
Chapter 5: Selection Statements

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

1

Chapter 5

Selection Statements

Chapter 5: Selection Statements

Statements
• So far, we’ve used return statements and

expression statements.
• Most of C’s remaining statements fall into three

categories:
– Selection statements: if and switch
– Iteration statements: while, do, and for
– Jump statements: break, continue, and goto.

(return also belongs in this category.)
• Other C statements:

– Compound statement
– Null statement

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

2

Chapter 5: Selection Statements

Logical Expressions
• Several of C’s statements must test the value of an

expression to see if it is “true” or “false.”
• For example, an if statement might need to test

the expression i < j; a true value would indicate
that i is less than j.

• In many programming languages, an expression
such as i < j would have a special “Boolean” or
“logical” type.

• In C, a comparison such as i < j yields an
integer: either 0 (false) or 1 (true).

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

3

Chapter 5: Selection Statements

Relational Operators
• C’s relational operators:
< less than
> greater than
<= less than or equal to
>= greater than or equal to

• These operators produce 0 (false) or 1 (true) when
used in expressions.

• The relational operators can be used to compare
integers and floating-point numbers, with
operands of mixed types allowed.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

4

Chapter 5: Selection Statements

Relational Operators
• The precedence of the relational operators is lower

than that of the arithmetic operators.
– For example, i + j < k - 1 means (i + j) < (k - 1).

• The relational operators are left associative.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

5

Chapter 5: Selection Statements

Relational Operators
• The expression
i < j < k

is legal, but does not test whether j lies between i
and k.

• Since the < operator is left associative, this
expression is equivalent to
(i < j) < k

The 1 or 0 produced by i < j is then compared to k.
• The correct expression is i < j && j < k.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

6

Chapter 5: Selection Statements

Equality Operators
• C provides two equality operators:
== equal to
!= not equal to

• The equality operators are left associative and produce
either 0 (false) or 1 (true) as their result.

• The equality operators have lower precedence than the
relational operators, so the expression
i < j == j < k

is equivalent to
(i < j) == (j < k)

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

7

Chapter 5: Selection Statements

Logical Operators
• More complicated logical expressions can be built

from simpler ones by using the logical operators:
! logical negation
&& logical and
|| logical or

• The ! operator is unary, while && and || are
binary.

• The logical operators produce 0 or 1 as their result.
• The logical operators treat any nonzero operand as

a true value and any zero operand as a false value.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

8

Chapter 5: Selection Statements

Logical Operators
• Behavior of the logical operators:

!expr has the value 1 if expr has the value 0.
expr1 && expr2 has the value 1 if the values of expr1 and

expr2 are both nonzero.
expr1 || expr2 has the value 1 if either expr1 or expr2 (or

both) has a nonzero value.
• In all other cases, these operators produce the

value 0.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

9

Chapter 5: Selection Statements

Logical Operators
• Both && and || perform “short-circuit” evaluation:

they first evaluate the left operand, then the right one.
• If the value of the expression can be deduced from the

left operand alone, the right operand isn’t evaluated.
• Example:

(i != 0) && (j / i > 0)

(i != 0) is evaluated first. If i isn’t equal to 0, then
(j / i > 0) is evaluated.

• If i is 0, the entire expression must be false, so there’s
no need to evaluate (j / i > 0). Without short-circuit
evaluation, division by zero would have occurred.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

10

Chapter 5: Selection Statements

Logical Operators
• Thanks to the short-circuit nature of the && and
|| operators, side effects in logical expressions
may not always occur.

• Example:
i > 0 && ++j > 0

If i > 0 is false, then ++j > 0 is not evaluated, so
j isn’t incremented.

• The problem can be fixed by changing the
condition to ++j > 0 && i > 0 or, even better, by
incrementing j separately.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

11

Chapter 5: Selection Statements

Logical Operators
• The ! operator has the same precedence as the

unary plus and minus operators.
• The precedence of && and || is lower than that

of the relational and equality operators.
– For example, i < j && k == m means (i < j) &&
(k == m).

• The ! operator is right associative; && and ||
are left associative.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

12

Chapter 5: Selection Statements

The if Statement
• The if statement allows a program to choose

between two alternatives by testing an expression.
• In its simplest form, the if statement has the form
if (expression) statement

• When an if statement is executed, expression is
evaluated; if its value is nonzero, statement is
executed.

