
Chapter 4: Expressions

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

1

Chapter 4

Expressions

Chapter 4: Expressions

Operators
• C emphasizes expressions rather than statements.
• Expressions are built from variables, constants,

and operators.
• C has a rich collection of operators, including

– arithmetic operators
– relational operators
– logical operators
– assignment operators
– increment and decrement operators

and many others
Copyright © 2008 W. W. Norton & Company.
All rights reserved.

2

Chapter 4: Expressions

Arithmetic Operators
• C provides five binary arithmetic operators:
+ addition
- subtraction
* multiplication
/ division
% remainder

• An operator is binary if it has two operands.
• There are also two unary arithmetic operators:
+ unary plus
- unary minus

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

3

Chapter 4: Expressions

Unary Arithmetic Operators
• The unary operators require one operand:
i = +1;
j = -i;

• The unary + operator does nothing. It’s used
primarily to emphasize that a numeric constant is
positive.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

4

Chapter 4: Expressions

Binary Arithmetic Operators
• The value of i % j is the remainder when i is

divided by j.
10 % 3 has the value 1, and 12 % 4 has the value 0.

• Binary arithmetic operators—with the exception
of %—allow either integer or floating-point
operands, with mixing allowed.

• When int and float operands are mixed, the
result has type float.

9 + 2.5 has the value 11.5, and 6.7 / 2 has the value
3.35.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

5

Chapter 4: Expressions

The / and % Operators
• The / and % operators require special care:

– When both operands are integers, / “truncates” the result.
The value of 1 / 2 is 0, not 0.5.

– The % operator requires integer operands; if either
operand is not an integer, the program won’t compile.

– Using zero as the right operand of either / or % causes
undefined behavior.

– The behavior when / and % are used with negative
operands is implementation-defined in C89.

– In C99, the result of a division is always truncated toward
zero and the value of i % j has the same sign as i.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

6

Chapter 4: Expressions

Operator Precedence
• Does i + j * k mean “add i and j, then multiply

the result by k” or “multiply j and k, then add
i”?

• One solution to this problem is to add parentheses,
writing either (i + j) * k or i + (j * k).

• If the parentheses are omitted, C uses operator
precedence rules to determine the meaning of the
expression.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

7

Chapter 4: Expressions

Operator Precedence
• The arithmetic operators have the following

relative precedence:
Highest: + - (unary)

* / %
Lowest: + - (binary)

• Examples:
i + j * k is equivalent to i + (j * k)
-i * -j is equivalent to (-i) * (-j)
+i + j / k is equivalent to (+i) + (j / k)

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

8

Chapter 4: Expressions

Operator Associativity
• Associativity comes into play when an expression

contains two or more operators with equal
precedence.

• An operator is said to be left associative if it
groups from left to right.

• The binary arithmetic operators (*, /, %, +, and -)
are all left associative, so
i - j – k is equivalent to (i - j) - k
i * j / k is equivalent to (i * j) / k

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

9

Chapter 4: Expressions

Operator Associativity
• An operator is right associative if it groups from

right to left.
• The unary arithmetic operators (+ and -) are both

right associative, so
- + i is equivalent to -(+i)

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

10

Chapter 4: Expressions

Assignment Operators
• Simple assignment: used for storing a value into a

variable
• Compound assignment: used for updating a value

already stored in a variable

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

11

Chapter 4: Expressions

Simple Assignment
• The effect of the assignment v = e is to evaluate

the expression e and copy its value into v.
• e can be a constant, a variable, or a more

complicated expression:
i = 5; /* i is now 5 */
j = i; /* j is now 5 */
k = 10 * i + j; /* k is now 55 */

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

12

Chapter 4: Expressions

Simple Assignment
• If v and e don’t have the same type, then the value

of e is converted to the type of v as the assignment
takes place:
int i;
float f;

i = 72.99; /* i is now 72 */
f = 136; /* f is now 136.0 */

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

13

Chapter 4: Expressions

Simple Assignment
• In many programming languages, assignment is a

statement; in C, however, assignment is an
operator, just like +.

• The value of an assignment v = e is the value of v
after the assignment.
– The value of i = 72.99 is 72 (not 72.99).

