
Chapter 2: C Fundamentals

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

1

Chapter 2

C Fundamentals

Chapter 2: C Fundamentals

Program: Printing a Pun
#include <stdio.h>

int main(void)
{
printf("To C, or not to C: that is the question.\n");
return 0;

}

• This program might be stored in a file named pun.c.
• The file name doesn’t matter, but the .c extension is

often required.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

2

Chapter 2: C Fundamentals

Compiling and Linking
• Before a program can be executed, three steps are

usually necessary:
– Preprocessing. The preprocessor obeys commands that

begin with # (known as directives)
– Compiling. A compiler translates then translates the

program into machine instructions (object code).
– Linking. A linker combines the object code produced

by the compiler with any additional code needed to
yield a complete executable program.

• The preprocessor is usually integrated with the
compiler.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

3

Chapter 2: C Fundamentals

Integrated Development Environments
• An integrated development environment (IDE) is

a software package that makes it possible to edit,
compile, link, execute, and debug a program
without leaving the environment.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

4

Chapter 2: C Fundamentals

The General Form of a Simple Program
• Simple C programs have the form

directives

int main(void)
{

statements
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

5

Chapter 2: C Fundamentals

The General Form of a Simple Program
• C uses { and } in much the same way that some

other languages use words like begin and end.
• Even the simplest C programs rely on three key

language features:
– Directives
– Functions
– Statements

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

6

Chapter 2: C Fundamentals

Directives
• Before a C program is compiled, it is first edited

by a preprocessor.
• Commands intended for the preprocessor are

called directives.
• Example:
#include <stdio.h>

• <stdio.h> is a header containing information
about C’s standard I/O library.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

7

Chapter 2: C Fundamentals

Directives
• Directives always begin with a # character.
• By default, directives are one line long; there’s no

semicolon or other special marker at the end.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

8

Chapter 2: C Fundamentals

Functions
• A function is a series of statements that have been

grouped together and given a name.
• Library functions are provided as part of the C

implementation.
• A function that computes a value uses a return

statement to specify what value it “returns”:
return x + 1;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

9

Chapter 2: C Fundamentals

The main Function
• The main function is mandatory.
• main is special: it gets called automatically when

the program is executed.
• main returns a status code; the value 0 indicates

normal program termination.
• If there’s no return statement at the end of the
main function, many compilers will produce a
warning message.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

10

Chapter 2: C Fundamentals

Statements
• A statement is a command to be executed when

the program runs.
• pun.c uses only two kinds of statements. One is

the return statement; the other is the function
call.

• Asking a function to perform its assigned task is
known as calling the function.

• pun.c calls printf to display a string:
printf("To C, or not to C: that is the question.\n");

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

11

Chapter 2: C Fundamentals

Statements
• C requires that each statement end with a

semicolon.
– There’s one exception: the compound statement.

• Directives are normally one line long, and they
don’t end with a semicolon.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

12

Chapter 2: C Fundamentals

Printing Strings
• When the printf function displays a string

literal—characters enclosed in double quotation
marks—it doesn’t show the quotation marks.

• printf doesn’t automatically advance to the
next output line when it finishes printing.

• To make printf advance one line, include \n
(the new-line character) in the string to be
printed.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

13

Chapter 2: C Fundamentals

Printing Strings
• The statement

printf("To C, or not to C: that is the question.\n");

could be replaced by two calls of printf:
printf("To C, or not to C: ");
printf("that is the question.\n");

• The new-line character can appear more than once in a
string literal:
printf("Brevity is the soul of wit.\n --Shakespeare\n");

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

14

Chapter 2: C Fundamentals

Comments
• A comment begins with /* and end with */.
/* This is a comment */

• Comments may appear almost anywhere in a
program, either on separate lines or on the same
lines as other program text.