• Example:
if (line_num == MAX_LINES)

line_num = 0;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

13

Chapter 5: Selection Statements

The if Statement
• Confusing == (equality) with = (assignment) is

perhaps the most common C programming error.
• The statement
if (i == 0) …

tests whether i is equal to 0.
• The statement
if (i = 0) …

assigns 0 to i, then tests whether the result is
nonzero.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

14

Chapter 5: Selection Statements

The if Statement
• Often the expression in an if statement will test

whether a variable falls within a range of values.
• To test whether 0 ≤ i < n:
if (0 <= i && i < n) …

• To test the opposite condition (i is outside the
range):
if (i < 0 || i >= n) …

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

15

Chapter 5: Selection Statements

Compound Statements
• In the if statement template, notice that statement

is singular, not plural:
if (expression) statement

• To make an if statement control two or more
statements, use a compound statement.

• A compound statement has the form
{ statements }

• Putting braces around a group of statements forces
the compiler to treat it as a single statement.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

16

Chapter 5: Selection Statements

Compound Statements
• Example:
{ line_num = 0; page_num++; }

• A compound statement is usually put on multiple
lines, with one statement per line:
{

line_num = 0;
page_num++;

}

• Each inner statement still ends with a semicolon,
but the compound statement itself does not.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

17

Chapter 5: Selection Statements

Compound Statements
• Example of a compound statement used inside an
if statement:
if (line_num == MAX_LINES) {

line_num = 0;
page_num++;

}

• Compound statements are also common in loops
and other places where the syntax of C requires a
single statement.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

18

Chapter 5: Selection Statements

The else Clause
• An if statement may have an else clause:
if (expression) statement else statement

• The statement that follows the word else is
executed if the expression has the value 0.

• Example:
if (i > j)

max = i;
else

max = j;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

19

Chapter 5: Selection Statements

The else Clause
• When an if statement contains an else clause,

where should the else be placed?
• Many C programmers align it with the if at the

beginning of the statement.
• Inner statements are usually indented, but if

they’re short they can be put on the same line as
the if and else:
if (i > j) max = i;
else max = j;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

20

Chapter 5: Selection Statements

The else Clause
• It’s not unusual for if statements to be nested inside

other if statements:
if (i > j)

if (i > k)
max = i;

else
max = k;

else
if (j > k)

max = j;
else

max = k;

• Aligning each else with the matching if makes the
nesting easier to see.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

21

Chapter 5: Selection Statements

The else Clause
• To avoid confusion, don’t hesitate to add braces:
if (i > j) {

if (i > k)
max = i;

else
max = k;

} else {
if (j > k)

max = j;
else

max = k;
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

22

Chapter 5: Selection Statements

The else Clause
• Some programmers use as many braces as possible

inside if statements:
if (i > j) {
if (i > k) {
max = i;

} else {
max = k;

}
} else {
if (j > k) {
max = j;

} else {
max = k;

}
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

23

Chapter 5: Selection Statements

The else Clause
• Advantages of using braces even when they’re not

required:
– Makes programs easier to modify, because more

statements can easily be added to any if or else
clause.

– Helps avoid errors that can result from forgetting to use
braces when adding statements to an if or else
clause.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

24

Chapter 5: Selection Statements

Cascaded if Statements
• A “cascaded” if statement is often the best way

to test a series of conditions, stopping as soon as
one of them is true.

• Example:
if (n < 0)

printf("n is less than 0\n");
else

if (n == 0)
printf("n is equal to 0\n");

else
printf("n is greater than 0\n");

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

25

Chapter 5: Selection Statements

Cascaded if Statements
• Although the second if statement is nested inside

the first, C programmers don’t usually indent it.
• Instead, they align each else with the original
if:
if (n < 0)

printf("n is less than 0\n");
else if (n == 0)

printf("n is equal to 0\n");
else

printf("n is greater than 0\n");

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

26

Chapter 5: Selection Statements

Cascaded if Statements
• This layout avoids the problem of excessive

indentation when the number of tests is large:
if (expression)

statement
else if (expression)

statement
…
else if (expression)

statement
else

statement

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

27

Chapter 5: Selection Statements

Program: Calculating a Broker’s Commission
• When stocks are sold or purchased through a broker, the

broker’s commission often depends upon the value of the
stocks traded.

• Suppose that a broker charges the amounts shown in the
following table:
Transaction size Commission rate
Under $2,500 $30 + 1.7%
$2,500–$6,250 $56 + 0.66%
$6,250–$20,000 $76 + 0.34%
$20,000–$50,000 $100 + 0.22%
$50,000–$500,000 $155 + 0.11%
Over $500,000 $255 + 0.09%

• The minimum charge is $39.
Copyright © 2008 W. W. Norton & Company.
All rights reserved.