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

14

Chapter 4: Expressions

Chained Assignment
• Since assignment is an operator, several

assignments can be chained together:
i = j = k = 0;

• The = operator is right associative, so this
assignment is equivalent to
i = (j = (k = 0));

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

15

Chapter 4: Expressions

Chained Assignment
• Watch out for unexpected results in chained

assignments as a result of type conversion:
int i;
float f;

f = i = 33.3;

• i is assigned the value 33, then f is assigned 33.0
(not 33.3).

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

16

Chapter 4: Expressions

Embedded Assignment
• An assignment of the form v = e is allowed

wherever a value of type v would be permitted:
i = 1;
k = 1 + (j = i);
printf("%d %d %d\n", i, j, k);
/* prints "1 1 2" */

• “Embedded assignments” can make programs
hard to read.

• They can also be a source of subtle bugs.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

17

Chapter 4: Expressions

Lvalues
• The assignment operator requires an lvalue as its

left operand.
• An lvalue represents an object stored in computer

memory, not a constant or the result of a
computation.

• Variables are lvalues; expressions such as 10 or
2 * i are not.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

18

Chapter 4: Expressions

Lvalues
• Since the assignment operator requires an lvalue

as its left operand, it’s illegal to put any other kind
of expression on the left side of an assignment
expression:
12 = i; /*** WRONG ***/
i + j = 0; /*** WRONG ***/
-i = j; /*** WRONG ***/

• The compiler will produce an error message such
as “invalid lvalue in assignment.”

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

19

Chapter 4: Expressions

Compound Assignment
• Assignments that use the old value of a variable to

compute its new value are common.
• Example:
i = i + 2;

• Using the += compound assignment operator, we
simply write:
i += 2; /* same as i = i + 2; */

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

20

Chapter 4: Expressions

Compound Assignment
• There are nine other compound assignment operators,

including the following:
-= *= /= %=

• All compound assignment operators work in much the
same way:
v += e adds v to e, storing the result in v
v -= e subtracts e from v, storing the result in v
v *= e multiplies v by e, storing the result in v
v /= e divides v by e, storing the result in v
v %= e computes the remainder when v is divided by e,
storing the result in v

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

21

Chapter 4: Expressions

Increment and Decrement Operators
• Two of the most common operations on a variable

are “incrementing” (adding 1) and “decrementing”
(subtracting 1):
i = i + 1;
j = j - 1;

• Incrementing and decrementing can be done using
the compound assignment operators:
i += 1;
j -= 1;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

22

Chapter 4: Expressions

Increment and Decrement Operators
• C provides special ++ (increment) and --

(decrement) operators.
• The ++ operator adds 1 to its operand. The --

operator subtracts 1.
• The increment and decrement operators are tricky

to use:
– They can be used as prefix operators (++i and –-i) or

postfix operators (i++ and i--).
– They have side effects: they modify the values of their

operands.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

23

Chapter 4: Expressions

Increment and Decrement Operators
• Evaluating the expression ++i (a “pre-increment”)

yields i + 1 and—as a side effect—increments i:
i = 1;
printf("i is %d\n", ++i); /* prints "i is 2" */
printf("i is %d\n", i); /* prints "i is 2" */

• Evaluating the expression i++ (a “post-increment”)
produces the result i, but causes i to be
incremented afterwards:
i = 1;
printf("i is %d\n", i++); /* prints "i is 1" */
printf("i is %d\n", i); /* prints "i is 2" */

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

24

Chapter 4: Expressions

Increment and Decrement Operators
• ++i means “increment i immediately,” while
i++ means “use the old value of i for now, but
increment i later.”

• How much later? The C standard doesn’t specify a
precise time, but it’s safe to assume that i will be
incremented before the next statement is executed.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

25

Chapter 4: Expressions

Increment and Decrement Operators
• The -- operator has similar properties:

i = 1;
printf("i is %d\n", --i); /* prints "i is 0" */
printf("i is %d\n", i); /* prints "i is 0" */
i = 1;
printf("i is %d\n", i--); /* prints "i is 1" */
printf("i is %d\n", i); /* prints "i is 0" */

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

26

Chapter 4: Expressions

Increment and Decrement Operators
• When ++ or -- is used more than once in the same

expression, the result can often be hard to understand.
• Example:

i = 1;
j = 2;
k = ++i + j++;

The last statement is equivalent to
i = i + 1;
k = i + j;
j = j + 1;

