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Operators
• C emphasizes expressions rather than statements.
• Expressions are built from variables, constants, 

and operators.
• C has a rich collection of operators, including

– arithmetic operators
– relational operators
– logical operators
– assignment operators
– increment and decrement operators

and many others
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Arithmetic Operators
• C provides five binary arithmetic operators:
+ addition
- subtraction
* multiplication
/ division
% remainder

• An operator is binary if it has two operands.
• There are also two unary arithmetic operators:
+ unary plus
- unary minus
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Unary Arithmetic Operators
• The unary operators require one operand:
i = +1;
j = -i;

• The unary + operator does nothing. It’s used 
primarily to emphasize that a numeric constant is 
positive.
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Binary Arithmetic Operators
• The value of i % j is the remainder when i is 

divided by j.
10 % 3 has the value 1, and 12 % 4 has the value 0.

• Binary arithmetic operators—with the exception 
of %—allow either integer or floating-point 
operands, with mixing allowed.

• When int and float operands are mixed, the 
result has type float.

9 + 2.5 has the value 11.5, and 6.7 / 2 has the value 
3.35.
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The / and % Operators
• The / and % operators require special care:

– When both operands are integers, / “truncates” the result. 
The value of 1 / 2 is 0, not 0.5.

– The % operator requires integer operands; if either 
operand is not an integer, the program won’t compile.

– Using zero as the right operand of either / or % causes 
undefined behavior.

– The behavior when / and % are used with negative 
operands is implementation-defined in C89.

– In C99, the result of a division is always truncated toward 
zero and the value of i % j has the same sign as i.
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Operator Precedence
• Does i + j * k mean “add i and j, then multiply 

the result by k” or “multiply j and k, then add 
i”?

• One solution to this problem is to add parentheses, 
writing either (i + j) * k or i + (j * k).

• If the parentheses are omitted, C uses operator 
precedence rules to determine the meaning of the 
expression.
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Operator Precedence
• The arithmetic operators have the following 

relative precedence:
Highest: + - (unary)

* / %
Lowest: + - (binary) 

• Examples:
i + j * k is equivalent to   i + (j * k)
-i * -j is equivalent to   (-i) * (-j)
+i + j / k is equivalent to   (+i) + (j / k)
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Operator Associativity
• Associativity comes into play when an expression 

contains two or more operators with equal 
precedence.

• An operator is said to be left associative if it 
groups from left to right.

• The binary arithmetic operators (*, /, %, +, and -) 
are all left associative, so
i - j – k is equivalent to (i - j) - k
i * j / k is equivalent to (i * j) / k
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Operator Associativity
• An operator is right associative if it groups from 

right to left.
• The unary arithmetic operators (+ and -) are both 

right associative, so
- + i is equivalent to  -(+i)

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

10



Chapter 4: Expressions

Assignment Operators
• Simple assignment: used for storing a value into a 

variable
• Compound assignment: used for updating a value 

already stored in a variable
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Simple Assignment
• The effect of the assignment v = e is to evaluate 

the expression e and copy its value into v.
• e can be a constant, a variable, or a more 

complicated expression:
i = 5;            /* i is now 5  */
j = i;            /* j is now 5  */
k = 10 * i + j;   /* k is now 55 */
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Simple Assignment
• If v and e don’t have the same type, then the value 

of e is converted to the type of v as the assignment 
takes place:
int i;
float f;

i = 72.99;   /* i is now 72 */
f = 136;      /* f is now 136.0 */
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Simple Assignment
• In many programming languages, assignment is a 

statement; in C, however, assignment is an 
operator, just like +.

• The value of an assignment v = e is the value of v
after the assignment.
– The value of i = 72.99 is 72 (not 72.99).
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Chained Assignment
• Since assignment is an operator, several 

assignments can be chained together:
i = j = k = 0;

• The = operator is right associative, so this 
assignment is equivalent to
i = (j = (k = 0));
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Chained Assignment
• Watch out for unexpected results in chained 

assignments as a result of type conversion:
int i;
float f;

f = i = 33.3;

• i is assigned the value 33, then f is assigned 33.0 
(not 33.3).
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Embedded Assignment
• An assignment of the form v = e is allowed 

wherever a value of type v would be permitted:
i = 1;
k = 1 + (j = i);
printf("%d %d %d\n", i, j, k);
/* prints "1 1 2" */

• “Embedded assignments” can make programs 
hard to read.

• They can also be a source of subtle bugs.
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Lvalues
• The assignment operator requires an lvalue as its 

left operand.
• An lvalue represents an object stored in computer 

memory, not a constant or the result of a 
computation.

