4.8. We get another complete binary tree.2 2Note the term ‘complete binary tree’

is sometimes also used as a

synonym for full tree in some books.

We distinguish the two concepts in

this module to avoid confusion.

The structural property of the heap makes an array implementation
easy. The nodes in the complete binary tree in Figure 4.8 can be

stored in an array level by level contiguously, for example:

i 1 2 3 4 5 6 7

A[i] 12 6 10 14 1 5 8

The advantage of the array implementation is that each node can be
accessed in O(1) time. In addition, the parent or each child of a

node can be accessed in O(1) time. For example, node A[i]’s parent

is: A[i div 2], its left child is A[2i] and the right child is A[2i + 1].

Example 4.8 Figure 4.9 is another complete binary tree in which all

the levels are full except the last level where the leaves are stored from
the left to the right without gap.

14 8

6

1

12

5

10

2 7

Figure 4.9: A complete binary tree

i 1 2 3 4 5 6 7 8 9

A[i] 12 6 10 14 1 5 8 2 7

Example 4.9 Figure 4.10 is a binary tree but not a complete binary

tree because the left most node is missing from the last level. An
incomplete binary tree leaves gaps in an array structure. The tree

structure can, of course, still be stored in an array but dummy

elements such as “%” are required.

i 1 2 3 4 5 6 7 8 9

A[i] 12 6 10 14 1 5 % % 7

85

CIS226 Software engineering, algorithm design and analysis (vol.2)

14

6

1

12

5

10

7

Figure 4.10: A binary tree but not complete

4.4.1.2 The order property

The order property requires, for every node in the structure, the

value of both its child nodes must be smaller (or bigger) than the
value at the current node.

Example 4.10 Figure 4.11 shows a heap with the minimum value at

the root. The value at each node is smaller than either child.

4

8

5 6

3

7

2

1

1 2 3 4 5 6 7 8

1 6 5 14 12 8 1510

8101214

15

6 5

1

A

Figure 4.11: A heap with aMinKey root

or

A heap with the maximum value at the root, and the value at each

node is smaller than either child (Figure 4.12).

4 5 6

3

7

2

1

1 2 3 4 5 6 7 8

12

A 115 10

15

1

10

12 5 6

5 6

8

8

14

14 8

Figure 4.12: A heap with aMaxKey root

Note the complete binary tree in Figure 4.9 is not a heap because it

does not have the order property required.

4.4.2 Basic heap operations

In this implementation, the numbers in our set are placed at the

nodes of a binary tree in such a way that the numbers stored at the

children of any node are smaller (or larger) than the number stored
at that node (order property). Moreover, the tree is a left complete

binary tree, i.e. a binary tree that is completely filled except possibly

86

Priority queues and heaps

the bottom level which is filled from left to right (structural

property).

Typical operations (Binary heap):

buildHeap() construct the initial heap from a list of items (keys) in
arbitrary order (Figure 4.16).

deleteMin() remove the smallest element from the root and
maintain the heap (Figure 4.13).

deleteMax() remove the largest element from the root and restore

the heap (Figure 4.14).

insertOne(x) add one element x to the heap and maintain the heap

(Figure 4.15).

4.4.2.1 Deletion

Consider the operation of removing the smallest element from this

structure (and reconstituting the tree).

The smallest (or largest) element will always be at the root node.

Example 4.11 Figure 4.13 shows how the order property is

maintained after (a) the smallest element ‘1’ is removed: (b) The root

position becomes available. (c)(d) Datum 15 is moved from the leaf to
the root. (e) Datum 15 is swapped with its smaller (the right) child 5,

and then (e) swapped with its smaller (the left) child 8. (f) Datum 15

is finally settled as a leaf and becomes the left child of node 8.

1
remove

(b) (c)(a)

(d) (e) (f)

15

14

56

12

15

14

56

12

15

14 12

56

14 12

56

15

14 12

6

5

15

14 12

6

5

8

8 10 8 10 8 10

8 10 8 10 15 10

Figure 4.13: DeleteMin

A similar restoring process takes place for a max-heap.

Example 4.12 Consider the max-heap in Figure 4.12. Figure 4.14
shows how, after the maximum root element 15 is deleted, the order

property is restored by an insertion and two swaps on the

corresponding array (the heap).