28

Chapter 5: Selection Statements

Program: Calculating a Broker’s Commission
• The broker.c program asks the user to enter the

amount of the trade, then displays the amount of
the commission:
Enter value of trade: 30000
Commission: $166.00

• The heart of the program is a cascaded if
statement that determines which range the trade
falls into.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

29

Chapter 5: Selection Statements

broker.c
/* Calculates a broker's commission */

#include <stdio.h>

int main(void)
{
float commission, value;

printf("Enter value of trade: ");
scanf("%f", &value);

if (value < 2500.00f)
commission = 30.00f + .017f * value;

else if (value < 6250.00f)
commission = 56.00f + .0066f * value;

else if (value < 20000.00f)
commission = 76.00f + .0034f * value;

else if (value < 50000.00f)
commission = 100.00f + .0022f * value;

else if (value < 500000.00f)
commission = 155.00f + .0011f * value;

else
commission = 255.00f + .0009f * value;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

30

Chapter 5: Selection Statements

if (commission < 39.00f)
commission = 39.00f;

printf("Commission: $%.2f\n", commission);

return 0;
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

31

Chapter 5: Selection Statements

The “Dangling else” Problem
• When if statements are nested, the “dangling else”

problem may occur:
if (y != 0)

if (x != 0)
result = x / y;

else
printf("Error: y is equal to 0\n");

• The indentation suggests that the else clause belongs
to the outer if statement.

• However, C follows the rule that an else clause
belongs to the nearest if statement that hasn’t already
been paired with an else.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

32

Chapter 5: Selection Statements

The “Dangling else” Problem
• A correctly indented version would look like this:
if (y != 0)

if (x != 0)
result = x / y;

else
printf("Error: y is equal to 0\n");

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

33

Chapter 5: Selection Statements

The “Dangling else” Problem
• To make the else clause part of the outer if

statement, we can enclose the inner if statement
in braces:
if (y != 0) {

if (x != 0)
result = x / y;

} else
printf("Error: y is equal to 0\n");

• Using braces in the original if statement would
have avoided the problem in the first place.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

34

Chapter 5: Selection Statements

Conditional Expressions
• C’s conditional operator allows an expression to

produce one of two values depending on the value
of a condition.

• The conditional operator consists of two symbols
(? and :), which must be used together:
expr1 ? expr2 : expr3

• The operands can be of any type.
• The resulting expression is said to be a

conditional expression.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

35

Chapter 5: Selection Statements

Conditional Expressions
• The conditional operator requires three operands,

so it is often referred to as a ternary operator.
• The conditional expression expr1 ? expr2 : expr3

should be read “if expr1 then expr2 else expr3.”
• The expression is evaluated in stages: expr1 is

evaluated first; if its value isn’t zero, then expr2 is
evaluated, and its value is the value of the entire
conditional expression.

• If the value of expr1 is zero, then the value of
expr3 is the value of the conditional.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

36

Chapter 5: Selection Statements

Conditional Expressions
• Example:

int i, j, k;

i = 1;
j = 2;
k = i > j ? i : j; /* k is now 2 */
k = (i >= 0 ? i : 0) + j; /* k is now 3 */

• The parentheses are necessary, because the
precedence of the conditional operator is less than
that of the other operators discussed so far, with
the exception of the assignment operators.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

37

Chapter 5: Selection Statements

Conditional Expressions
• Conditional expressions tend to make programs

shorter but harder to understand, so it’s probably
best to use them sparingly.

• Conditional expressions are often used in return
statements:
return i > j ? i : j;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

38

Chapter 5: Selection Statements

Conditional Expressions
• Calls of printf can sometimes benefit from

condition expressions. Instead of
if (i > j)

printf("%d\n", i);
else

printf("%d\n", j);

we could simply write
printf("%d\n", i > j ? i : j);

• Conditional expressions are also common in
certain kinds of macro definitions.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

39

Chapter 5: Selection Statements

The switch Statement
• A cascaded if statement can be used to compare an

expression against a series of values:
if (grade == 4)

printf("Excellent");
else if (grade == 3)

printf("Good");
else if (grade == 2)

printf("Average");
else if (grade == 1)

printf("Poor");
else if (grade == 0)

printf("Failing");
else

printf("Illegal grade");
Copyright © 2008 W. W. Norton & Company.
All rights reserved.