The final values of i, j, and k are 2, 3, and 4, respectively.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

27

Chapter 4: Expressions

Increment and Decrement Operators
• In contrast, executing the statements
i = 1;
j = 2;
k = i++ + j++;

will give i, j, and k the values 2, 3, and 3,
respectively.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

28

Chapter 4: Expressions

Expression Evaluation
• Table of operators discussed so far:
Precedence Name Symbol(s) Associativity

1 increment (postfix) ++ left
decrement (postfix) --

2 increment (prefix) ++ right
decrement (prefix) --

unary plus +

unary minus -

3 multiplicative * / % left
4 additive + - left
5 assignment = *= /= %= += -= right

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

29

Chapter 4: Expressions

Expression Evaluation
• The table can be used to add parentheses to an expression

that lacks them.
• Starting with the operator with highest precedence, put

parentheses around the operator and its operands.
• Example:

a = b += c++ - d + --e / -f Precedence
level

a = b += (c++) - d + --e / -f 1
a = b += (c++) - d + (--e) / (-f) 2
a = b += (c++) - d + ((--e) / (-f)) 3
a = b += (((c++) - d) + ((--e) / (-f))) 4
(a = (b += (((c++) - d) + ((--e) / (-f))))) 5

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

30

Chapter 4: Expressions

Order of Subexpression Evaluation
• The value of an expression may depend on the

order in which its subexpressions are evaluated.
• C doesn’t define the order in which

subexpressions are evaluated (with the exception
of subexpressions involving the logical and,
logical or, conditional, and comma operators).

• In the expression (a + b) * (c - d) we don’t
know whether (a + b) will be evaluated before
(c - d).

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

31

Chapter 4: Expressions

Order of Subexpression Evaluation
• Most expressions have the same value regardless

of the order in which their subexpressions are
evaluated.

• However, this may not be true when a
subexpression modifies one of its operands:
a = 5;
c = (b = a + 2) - (a = 1);

• The effect of executing the second statement is
undefined.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

32

Chapter 4: Expressions

Order of Subexpression Evaluation
• To prevent problems, it’s a good idea to avoid

using the assignment operators in subexpressions.
• Instead, use a series of separate assignments:
a = 5;
b = a + 2;
a = 1;
c = b - a;

The value of c will always be 6.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

33

Chapter 4: Expressions

Order of Subexpression Evaluation
• Besides the assignment operators, the only

operators that modify their operands are increment
and decrement.

• When using these operators, be careful that an
expression doesn’t depend on a particular order of
evaluation.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

34

Chapter 4: Expressions

Expression Statements
• C has the unusual rule that any expression can be

used as a statement.
• Example:
++i;

i is first incremented, then the new value of i is
fetched but then discarded.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

35

Chapter 4: Expressions

Expression Statements
• Since its value is discarded, there’s little point in

using an expression as a statement unless the
expression has a side effect:
i = 1; /* useful */
i--; /* useful */
i * j - 1; /* not useful */

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

36

Chapter 4: Expressions

Expression Statements
• A slip of the finger can easily create a “do-

nothing” expression statement.
• For example, instead of entering
i = j;

we might accidentally type
i + j;

• Some compilers can detect meaningless
expression statements; you’ll get a warning such
as “statement with no effect.”

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

37

	Chapter 4
	Operators
	Arithmetic Operators
	Unary Arithmetic Operators
	Binary Arithmetic Operators
	The / and % Operators
	Operator Precedence
	Operator Precedence
	Operator Associativity
	Operator Associativity
	Assignment Operators
	Simple Assignment
	Simple Assignment
	Simple Assignment
	Chained Assignment
	Chained Assignment
	Embedded Assignment
	Lvalues
	Lvalues
	Compound Assignment
	Compound Assignment
	Increment and Decrement Operators
	Increment and Decrement Operators
	Increment and Decrement Operators
	Increment and Decrement Operators
	Increment and Decrement Operators
	Increment and Decrement Operators
	Increment and Decrement Operators
	Expression Evaluation
	Expression Evaluation
	Order of Subexpression Evaluation
	Order of Subexpression Evaluation
	Order of Subexpression Evaluation
	Order of Subexpression Evaluation
	Expression Statements
	Expression Statements
	Expression Statements