1. Remove the root element 15, and move element 1, the rightmost

leaf at the bottom level to the root. (Figure 4.14(a))

2. Restore the order property by repeatedly swapping element 1 with

its larger child element 14, e.g. first swap 1 at the root with the

87

CIS226 Software engineering, algorithm design and analysis (vol.2)

left child 14, and then swap 1 with its right child 12, until the

order property is restored. (Figure 4.14(b)).

4 5 6

3

7

2

1

1 2 3 4 5 6 7 8

12

A 10

1

10

12 5 6

5 6

8

8

14

14 8

15

1

4 5 6

3

7

2

1

1 2 3 4 5 6 7 8

12

A 10

10

12 5 6

5 6

8

8

14

14 8

15

1

1

(a)

4 5 6

3

7

2

1

1 2 3 4 5 6 7 8

12

A 10

10

12 5 6

5 6

8

8

8

1

14

14 1

ji

4 5 6

3

7

2

1

1 2 3 4 5 6 7 8

A 10

10

5 6

5 6

8

8

8

14

14

12

1

12 1

i j

(b)

Figure 4.14: addRoot-1,2

This process can be described in Algorithm 4.8 and 4.9.

Algorithm 4.8 addRoot(index i, n)

1: j ← 2 ∗ i
2: if j ≤ n then
3: if j < n and A[j] < A[j + 1] then
4: j ← j + 1
5: if A[i] < A[j] then
6: tmp← A[i]
7: A[i]← A[j]
8: A[j]← tmp
9: addRoot(j, n)

10: end if
11: end if
12: end if

Algorithm 4.9 buildHeap()

1: for k ← (length(A) div 2, k ≤ 1, k← k + 1 do
2: addRoot(k,length(A))

3: end for

Thus removing the minimum element takes a time proportional to
the height of the tree in the worst case, i.e. O(logn) time, where n is

the number of elements in the heap.

4.4.2.2 Insertion

Now consider the operation of adding an element to a heap (and

reconstituting a binary heap).

Since heaps are complete trees, a new node can easily be added to

the first available location from the left at the bottom level. We then

88

Priority queues and heaps

check the order property and adjust internal nodes. This is done in a

‘bottom-up’ fashion. We first compare the value of the new node
with its father. If it satisfied the order property, the addition process

is completed. If not, we swap it with its father. The checking process

is then repeated on the new node on the level above. This process
continues until the order property is satisfied (or the new element

reaches the root position).

Example 4.13 Figure 4.15 shows (a) a binary heap and how the
order property is maintained after (b) a new element 2 is inserted at

the bottom level of the heap, where the left most available location. (c)
2 is to be swapped with its father 5 since 2 is smaller than 5, (d) 2 is to

be swapped with its father 4 because 2 is smaller than 4. (e) The

process ends because 2 is at the root position and the order property is
now restored.

(a)

4 4

(b)

add 2

4

44

(c) (d) (e)

14

56

12 8 14

56

12 8

14

6

12 8 5

2

14

6

12 8

2

514

56

12 8 2

Figure 4.15: InsertOne

Thus adding an element also takes a time proportional to the height
of the tree in the worst case, i.e. O(logn) time, where n is the

number of elements in the heap.

Having studied how to add one element to a binary heap, we can

construct a binary maximum-heap for a given list using the insertion

method repeatedly. We look at this from Example 4.14.

Example 4.14 Demonstrate, step by step, how to construct a

max-heap for the list of integers A[1..8] = (10, 8, 14, 15, 12, 5, 6, 1).
Assume the heap is empty initially.

10

10 10

10 10 10

10 10 10

(a)

10

(b)

10

(c)i (c)ii (d)i (d)ii (d)iii

(e) (f) (g) (h)

8

14

15

8 8 14 8

14

15

8

14 14

8

15

12

15

14

8 12

15

14

8 5 12

15

14

8 5 6

1

12

15

14

8 5 6

Figure 4.16: Construct a binary max-heap

Figure 4.16 shows the construction process from the initial state.