• Comments may extend over more than one line.
/* Name: pun.c

Purpose: Prints a bad pun.
Author: K. N. King */

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

15

Chapter 2: C Fundamentals

Comments
• Warning: Forgetting to terminate a comment may cause

the compiler to ignore part of your program:
printf("My "); /* forgot to close this comment...
printf("cat ");
printf("has "); /* so it ends here */
printf("fleas");

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

16

Chapter 2: C Fundamentals

Comments in C99
• In C99, comments can also be written in the

following way:
// This is a comment

• This style of comment ends automatically at the
end of a line.

• Advantages of // comments:
– Safer: there’s no chance that an unterminated comment

will accidentally consume part of a program.
– Multiline comments stand out better.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

17

Chapter 2: C Fundamentals

Variables and Assignment
• Most programs need to a way to store data

temporarily during program execution.
• These storage locations are called variables.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

18

Chapter 2: C Fundamentals

Types
• Every variable must have a type.
• C has a wide variety of types, including int and
float.

• A variable of type int (short for integer) can
store a whole number such as 0, 1, 392, or –2553.
– The largest int value is typically 2,147,483,647 but

can be as small as 32,767.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

19

Chapter 2: C Fundamentals

Types
• A variable of type float (short for floating-

point) can store much larger numbers than an int
variable.

• Also, a float variable can store numbers with
digits after the decimal point, like 379.125.

• Drawbacks of float variables:
– Slower arithmetic
– Approximate nature of float values

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

20

Chapter 2: C Fundamentals

Declarations
• Variables must be declared before they are used.
• Variables can be declared one at a time:
int height;
float profit;

• Alternatively, several can be declared at the same
time:
int height, length, width, volume;
float profit, loss;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

21

Chapter 2: C Fundamentals

Declarations
• When main contains declarations, these must

precede statements:
int main(void)
{

declarations
statements

}

• In C99, declarations don’t have to come before
statements.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

22

Chapter 2: C Fundamentals

Assignment
• A variable can be given a value by means of

assignment:
height = 8;

The number 8 is said to be a constant.
• Before a variable can be assigned a value—or

used in any other way—it must first be declared.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

23

Chapter 2: C Fundamentals

Assignment
• A constant assigned to a float variable usually

contains a decimal point:
profit = 2150.48;

• It’s best to append the letter f to a floating-point
constant if it is assigned to a float variable:
profit = 2150.48f;

Failing to include the f may cause a warning from
the compiler.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

24

Chapter 2: C Fundamentals

Assignment
• An int variable is normally assigned a value of

type int, and a float variable is normally
assigned a value of type float.

• Mixing types (such as assigning an int value to a
float variable or assigning a float value to an
int variable) is possible but not always safe.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

25

Chapter 2: C Fundamentals

Assignment
• Once a variable has been assigned a value, it can

be used to help compute the value of another
variable:
height = 8;
length = 12;
width = 10;
volume = height * length * width;

/* volume is now 960 */

• The right side of an assignment can be a formula
(or expression, in C terminology) involving
constants, variables, and operators.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

26

Chapter 2: C Fundamentals

Printing the Value of a Variable
• printf can be used to display the current value

of a variable.
• To write the message
Height: h
where h is the current value of the height
variable, we’d use the following call of printf:
printf("Height: %d\n", height);

• %d is a placeholder indicating where the value of
height is to be filled in.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

27

Chapter 2: C Fundamentals

Printing the Value of a Variable
• %d works only for int variables; to print a
float variable, use %f instead.

• By default, %f displays a number with six digits
after the decimal point.

• To force %f to display p digits after the decimal
point, put .p between % and f.

• To print the line
Profit: $2150.48

use the following call of printf:
printf("Profit: $%.2f\n", profit);

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

28

Chapter 2: C Fundamentals

Printing the Value of a Variable
• There’s no limit to the number of variables that can

be printed by a single call of printf:
printf("Height: %d Length: %d\n", height, length);

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

29

Chapter 2: C Fundamentals

Initialization
• Some variables are automatically set to zero when

a program begins to execute, but most are not.
• A variable that doesn’t have a default value and

hasn’t yet been assigned a value by the program is
said to be uninitialized.