40

Chapter 5: Selection Statements

The switch Statement
• The switch statement is an alternative:

switch (grade) {
case 4: printf("Excellent");

break;
case 3: printf("Good");

break;
case 2: printf("Average");

break;
case 1: printf("Poor");

break;
case 0: printf("Failing");

break;
default: printf("Illegal grade");

break;
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

41

Chapter 5: Selection Statements

The switch Statement
• A switch statement may be easier to read than a

cascaded if statement.
• switch statements are often faster than if

statements.
• Most common form of the switch statement:
switch (expression) {

case constant-expression : statements
…
case constant-expression : statements
default : statements

}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

42

Chapter 5: Selection Statements

The switch Statement
• The word switch must be followed by an integer

expression—the controlling expression—in
parentheses.

• Characters are treated as integers in C and thus can
be tested in switch statements.

• Floating-point numbers and strings don’t qualify,
however.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

43

Chapter 5: Selection Statements

The switch Statement
• Each case begins with a label of the form
case constant-expression :

• A constant expression is much like an ordinary
expression except that it can’t contain variables or
function calls.
– 5 is a constant expression, and 5 + 10 is a constant

expression, but n + 10 isn’t a constant expression
(unless n is a macro that represents a constant).

• The constant expression in a case label must
evaluate to an integer (characters are acceptable).

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

44

Chapter 5: Selection Statements

The switch Statement
• After each case label comes any number of

statements.
• No braces are required around the statements.
• The last statement in each group is normally
break.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

45

Chapter 5: Selection Statements

The switch Statement
• Duplicate case labels aren’t allowed.
• The order of the cases doesn’t matter, and the default

case doesn’t need to come last.
• Several case labels may precede a group of statements:

switch (grade) {
case 4:
case 3:
case 2:
case 1: printf("Passing");

break;
case 0: printf("Failing");

break;
default: printf("Illegal grade");

break;
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

46

Chapter 5: Selection Statements

The switch Statement
• To save space, several case labels can be put on the

same line:
switch (grade) {
case 4: case 3: case 2: case 1:

printf("Passing");
break;

case 0: printf("Failing");
break;

default: printf("Illegal grade");
break;

}

• If the default case is missing and the controlling
expression’s value doesn’t match any case label,
control passes to the next statement after the switch.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

47

Chapter 5: Selection Statements

The Role of the break Statement
• Executing a break statement causes the program

to “break” out of the switch statement; execution
continues at the next statement after the switch.

• The switch statement is really a form of
“computed jump.”

• When the controlling expression is evaluated,
control jumps to the case label matching the value
of the switch expression.

• A case label is nothing more than a marker
indicating a position within the switch.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

48

Chapter 5: Selection Statements

The Role of the break Statement
• Without break (or some other jump statement) at the

end of a case, control will flow into the next case.
• Example:

switch (grade) {
case 4: printf("Excellent");
case 3: printf("Good");
case 2: printf("Average");
case 1: printf("Poor");
case 0: printf("Failing");
default: printf("Illegal grade");

}

• If the value of grade is 3, the message printed is
GoodAveragePoorFailingIllegal grade

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

49

Chapter 5: Selection Statements

The Role of the break Statement
• Omitting break is sometimes done intentionally, but

it’s usually just an oversight.
• It’s a good idea to point out deliberate omissions of
break:
switch (grade) {
case 4: case 3: case 2: case 1:

num_passing++;
/* FALL THROUGH */

case 0: total_grades++;
break;

}

• Although the last case never needs a break statement,
including one makes it easy to add cases in the future.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

50

	Chapter 5
	Statements
	Logical Expressions
	Relational Operators
	Relational Operators
	Relational Operators
	Equality Operators
	Logical Operators
	Logical Operators
	Logical Operators
	Logical Operators
	Logical Operators
	The if Statement
	The if Statement
	The if Statement
	Compound Statements
	Compound Statements
	Compound Statements
	The else Clause
	The else Clause
	The else Clause
	The else Clause
	The else Clause
	The else Clause
	Cascaded if Statements
	Cascaded if Statements
	Cascaded if Statements
	Program: Calculating a Broker’s Commission
	Program: Calculating a Broker’s Commission
	Slide Number 30
	Slide Number 31
	The “Dangling else” Problem
	The “Dangling else” Problem
	The “Dangling else” Problem
	Conditional Expressions
	Conditional Expressions
	Conditional Expressions
	Conditional Expressions
	Conditional Expressions
	The switch Statement
	The switch Statement
	The switch Statement
	The switch Statement
	The switch Statement
	The switch Statement
	The switch Statement
	The switch Statement
	The Role of the break Statement
	The Role of the break Statement
	The Role of the break Statement