Starting from the root, a new element is inserted, one by one, to the
left most available position at the bottom level of the tree. (a) The

first element 10 is the root, (b) 8 is added as its left child, (c)i 14 is

89

CIS226 Software engineering, algorithm design and analysis (vol.2)

added and ii 10 and 14 are swapped to restore the order property,

(d)i 15 is added, ii 15 is swapped with its father 8, iii 15 is swapped
with its father 14 to restore the order property, (e)—(h) elements

12, 5, 6, and 1 are added respectively into the heap without a

position swap.

This process is implemented on an array, where the new element x
is marked by a box, e.g. x and two swap elements x and y are
underlined, e.g. x · · · y.

10 8 14 15 12 5 6 1

10 8 14 15 12 5 6 1

10 8 14 15 12 5 6 1

10 8 14 15 12 5 6 1

14 8 10 15 12 5 6 1

14 8 10 15 12 5 6 1

14 15 10 8 12 5 6 1

15 14 10 8 12 5 6 1

15 14 10 8 12 5 6 1

15 14 10 8 12 5 6 1

15 14 10 8 12 5 6 1

Applications

A heap is a very useful data structure and can be used in many
useful applications. For example, heap sort is one of the efficient

sorting algorithms using heaps (see Section 6.13).

We look at a simple example.

Example 4.15 Sort a list of integers A[1..8] = (10, 8, 14, 15, 12, 5, 6, 1)
using a max-heap.

The list of n = 8 unsorted integers is first converted to a max-heap, i.e.

a partially sorted, left complete binary tree with the largest integer at

the root as in Figure 4.12. The first position A[1] is the root element.

During the sorting process, the list is divided into two sections: A[1..k],
the heap and A[k + 1..n], the sorted part (in shade in
Figures 4.17–4.19). We shall each time remove the root element at

A[1], the largest integer from the current heap and insert it to location

k + 1, and k ← k − 1.

This is followed by a restoring of the order property of the heap. When

the root r is removed, we move the larger one of its children to the root
position, and similarly, the larger one of the child’s children to its

position. The process repeats until the order property is restored.

The following ordered steps show the sorting process:

1. Figure 4.17(a).

2. Figure 4.17(b)

3. Figure 4.18(a).

4. Figure 4.18(b).

5. Figure 4.19(a).

90

Priority queues and heaps

4 5 6

3

7

2

1

1 2 3 4 5 6 7 8

12

A 10

1

10

12 5 6

5 6

8

8

14

14 8

15

1

4 5 6

3

7

2

1

1 2 3 4 5 6 7 8

12

A 10

10

12 5 6

5 6

8

8

14

14 8

1

1 15

(a)

4 5 6

3

7

2

1

1 2 3 4 5 6 7 8

A

8

1514 8 12 6 1 510

14

8 12

6 1 510

4 5 6

3

7

2

1

1 2 3 4 5 6 7 8

A

8

8 12 6 1 10

8 12

6 1 10

5

14

5 14 15

(b)

Figure 4.17: steps 1–2: addRoot-1,2

4 5 6

3

7

2

1

1 2 3 4 5 6 7 8

A

8

8 6 1

8

6 1

14 1512 10 5

10

12

5

4 5 6

3

7

2

1

1 2 3 4 5 6 7 8

A

8

8 6 1

8

6 1

14 1510

10

12

5

5 12

(a)

4 5 6

3

7

2

1

1 2 3 4 5 6 7 8

A

8

8 6 1

8

6 1

14 1512510

10

5

4 5 6

32

1

1 2 3 4 5 6 7 8

A

8

8 6

8

6 1

14 15125

10

5

7

1 10

(b)

Figure 4.18: steps 3–4: addRoot-3,4

6. Figure 4.19(b).

7. Figure 4.19(c).

The above steps can be summarised in Algorithm 4.10.

