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Program: Printing a Pun
#include <stdio.h>

int main(void)
{
printf("To C, or not to C: that is the question.\n");
return 0;

}

• This program might be stored in a file named pun.c.
• The file name doesn’t matter, but the .c extension is 

often required.
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Compiling and Linking
• Before a program can be executed, three steps are 

usually necessary:
– Preprocessing. The preprocessor obeys commands that 

begin with # (known as directives)
– Compiling. A compiler translates then translates the 

program into machine instructions (object code).
– Linking. A linker combines the object code produced 

by the compiler with any additional code needed to 
yield a complete executable program.

• The preprocessor is usually integrated with the 
compiler.
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Integrated Development Environments
• An integrated development environment (IDE) is 

a software package that makes it possible to edit, 
compile, link, execute, and debug a program 
without leaving the environment.
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The General Form of a Simple Program
• Simple C programs have the form

directives

int main(void)
{

statements
}
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The General Form of a Simple Program
• C uses { and } in much the same way that some 

other languages use words like begin and end.
• Even the simplest C programs rely on three key 

language features:
– Directives
– Functions
– Statements
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Directives
• Before a C program is compiled, it is first edited 

by a preprocessor.
• Commands intended for the preprocessor are 

called directives.
• Example:
#include <stdio.h>

• <stdio.h> is a header containing information 
about C’s standard I/O library.
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Directives
• Directives always begin with a # character.
• By default, directives are one line long; there’s no 

semicolon or other special marker at the end.
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Functions
• A function is a series of statements that have been 

grouped together and given a name.
• Library functions are provided as part of the C 

implementation.
• A function that computes a value uses a return

statement to specify what value it “returns”:
return x + 1;
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The main Function
• The main function is mandatory.
• main is special: it gets called automatically when 

the program is executed.
• main returns a status code; the value 0 indicates 

normal program termination.
• If there’s no return statement at the end of the 
main function, many compilers will produce a 
warning message.
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Statements
• A statement is a command to be executed when 

the program runs.
• pun.c uses only two kinds of statements. One is 

the return statement; the other is the function 
call.

• Asking a function to perform its assigned task is 
known as calling the function.

• pun.c calls printf to display a string:
printf("To C, or not to C: that is the question.\n");
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Statements
• C requires that each statement end with a 

semicolon.
– There’s one exception: the compound statement.

• Directives are normally one line long, and they 
don’t end with a semicolon.
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Printing Strings
• When the printf function displays a string 

literal—characters enclosed in double quotation 
marks—it doesn’t show the quotation marks.

• printf doesn’t automatically advance to the 
next output line when it finishes printing.

• To make printf advance one line, include \n
(the new-line character) in the string to be 
printed.
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Printing Strings
• The statement

printf("To C, or not to C: that is the question.\n");

could be replaced by two calls of printf:
printf("To C, or not to C: ");
printf("that is the question.\n");

• The new-line character can appear more than once in a 
string literal:
printf("Brevity is the soul of wit.\n  --Shakespeare\n");
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Comments
• A comment begins with /* and end with */.
/* This is a comment */

• Comments may appear almost anywhere in a 
program, either on separate lines or on the same 
lines as other program text. 

• Comments may extend over more than one line.
/* Name: pun.c

Purpose: Prints a bad pun.
Author: K. N. King */
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Comments
• Warning: Forgetting to terminate a comment may cause 

the compiler to ignore part of your program:
printf("My ");    /* forgot to close this comment... 
printf("cat ");
printf("has ");   /* so it ends here */
printf("fleas");

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

16



Chapter 2: C Fundamentals

Comments in C99
• In C99, comments can also be written in the 

following way:
// This is a comment

• This style of comment ends automatically at the 
end of a line.

• Advantages of // comments:
– Safer: there’s no chance that an unterminated comment 

will accidentally consume part of a program.
– Multiline comments stand out better.
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Variables and Assignment
• Most programs need to a way to store data 

temporarily during program execution.
• These storage locations are called variables.
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Types
• Every variable must have a type.
• C has a wide variety of types, including int and 
float.

• A variable of type int (short for integer) can 
store a whole number such as 0, 1, 392, or –2553.
– The largest int value is typically 2,147,483,647 but 

can be as small as 32,767.
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Types
• A variable of type float (short for floating-

point) can store much larger numbers than an int
variable.

