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Statements
• So far, we’ve used return statements and 

expression statements.
• Most of C’s remaining statements fall into three 

categories:
– Selection statements: if and switch
– Iteration statements: while, do, and for
– Jump statements: break, continue, and goto. 

(return also belongs in this category.)
• Other C statements:

– Compound statement
– Null statement
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Logical Expressions
• Several of C’s statements must test the value of an 

expression to see if it is “true” or “false.”
• For example, an if statement might need to test 

the expression i < j; a true value would indicate 
that i is less than j.

• In many programming languages, an expression 
such as i < j would have a special “Boolean” or 
“logical” type.

• In C, a comparison such as i < j yields an 
integer: either 0 (false) or 1 (true).

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

3



Chapter 5: Selection Statements

Relational Operators
• C’s relational operators:
< less than
> greater than
<= less than or equal to
>= greater than or equal to

• These operators produce 0 (false) or 1 (true) when 
used in expressions.

• The relational operators can be used to compare 
integers and floating-point numbers, with 
operands of mixed types allowed.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

4



Chapter 5: Selection Statements

Relational Operators
• The precedence of the relational operators is lower 

than that of the arithmetic operators.
– For example, i + j < k - 1 means (i + j) < (k - 1).

• The relational operators are left associative.
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Relational Operators
• The expression
i < j < k

is legal, but does not test whether j lies between i
and k.

• Since the < operator is left associative, this 
expression is equivalent to
(i < j) < k

The 1 or 0 produced by i < j is then compared to k.
• The correct expression is i < j && j < k.
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Equality Operators
• C provides two equality operators:
== equal to
!= not equal to

• The equality operators are left associative and produce 
either 0 (false) or 1 (true) as their result.

• The equality operators have lower precedence than the 
relational operators, so the expression
i < j == j < k

is equivalent to
(i < j) == (j < k)
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Logical Operators
• More complicated logical expressions can be built 

from simpler ones by using the logical operators:
! logical negation
&& logical and
|| logical or

• The ! operator is unary, while && and || are 
binary.

• The logical operators produce 0 or 1 as their result.
• The logical operators treat any nonzero operand as 

a true value and any zero operand as a false value.
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Logical Operators
• Behavior of the logical operators:

!expr has the value 1 if expr has the value 0.
expr1 && expr2 has the value 1 if the values of expr1 and 

expr2 are both nonzero.
expr1 || expr2 has the value 1 if either expr1 or expr2 (or 

both) has a nonzero value.
• In all other cases, these operators produce the 

value 0.
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Logical Operators
• Both && and || perform “short-circuit” evaluation: 

they first evaluate the left operand, then the right one.
• If the value of the expression can be deduced from the 

left operand alone, the right operand isn’t evaluated.
• Example:

(i != 0) && (j / i > 0)

(i != 0) is evaluated first. If i isn’t equal to 0, then 
(j / i > 0) is evaluated.

• If i is 0, the entire expression must be false, so there’s 
no need to evaluate (j / i > 0). Without short-circuit 
evaluation, division by zero would have occurred.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

10



Chapter 5: Selection Statements

Logical Operators
• Thanks to the short-circuit nature of the && and 
|| operators, side effects in logical expressions 
may not always occur.

• Example:
i > 0 && ++j > 0

If i > 0 is false, then ++j > 0 is not evaluated, so 
j isn’t incremented.

• The problem can be fixed by changing the 
condition to ++j > 0 && i > 0 or, even better, by 
incrementing j separately.
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Logical Operators
• The ! operator has the same precedence as the 

unary plus and minus operators.
• The precedence of && and || is lower than that 

of the relational and equality operators.
– For example, i < j && k == m means (i < j) &&
(k == m).

• The ! operator is right associative; && and ||
are left associative.
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The if Statement
• The if statement allows a program to choose 

between two alternatives by testing an expression.
• In its simplest form, the if statement has the form
if ( expression ) statement

• When an if statement is executed, expression is 
evaluated; if its value is nonzero, statement is 
executed.

• Example:
if (line_num == MAX_LINES)

line_num = 0;
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The if Statement
• Confusing == (equality) with = (assignment) is 

perhaps the most common C programming error.
• The statement
if (i == 0) …

tests whether i is equal to 0.
• The statement
if (i = 0) …

assigns 0 to i, then tests whether the result is 
nonzero.
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The if Statement
• Often the expression in an if statement will test 

whether a variable falls within a range of values.
• To test whether 0 ≤ i < n:
if (0 <= i && i < n) …

• To test the opposite condition (i is outside the 
range):
if (i < 0 || i >= n) …
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Compound Statements
• In the if statement template, notice that statement

is singular, not plural:
if ( expression ) statement

• To make an if statement control two or more 
statements, use a compound statement.