Algorithm 4.10 heapSort(heapArray A)

1: buildHeap {Construct a heap}
2: for k ← length(A) down to 2 do
3: tmp← A[k], A[k]← A[1], A[1]← tmp {swap A[1] with A[k]}
4: addRoot(1, k − 1) {Restore the heap properties for the short-

ened array}
5: end for

91

CIS226 Software engineering, algorithm design and analysis (vol.2)

8

15

4 5 6

32

1

1 2 3 4 5 6 7

A

8

14125

5

10

7

8 6 1

8

6

1

8

15

4 5 6

32

1

1 2 3 4 5 6 7

A

8

14125

5

10

7

6

8

6

1

1 8

(a)

8

15

4 5 6

32

1

1 2 3 4 5 6 7

A

8

14125

5

10

7

8

6

1

6 1

8

15

4 5 6

32

1

1 2 3 4 5 6 7

A

8

1412

5

10

7

8

6

1

15 6

(b)

8

15

4 5 6

32

1

1 2 3 4 5 6 7

A

8

141210

7

8

1

6

5

5 1

4 5 6

32

1

8

7

1

5

8

15

1 2 3 4 5 6 7

A 141210861 5

8

15

1 2 3 4 5 6 7

A 141210861 5

(c)

Figure 4.19: steps 5–7: addRoot-5,6,7

Activity 4.4

HEAPS

1. What is the difference between a binary tree and a tree in which

each node has at most two children?

2. What is the approximate number of comparisons of keys
required to find a target in a complete binary tree of size n?

3. What is a heap?

4. What is a priority queue?

5. Demonstrate, step by step, how to construct a max-heap for the

list of integers A[1..8] = (12, 8, 15, 5, 6, 14, 1, 10) (in the given

order), following Example 4.14.

6. Demonstrate, step by step, how to sort a list of integers (2, 4, 1,

5, 6, 7) using a max-heap, following Example 4.15.

4.5 Graphs

Many relationships in the real world are not hierarchical but

bi-directional or multi-directional. In this section, we study another
abstract data structure called a graph, which represents such

bi-directional relationships.

Problems as diverse as minimising the costs of communications

networks, generating efficient assembly code for evaluating

expressions, measuring the reliability of telephone networks, and
many others, can be modeled naturally with graphs.

We first look at a real problem:

Suppose that we want to connect computers in four buildings

(Figure 4.20) by cable. The question is: Which pairs of buildings
should be directly connected so that the total installation cost would

be minimum?

92

Graphs

Library

25 St James

Computing Services Whitehead Building

c w

l m

Figure 4.20: Four buildings

Naturally, the four buildings could be represented by four vertices

with labels c, w, l, m (Figure 4.21). We then mark the cost between

each pair of vertices by lines between vertices.

30K

20K

10K5K

9K

7K

30K

20K

10K5K

9K

7K

C W C W

MLML

Figure 4.21: A graph

We look at all the possible connections (Figure 4.22):

9

5
10

9

10

105

10 5
10

10

30

9

9

30 30

30

3030

30

30

5

5 10 5 10 5

5

20
20

20

20

7
7

7

7

20

20
207

20

7

77

9

9 9

9

c w

ml

Figure 4.22: Possible connections

We could then make a decision to install the cable for the route that
consists of direct connections (c,l), (c,m) and (c,w). The total cost

would be: 5 + 7 + 9 = 21K.

Definitions

A Graph G = (V, E) is a finite set of points (vertices) which are
interconnected by a finite set of lines (edges) in a space, where V is

a set of vertices and E is a set of edges.

93

CIS226 Software engineering, algorithm design and analysis (vol.2)

In our example (Figure 4.21), V = {c, l, w, m} and

E = {(c, l), (c, m), (c, w)}. Normally, the set of vertices are
represented by labels of numbers and the edges by letters.

There are two main classes of graphs: graphs and directed graphs.
For graphs, the edge set consists of a non-ordered pair of vertices,

e.g. (1,2)=(2,1), (2,3)=(3,2) etc. For directed graphs digraphs, the

edge set consists of an ordered pair of vertices, e.g. (1,2) 6=(2,1),
(3,2) 6=(2,3), etc. (Figure 4.23).

e1

e2

e3

e4e5

e1

e2

e3

e4e5

1 2 1 2

3434

graph digraph

Figure 4.23: A graph and a digraph

As for trees, some terms and concepts are introduced for discussions

on graphs:

Typical operations (Graphs):

order The number of vertices in a graph is called the order of the

graph.

size The number of the edges in a graph is called the size of the

graph.

