
4

Section C (60 Points)

1a. Reference counter, and Mark & Sweep algorithms are used in the

management of heap memory, explain them.

b. How does functional side effect influence referential transparency?

c. Explain the concept of operator overloading and show how * is

overloaded in both C and C++.

d. What is the protocol of a subprogram?

1a. Reference counter maintains a counter in every cell that store the

number of pointers currently pointing at the cell.

Mark & Sweep: Every heap cell has a status bit which is initially set as

garbage. Subsequently, all pointers are traced into heap, and

reachable cells are marked as not garbage. Finally, all garbage cells

are returned to the list of available cells.

b. Non-functional languages that utilize variables are open to functional

side-effect depending on implementation. When a function execution

permits the alteration of variable not provided into it as a parameter,

there is an accompanying chance of similar programs providing

different outputs. This effect is the lack of referential transparency.

c. The use of an operator for more than one purpose is called operator

overloading. * can be referred to as the multiplication operator, as well

as the pointer operator in C and C++. Thus, providing possible compiler

confusion for an instance when the left-hand side operand is missing in

a multiplication expression.

d. The protocol is a subprogram’s parameter profile (number, order, and

types of its parameters) and, if it is a function, its return type.

5

2a. Provide the next 6 configurations of the LR parser over input string

id+id*id$.

b. What happens if a parse falls on the circled cell (11, id)?

a.

0 id+id*id$ Shift 5

0id5 +id*id$ Reduce 6 (Goto [0,F])

0F3 +id*id$ Reduce 4 (Goto[0,T])

0T2 +id*id$ Reduce 2 (Goto[0,E])

0E1 +id*id$ Shift 6

0E1+6 id*id$ Shift 5

b. A parse error.

1. E -> E + T

2. E -> T

3. T -> T * F

4. T -> F

5. F -> (E)

6. F -> id

6

3. Consider the following simple program.

a. In order to obtain the value of y in function c, how many dynamic

links must be traversed, assuming the language supports shallow

access? What is the output of c?

function a receives param 6 into var y memory location,

links= 2 y=6

b. In order to obtain the value of y in function c, how many static links

must be traversed, assuming the language supports deep access? What

is the output of c?

links: 1

y=33

7

4. Consider the following program in a statically scoped language, where

parameters are passed by value;

Show the system stack content for the execution of the said program,

including the activation record instance for subprogram calls. Do not

forget to include all links, stack top marker, and an arrow to show the

EP.

Top

h

local z=4

dynamic

EP static

return add

f

param y

dynamic

static

return add

local w=3

main local m=7

main

{

{

{

8

5. Consider the following function composition in Haskell.

member [] b = False

member(a:x) b = (a == b)|| member x b

squares = [n * n | n ← [0..10 `div` 2]]

After the execution of member squares 9;

a. What are the elements of squares

[0 1 4 9 16 25]

b. How many times does member x b evaluate?

[1 4 9 16 25] ---->first

 [4 9 16 25] ---->second

[9 16 25] ---->third

It evaluates thrice!

c. What is the final value of b

True

9

6. Consider the following program in C syntax;

For each of the following parameter-passing methods, what are the

values

of the list array after execution?

a. Passed by value

{ 4,3}

b. Passed by reference

{ 8,6}

c. Passed by value-result

{ 8,6}