• Attempting to access the value of an uninitialized
variable may yield an unpredictable result.

• With some compilers, worse behavior—even a
program crash—may occur.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

30

Chapter 2: C Fundamentals

Initialization
• The initial value of a variable may be included in

its declaration:
int height = 8;

The value 8 is said to be an initializer.
• Any number of variables can be initialized in the

same declaration:
int height = 8, length = 12, width = 10;

• Each variable requires its own initializer.
int height, length, width = 10;

/* initializes only width */

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

31

Chapter 2: C Fundamentals

Printing Expressions
• printf can display the value of any numeric

expression.
• The statements
volume = height * length * width;
printf("%d\n", volume);

could be replaced by
printf("%d\n", height * length * width);

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

32

Chapter 2: C Fundamentals

Reading Input
• scanf is the C library’s counterpart to printf.
• scanf requires a format string to specify the

appearance of the input data.
• Example of using scanf to read an int value:
scanf("%d", &i);
/* reads an integer; stores into i */

• The & symbol is usually (but not always) required
when using scanf.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

33

Chapter 2: C Fundamentals

Reading Input
• Reading a float value requires a slightly

different call of scanf:
scanf("%f", &x);

• "%f" tells scanf to look for an input value in
float format (the number may contain a decimal
point, but doesn’t have to).

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

34

Chapter 2: C Fundamentals

Defining Names for Constants
• Using a feature known as macro definition, we

can name this constant:
#define INCHES_PER_POUND 166

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

35

Chapter 2: C Fundamentals

Defining Names for Constants
• When a program is compiled, the preprocessor replaces

each macro by the value that it represents.
• During preprocessing, the statement

weight = (volume + INCHES_PER_POUND - 1) / INCHES_PER_POUND;

will become
weight = (volume + 166 - 1) / 166;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

36

Chapter 2: C Fundamentals

Defining Names for Constants
• The value of a macro can be an expression:

#define RECIPROCAL_OF_PI (1.0f / 3.14159f)

• If it contains operators, the expression should be
enclosed in parentheses.

• Using only upper-case letters in macro names is a
common convention.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

37

Chapter 2: C Fundamentals

Program: Converting from
Fahrenheit to Celsius

• The celsius.c program prompts the user to
enter a Fahrenheit temperature; it then prints the
equivalent Celsius temperature.

• Sample program output:
Enter Fahrenheit temperature: 212
Celsius equivalent: 100.0

• The program will allow temperatures that aren’t
integers.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

38

Chapter 2: C Fundamentals

celsius.c
/* Converts a Fahrenheit temperature to Celsius */

#include <stdio.h>

#define FREEZING_PT 32.0f
#define SCALE_FACTOR (5.0f / 9.0f)

int main(void)
{
float fahrenheit, celsius;

printf("Enter Fahrenheit temperature: ");
scanf("%f", &fahrenheit);

celsius = (fahrenheit - FREEZING_PT) * SCALE_FACTOR;

printf("Celsius equivalent: %.1f\n", celsius);

return 0;
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

39

Chapter 2: C Fundamentals

Program: Converting from
Fahrenheit to Celsius

• Defining SCALE_FACTOR to be (5.0f / 9.0f)
instead of (5 / 9) is important.

• Note the use of %.1f to display celsius with
just one digit after the decimal point.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

40

Chapter 2: C Fundamentals

Identifiers
• Names for variables, functions, macros, and other

entities are called identifiers.
• An identifier may contain letters, digits, and

underscores, but must begin with a letter or
underscore:
times10 get_next_char _done

It’s usually best to avoid identifiers that begin with
an underscore.