path A path is a sequence of vertices v1, v2, . . . , vk, where k ≥ 1 is a

path if (vi, vi+1) ∈ V for 1 ≤ i ≤ k − 1.

length of a path The length of a path is the number of edges on the
path, which equals k − 1, where k is the number of vertices on

the path.

simple path A simple path is a path such that all vertices are

distinct, except possibly the first and last vertices. No vertex on

the path appears more than once.

self-loop A self-loop is a path from a vertex v to itself (v, v).

cycle A path v1, v2, . . . , vk is a cycle if v1 = vk.

spanning tree A spanning tree of a connected graph is a subgraph
and tree that contains all the vertices of the graph.

minimum spanning tree A minimum spanning tree of a weighted
graph is a spanning tree of minimum total weight.

connected graph A graph is connected if there is a path between

any two vertices of the graph.

complete graph A graph is complete if there is a path between

every two vertices of the graph.

labelled graph A graph is labelled if every vertex has a fixed

identity.

unlabelled graph A graph is unlabelled if there is no fixed identity
for each vertex.

weighted graph A weighted graph is a graph in which every edge

is associated with a real value as its weight (or cost).

simple graph A simple graph is a graph that contains no self-loop

nor parallel edges.

94

Graphs

Example 4.16 Figure 4.24(a) shows a simple graph while
Figure 4.24(b) shows a non-simple graph with a parallel edge and

self-loop. They are both disconnected.

4

1 2

3
(a) simple

4

1 2

3

(b) non-simple

Figure 4.24: A simple and non-simple graph

Example 4.17 Figure 4.25(a) shows a connected graph.

Figure 4.25(b) shows a disconnected graph with an isolated vertex.
They are both unweighted.

1 2

34

5 6

78

(a) A connected graph

1 2

34

5 6

78

(b) A disconnected graph

Figure 4.25: A connected and disconnected graph

Example 4.18 Figure 4.26(a) shows two labelled graphs and they are

different, but the two unlabelled graphs in Figure 4.26(b) are the

same. The graphs are connected and unweighted in both figures.

1 2

34

1 2

34

(a) Two different labelled graphs (b) Two identical unlabelled
graphs

Figure 4.26: Labelled and unlabelled graphs

We consider the simple graph in this course unit unless stated
otherwise.

Representation of graphs

We discuss three commonly used data structures to represent
graphs. They are adjacency matrices, incidence matrices and

adjacency lists. As we shall see later, the use of different data

95

CIS226 Software engineering, algorithm design and analysis (vol.2)

structures can sometimes improve (or worsen) the efficiency of

algorithms.

1. Adjacency matrices

A graph G = (V, E) can be represented by a 0-1 matrix showing

the relationship between each pair of vertices of the graph. We

assign 1 or 0 depending on whether the two vertices are
connected by an edge or not.

Given a graph G = (V, E), let n be the number of vertices. The
adjacency matrix of the graph is a n× n matrix.

A =

a1,1 a1,2 · · · a1,n
...

...
...

...
an,1 an,2 · · · an,n

where

ai,j =

{
1 if (i, j) ∈ E
0 otherwise

e1 e3e2 e3

l m l m

wcwc

e2

a graph a digraph

e1

Figure 4.27: A graph and digraph

Example 4.19 The Adjacency matrix for the graph in Figure 4.27
is,

c w m l

c 0 0 0 1

w 0 0 1 1
m 0 1 0 0

l 1 1 0 0

A =

0 0 0 1
0 0 1 1
0 1 0 0
1 1 0 0

and for the digraph in Figure 4.27 is,

c w m l

c 0 0 0 1
w 0 0 1 1

m 0 0 0 0

l 0 0 0 0

A =

0 0 0 1
0 0 1 1
0 0 0 0
0 0 0 0

Note The Adjacency matrix for an undirected graph is always
symmetric if row and column nodes are listed in the same order.

2. Incidence matrices

An incidence matrix represents a graph G by showing the

relationship between every vertex and every edge. We assign 1

or 0 depending on whether a vertex is incident to the edge.

Let n be the number of vertices of the graph, and m be the
number of edges. The incidence matrix is an n×m matrix:

B =

b1,1 b1,2 · · · b1,m
...