• Variables are lvalues; expressions such as 10 or 
2 * i are not.
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Lvalues
• Since the assignment operator requires an lvalue 

as its left operand, it’s illegal to put any other kind 
of expression on the left side of an assignment 
expression:
12 = i;      /*** WRONG ***/
i + j = 0;   /*** WRONG ***/
-i = j;      /*** WRONG ***/

• The compiler will produce an error message such 
as “invalid lvalue in assignment.”
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Compound Assignment
• Assignments that use the old value of a variable to 

compute its new value are common.
• Example:
i = i + 2;

• Using the += compound assignment operator, we 
simply write:
i += 2;   /* same as i = i + 2; */
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Compound Assignment
• There are nine other compound assignment operators, 

including the following:
-=  *=  /=  %=

• All compound assignment operators work in much the 
same way:
v += e adds v to e, storing the result in v
v -= e subtracts e from v, storing the result in v
v *= e multiplies v by e, storing the result in v
v /= e divides v by e, storing the result in v
v %= e computes the remainder when v is divided by e, 
storing the result in v
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Increment and Decrement Operators
• Two of the most common operations on a variable 

are “incrementing” (adding 1) and “decrementing” 
(subtracting 1):
i = i + 1;
j = j - 1;

• Incrementing and decrementing can be done using 
the compound assignment operators:
i += 1;
j -= 1;
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Increment and Decrement Operators
• C provides special ++ (increment) and --

(decrement) operators.
• The ++ operator adds 1 to its operand. The --

operator subtracts 1.
• The increment and decrement operators are tricky 

to use:
– They can be used as prefix operators (++i and –-i) or 

postfix operators (i++ and i--).
– They have side effects: they modify the values of their 

operands.
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Increment and Decrement Operators
• Evaluating the expression ++i (a “pre-increment”) 

yields i + 1 and—as a side effect—increments i:
i = 1;
printf("i is %d\n", ++i);   /* prints "i is 2" */
printf("i is %d\n", i);     /* prints "i is 2" */

• Evaluating the expression i++ (a “post-increment”) 
produces the result i, but causes i to be 
incremented afterwards:
i = 1;
printf("i is %d\n", i++);   /* prints "i is 1" */
printf("i is %d\n", i);     /* prints "i is 2" */
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Increment and Decrement Operators
• ++i means “increment i immediately,” while 
i++ means “use the old value of i for now, but 
increment i later.”

• How much later? The C standard doesn’t specify a 
precise time, but it’s safe to assume that i will be 
incremented before the next statement is executed.
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Increment and Decrement Operators
• The -- operator has similar properties:

i = 1;
printf("i is %d\n", --i);   /* prints "i is 0" */
printf("i is %d\n", i);     /* prints "i is 0" */
i = 1;
printf("i is %d\n", i--);   /* prints "i is 1" */
printf("i is %d\n", i);     /* prints "i is 0" */
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Increment and Decrement Operators
• When ++ or -- is used more than once in the same 

expression, the result can often be hard to understand.
• Example:

i = 1;
j = 2;
k = ++i + j++;

The last statement is equivalent to
i = i + 1;
k = i + j;
j = j + 1;

The final values of i, j, and k are 2, 3, and 4, respectively.
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Increment and Decrement Operators
• In contrast, executing the statements
i = 1;
j = 2;
k = i++ + j++;

will give i, j, and k the values 2, 3, and 3, 
respectively.
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Expression Evaluation
• Table of operators discussed so far:
Precedence Name Symbol(s) Associativity

1 increment (postfix) ++ left
decrement (postfix) --

2 increment (prefix) ++ right
decrement (prefix) --

unary plus +

unary minus -

3 multiplicative * / % left
4 additive + - left
5 assignment = *= /= %= += -= right
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Expression Evaluation
• The table can be used to add parentheses to an expression 

that lacks them.
• Starting with the operator with highest precedence, put 

parentheses around the operator and its operands.
• Example:

a = b += c++ - d + --e / -f Precedence
level

a = b += (c++) - d + --e / -f                1
a = b += (c++) - d + (--e) / (-f)            2
a = b += (c++) - d + ((--e) / (-f))          3
a = b += (((c++) - d) + ((--e) / (-f)))      4
(a = (b += (((c++) - d) + ((--e) / (-f)))))  5 
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Order of Subexpression Evaluation
• The value of an expression may depend on the 

order in which its subexpressions are evaluated.
• C doesn’t define the order in which 

subexpressions are evaluated (with the exception 
of subexpressions involving the logical and, 
logical or, conditional, and comma operators).

• In the expression (a + b) * (c - d) we don’t 
know whether (a + b) will be evaluated before 
(c - d).
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Order of Subexpression Evaluation
• Most expressions have the same value regardless 

of the order in which their subexpressions are 
evaluated.

• However, this may not be true when a 
subexpression modifies one of its operands:
a = 5;
c = (b = a + 2) - (a = 1);

• The effect of executing the second statement is 
undefined.
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Order of Subexpression Evaluation
• To prevent problems, it’s a good idea to avoid 

using the assignment operators in subexpressions.
• Instead, use a series of separate assignments:
a = 5;
b = a + 2;
a = 1;
c = b - a;

The value of c will always be 6.
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Order of Subexpression Evaluation
• Besides the assignment operators, the only 

operators that modify their operands are increment 
and decrement.

• When using these operators, be careful that an 
expression doesn’t depend on a particular order of 
evaluation.
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Expression Statements
• C has the unusual rule that any expression can be 

used as a statement.
• Example:
++i;

i is first incremented, then the new value of i is 
fetched but then discarded.
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Expression Statements
• Since its value is discarded, there’s little point in 

using an expression as a statement unless the 
expression has a side effect:
i = 1;       /* useful */
i--;         /* useful */
i * j - 1;   /* not useful */
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Expression Statements
• A slip of the finger can easily create a “do-

nothing” expression statement.
• For example, instead of entering
i = j;

we might accidentally type
i + j;

• Some compilers can detect meaningless 
expression statements; you’ll get a warning such 
as “statement with no effect.”
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