• Examples of illegal identifiers:
10times get-next-char

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

41

Chapter 2: C Fundamentals

Identifiers
• C is case-sensitive: it distinguishes between

upper-case and lower-case letters in identifiers.
• For example, the following identifiers are all

different:
job joB jOb jOB Job JoB JOb JOB

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

42

Chapter 2: C Fundamentals

Identifiers
• Many programmers use only lower-case letters in

identifiers (other than macros), with underscores
inserted for legibility:
symbol_table current_page name_and_address

• Other programmers use an upper-case letter to
begin each word within an identifier:
symbolTable currentPage nameAndAddress

• C places no limit on the maximum length of an
identifier.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

43

Chapter 2: C Fundamentals

Keywords
• The following keywords can’t be used as

identifiers:
auto enum restrict* unsigned
break extern return void
case float short volatile
char for signed while
const goto sizeof _Bool*
continue if static _Complex*
default inline* struct _Imaginary*
do int switch
double long typedef
else register union

*C99 only

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

44

Chapter 2: C Fundamentals

Layout of a C Program
• The amount of space between tokens usually isn’t critical.
• At one extreme, tokens can be crammed together with no

space between them, except where this would cause two
tokens to merge:

/* Converts a Fahrenheit temperature to Celsius */
#include <stdio.h>
#define FREEZING_PT 32.0f
#define SCALE_FACTOR (5.0f/9.0f)
int main(void){float fahrenheit,celsius;printf(
"Enter Fahrenheit temperature: ");scanf("%f", &fahrenheit);
celsius=(fahrenheit-FREEZING_PT)*SCALE_FACTOR;
printf("Celsius equivalent: %.1f\n", celsius);return 0;}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

45

Chapter 2: C Fundamentals

Layout of a C Program
• The whole program can’t be put on one line,

because each preprocessing directive requires a
separate line.

• Compressing programs in this fashion isn’t a good
idea.

• In fact, adding spaces and blank lines to a program
can make it easier to read and understand.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

46

Chapter 2: C Fundamentals

Layout of a C Program
• C allows any amount of space—blanks, tabs, and

new-line characters—between tokens.
• Consequences for program layout:

– Statements can be divided over any number of lines.
– Space between tokens (such as before and after each

operator, and after each comma) makes it easier for the
eye to separate them.

– Indentation can make nesting easier to spot.
– Blank lines can divide a program into logical units.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

47

Chapter 2: C Fundamentals

Layout of a C Program
• Although extra spaces can be added between tokens,

it’s not possible to add space within a token without
changing the meaning of the program or causing an
error.

• Writing
fl oat fahrenheit, celsius; /*** WRONG ***/

or
fl
oat fahrenheit, celsius; /*** WRONG ***/

produces an error when the program is compiled.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

48

Chapter 2: C Fundamentals

Layout of a C Program
• Putting a space inside a string literal is allowed,

although it changes the meaning of the string.
• Putting a new-line character in a string (splitting

the string over two lines) is illegal:
printf("To C, or not to C:
that is the question.\n");

/*** WRONG ***/

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

49

	Chapter 2
	Program: Printing a Pun
	Compiling and Linking
	Integrated Development Environments
	The General Form of a Simple Program
	The General Form of a Simple Program
	Directives
	Directives
	Functions
	The main Function
	Statements
	Statements
	Printing Strings
	Printing Strings
	Comments
	Comments
	Comments in C99
	Variables and Assignment
	Types
	Types
	Declarations
	Declarations
	Assignment
	Assignment
	Assignment
	Assignment
	Printing the Value of a Variable
	Printing the Value of a Variable
	Printing the Value of a Variable
	Initialization
	Initialization
	Printing Expressions
	Reading Input
	Reading Input
	Defining Names for Constants
	Defining Names for Constants
	Defining Names for Constants
	Program: Converting from�Fahrenheit to Celsius
	Slide Number 39
	Program: Converting from�Fahrenheit to Celsius
	Identifiers
	Identifiers
	Identifiers
	Keywords
	Layout of a C Program
	Layout of a C Program
	Layout of a C Program
	Layout of a C Program
	Layout of a C Program