...
...

...
bn,1 bn,2 · · · bn,m

96

Graphs

where for a graph

bi,j =

{
1 if vertex i and edge j are incident
0 otherwise

For a digraph,

bi,j =

−1 if edge j leaves vertex i
1 if edge j enters vertex i
0 otherwise

Example 4.20 The incidence matrix for the graph in Figure 4.27

is

e1 e2 e3
c 1 0 0

w 0 1 1
m 0 0 1

l 1 1 0

B =

1 0 0
0 1 1
0 0 1
1 1 0

and for the digraph in Figure 4.27 is,

e1 e2 e3
c −1 0 0
w 0 −1 −1
m 0 0 1

l 1 1 0

B =

−1 0 0
0 −1 −1
0 0 1
1 1 0

Note Incidence matrices are not suitable for any digraph with a
self-loop (‘loop’ for short).

Figure 4.28: A digraph with a self-loop

3. Adjacency lists

In an adjacency list representation, a graph G = (V, E) is

represented by an array of lists, one for each vertex in V . For
each vertex u in V , the list contains all the vertices adjacent to u
in an arbitrary order, usually in increasing or decreasing order

for convenience.

Why an adjacency list?

It is space efficient for sparse graphs where the number of edges
is much less than the squared power of the number of vertices.

Example 4.21 Suppose that we need to store the digraph with

few edges in Figure 4.27 . Suggest a data structure for the digraph.

Solution An adjacency list can save space for a sparse graph
(Figure 4.29).

Implementations

Like other abstract data structures, the best implementation of a
graph, here by an array of lists, or by an array, depends on the given

problem. It is conventional to label the vertices of a graph by

97

CIS226 Software engineering, algorithm design and analysis (vol.2)

1 2 3 4

1

2

3

4

1

2

3

4

0 0 0 0

0000

0 0 1 1

1000

c

w

m

l

l

m l

Figure 4.29: An adjacency list

numerals. For our example (see the digraph in Figure 4.27), the

labels for c, w, m, l can be replaced by 1, 2, 3, 4 respectively. Hence
the data structure may be represented as follows:

Example 4.22 See Figure 4.30.

After re-label vertices

1

3

2

4

5

6

7

1

3

2

4

5

6

7

c 5

6

m

l

l

m

l

7 3 7

4

6w

5

4

Figure 4.30: Implementation

Graph algorithms

For many important problems about graphs, no efficient algorithms

have been found. A lot of effort has been expended on seeking
efficient algorithms for graph problems. Interesting algorithms have

been found for some graph problems but a comprehensive account

of these problems would fill volumes. We will look at a few of these
problems here.

One important class of graph problems is about graph traversal. As
with binary trees, we would like to investigate all the vertices in a

graph in some systematic order. We also want to avoid cycles during

the traversal. With many possible orders for visiting the vertices of a
graph, two traversals are particularly important, namely Depth-first

traversal and Breadth-first traversal. They are also called Depth-first

98

Graphs

search and Breadth-first search.

See Section 5.3.3 for the algorithms.

Activity 4.5

GRAPHS

1. Consider the adjacency matrix of a graph below:

A =

0 1 1 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0
1 0 1 1 0

(a) Draw the graph

(b) Write the adjacency list for the graph

(c) Discuss the suitability of using an adjacency matrix and the

adjacency list for the graph. Justify your answer.

2. Using the adjacency matrix approach, write a program to store a

simple graph and display the graph.

Example 4.23
Store and Display

a simple graph

1. Store a graph

2. Display a graph

0. Quit

Please input your choice (0-2) >

Hint An easy approach may be:

(a) define a data structure for the graph

(b) decide a means to input the graph, for example, you may

i. type the entries of the adjacency matrix on the keyboard

ii. read the entries of the adjacency matrix from a text file

iii. generate a random adjacency matrix by a program.3 3Use a random generator to generate

a 0 or 1 uniformly at random for

each entry of the matrix.
(c) write the main program or method with interfaces of the

sub-methods or procedures

(d) develop each part of the program.

3. Implement the graphs in question 1 using the adjacency list

approach.

99