• Also, a float variable can store numbers with 
digits after the decimal point, like 379.125.

• Drawbacks of float variables:
– Slower arithmetic
– Approximate nature of float values
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Declarations
• Variables must be declared before they are used.
• Variables can be declared one at a time:
int height;
float profit;

• Alternatively, several can be declared at the same 
time:
int height, length, width, volume;
float profit, loss;
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Declarations
• When main contains declarations, these must 

precede statements:
int main(void)
{

declarations
statements

}

• In C99, declarations don’t have to come before 
statements.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

22



Chapter 2: C Fundamentals

Assignment
• A variable can be given a value by means of 

assignment:
height = 8;

The number 8 is said to be a constant.
• Before a variable can be assigned a value—or 

used in any other way—it must first be declared.
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Assignment
• A constant assigned to a float variable usually 

contains a decimal point:
profit = 2150.48;

• It’s best to append the letter f to a floating-point 
constant if it is assigned to a float variable:
profit = 2150.48f;

Failing to include the f may cause a warning from 
the compiler.
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Assignment
• An int variable is normally assigned a value of 

type int, and a float variable is normally 
assigned a value of type float.

• Mixing types (such as assigning an int value to a 
float variable or assigning a float value to an 
int variable) is possible but not always safe.
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Assignment
• Once a variable has been assigned a value, it can 

be used to help compute the value of another 
variable:
height = 8;
length = 12;
width = 10;
volume = height * length * width;

/* volume is now 960 */

• The right side of an assignment can be a formula 
(or expression, in C terminology) involving 
constants, variables, and operators.
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Printing the Value of a Variable
• printf can be used to display the current value 

of a variable.
• To write the message
Height: h
where h is the current value of the height
variable, we’d use the following call of printf:
printf("Height: %d\n", height);

• %d is a placeholder indicating where the value of 
height is to be filled in.
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Printing the Value of a Variable
• %d works only for int variables; to print a 
float variable, use %f instead.

• By default, %f displays a number with six digits 
after the decimal point.

• To force %f to display p digits after the decimal 
point, put .p between % and f.

• To print the line
Profit: $2150.48

use the following call of printf:
printf("Profit: $%.2f\n", profit);
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Printing the Value of a Variable
• There’s no limit to the number of variables that can 

be printed by a single call of printf:
printf("Height: %d  Length: %d\n", height, length);
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Initialization
• Some variables are automatically set to zero when 

a program begins to execute, but most are not.
• A variable that doesn’t have a default value and 

hasn’t yet been assigned a value by the program is 
said to be uninitialized.

• Attempting to access the value of an uninitialized 
variable may yield an unpredictable result.

• With some compilers, worse behavior—even a 
program crash—may occur.
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Initialization
• The initial value of a variable may be included in 

its declaration:
int height = 8;

The value 8 is said to be an initializer.
• Any number of variables can be initialized in the 

same declaration:
int height = 8, length = 12, width = 10;

• Each variable requires its own initializer.
int height, length, width = 10;

/* initializes only width */
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Printing Expressions
• printf can display the value of any numeric 

expression.
• The statements
volume = height * length * width;
printf("%d\n", volume);

could be replaced by
printf("%d\n", height * length * width);
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Reading Input
• scanf is the C library’s counterpart to printf.
• scanf requires a format string to specify the 

appearance of the input data.
• Example of using scanf to read an int value:
scanf("%d", &i);
/* reads an integer; stores into i */

• The & symbol is usually (but not always) required 
when using scanf.
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Reading Input
• Reading a float value requires a slightly 

different call of scanf:
scanf("%f", &x);

• "%f" tells scanf to look for an input value in 
float format (the number may contain a decimal 
point, but doesn’t have to).
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Defining Names for Constants
• Using a feature known as macro definition, we 

can name this constant:
#define INCHES_PER_POUND 166
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Defining Names for Constants
• When a program is compiled, the preprocessor replaces 

each macro by the value that it represents.
• During preprocessing, the statement

weight = (volume + INCHES_PER_POUND - 1) / INCHES_PER_POUND;

will become
weight = (volume + 166 - 1) / 166;
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Defining Names for Constants
• The value of a macro can be an expression:

#define RECIPROCAL_OF_PI (1.0f / 3.14159f)

• If it contains operators, the expression should be 
enclosed in parentheses.

• Using only upper-case letters in macro names is a 
common convention.
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Program: Converting from
Fahrenheit to Celsius

• The celsius.c program prompts the user to 
enter a Fahrenheit temperature; it then prints the 
equivalent Celsius temperature.

• Sample program output:
Enter Fahrenheit temperature: 212
Celsius equivalent: 100.0

• The program will allow temperatures that aren’t 
integers.
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celsius.c
/* Converts a Fahrenheit temperature to Celsius */

#include <stdio.h>

#define FREEZING_PT 32.0f
#define SCALE_FACTOR (5.0f / 9.0f)

int main(void)
{
float fahrenheit, celsius;

printf("Enter Fahrenheit temperature: ");
scanf("%f", &fahrenheit);

celsius = (fahrenheit - FREEZING_PT) * SCALE_FACTOR;

printf("Celsius equivalent: %.1f\n", celsius);

return 0;
}
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Program: Converting from
Fahrenheit to Celsius

• Defining SCALE_FACTOR to be (5.0f / 9.0f)
instead of (5 / 9) is important.

• Note the use of %.1f to display celsius with 
just one digit after the decimal point.
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Identifiers
• Names for variables, functions, macros, and other 

entities are called identifiers.
• An identifier may contain letters, digits, and 

underscores, but must begin with a letter or 
underscore:
times10  get_next_char  _done

It’s usually best to avoid identifiers that begin with 
an underscore.

• Examples of illegal identifiers:
10times  get-next-char
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Identifiers
• C is case-sensitive: it distinguishes between 

upper-case and lower-case letters in identifiers.
• For example, the following identifiers are all 

different:
job  joB  jOb  jOB  Job  JoB  JOb  JOB
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Identifiers
• Many programmers use only lower-case letters in 

identifiers (other than macros), with underscores 
inserted for legibility:
symbol_table  current_page  name_and_address

• Other programmers use an upper-case letter to 
begin each word within an identifier:
symbolTable  currentPage  nameAndAddress

• C places no limit on the maximum length of an 
identifier.
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Keywords
• The following keywords can’t be used as 

identifiers:
auto      enum      restrict*  unsigned
break     extern    return     void
case      float     short      volatile
char      for       signed     while
const     goto      sizeof     _Bool*
continue  if        static     _Complex*
default   inline*   struct     _Imaginary*
do        int       switch
double    long      typedef
else      register  union

*C99 only
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Layout of a C Program
• The amount of space between tokens usually isn’t critical.
• At one extreme, tokens can be crammed together with no 

space between them, except where this would cause two 
tokens to merge:

/* Converts a Fahrenheit temperature to Celsius */
#include <stdio.h>
#define FREEZING_PT 32.0f
#define SCALE_FACTOR (5.0f/9.0f)
int main(void){float fahrenheit,celsius;printf(
"Enter Fahrenheit temperature: ");scanf("%f", &fahrenheit);
celsius=(fahrenheit-FREEZING_PT)*SCALE_FACTOR;
printf("Celsius equivalent: %.1f\n", celsius);return 0;}
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Layout of a C Program
• The whole program can’t be put on one line, 

because each preprocessing directive requires a 
separate line.

• Compressing programs in this fashion isn’t a good 
idea.

• In fact, adding spaces and blank lines to a program 
can make it easier to read and understand.
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Layout of a C Program
• C allows any amount of space—blanks, tabs, and 

new-line characters—between tokens.
• Consequences for program layout:

– Statements can be divided over any number of lines.
– Space between tokens (such as before and after each 

operator, and after each comma) makes it easier for the 
eye to separate them.

– Indentation can make nesting easier to spot.
– Blank lines can divide a program into logical units.
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Layout of a C Program
• Although extra spaces can be added between tokens, 

it’s not possible to add space within a token without 
changing the meaning of the program or causing an 
error.

• Writing 
fl oat fahrenheit, celsius;  /*** WRONG ***/

or
fl
oat fahrenheit, celsius;     /*** WRONG ***/

produces an error when the program is compiled.
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Layout of a C Program
• Putting a space inside a string literal is allowed, 

although it changes the meaning of the string.
• Putting a new-line character in a string (splitting 

the string over two lines) is illegal:
printf("To C, or not to C:
that is the question.\n");

/*** WRONG ***/
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