• A compound statement has the form
{ statements }

• Putting braces around a group of statements forces 
the compiler to treat it as a single statement.
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Compound Statements
• Example:
{ line_num = 0; page_num++; }

• A compound statement is usually put on multiple 
lines, with one statement per line:
{ 

line_num = 0;
page_num++;

}

• Each inner statement still ends with a semicolon, 
but the compound statement itself does not.
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Compound Statements
• Example of a compound statement used inside an 
if statement:
if (line_num == MAX_LINES) {

line_num = 0;
page_num++;

}

• Compound statements are also common in loops 
and other places where the syntax of C requires a 
single statement.
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The else Clause
• An if statement may have an else clause:
if ( expression ) statement else statement

• The statement that follows the word else is 
executed if the expression has the value 0.

• Example:
if (i > j)

max = i;
else

max = j;
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The else Clause
• When an if statement contains an else clause, 

where should the else be placed?
• Many C programmers align it with the if at the 

beginning of the statement.
• Inner statements are usually indented, but if 

they’re short they can be put on the same line as 
the if and else:
if (i > j) max = i;
else max = j;
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The else Clause
• It’s not unusual for if statements to be nested inside 

other if statements:
if (i > j)

if (i > k) 
max = i;

else 
max = k;

else
if (j > k) 

max = j;
else 

max = k;

• Aligning each else with the matching if makes the 
nesting easier to see.
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The else Clause
• To avoid confusion, don’t hesitate to add braces:
if (i > j) {

if (i > k) 
max = i;

else 
max = k;

} else {
if (j > k) 

max = j;
else 

max = k;
}
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The else Clause
• Some programmers use as many braces as possible 

inside if statements:
if (i > j) {
if (i > k) {
max = i;

} else {
max = k;

}
} else {
if (j > k) {
max = j;

} else {
max = k;

}
}
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The else Clause
• Advantages of using braces even when they’re not 

required:
– Makes programs easier to modify, because more 

statements can easily be added to any if or else
clause.

– Helps avoid errors that can result from forgetting to use 
braces when adding statements to an if or else
clause.
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Cascaded if Statements
• A “cascaded” if statement is often the best way 

to test a series of conditions, stopping as soon as 
one of them is true.

• Example:
if (n < 0)

printf("n is less than 0\n");
else

if (n == 0)
printf("n is equal to 0\n");

else
printf("n is greater than 0\n");
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Cascaded if Statements
• Although the second if statement is nested inside 

the first, C programmers don’t usually indent it. 
• Instead, they align each else with the original 
if:
if (n < 0)

printf("n is less than 0\n");
else if (n == 0)

printf("n is equal to 0\n");
else

printf("n is greater than 0\n");
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Cascaded if Statements
• This layout avoids the problem of excessive 

indentation when the number of tests is large:
if ( expression )

statement
else if ( expression )

statement
…
else if ( expression )

statement
else

statement

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

27



Chapter 5: Selection Statements

Program: Calculating a Broker’s Commission
• When stocks are sold or purchased through a broker, the 

broker’s commission often depends upon the value of the 
stocks traded.

• Suppose that a broker charges the amounts shown in the 
following table:
Transaction size Commission rate
Under $2,500 $30 + 1.7%
$2,500–$6,250 $56 + 0.66%
$6,250–$20,000 $76 + 0.34%
$20,000–$50,000 $100 + 0.22%
$50,000–$500,000 $155 + 0.11%
Over $500,000 $255 + 0.09%

• The minimum charge is $39.
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Program: Calculating a Broker’s Commission
• The broker.c program asks the user to enter the 

amount of the trade, then displays the amount of 
the commission:
Enter value of trade: 30000
Commission: $166.00

• The heart of the program is a cascaded if
statement that determines which range the trade 
falls into.
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broker.c
/* Calculates a broker's commission */

#include <stdio.h>

int main(void)
{
float commission, value;

printf("Enter value of trade: ");
scanf("%f", &value);

if (value < 2500.00f)
commission = 30.00f + .017f * value;

else if (value < 6250.00f)
commission = 56.00f + .0066f * value;

else if (value < 20000.00f)
commission = 76.00f + .0034f * value;

else if (value < 50000.00f)
commission = 100.00f + .0022f * value;

else if (value < 500000.00f)
commission = 155.00f + .0011f * value;

else
commission = 255.00f + .0009f * value;
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if (commission < 39.00f)
commission = 39.00f;

printf("Commission: $%.2f\n", commission);

return 0;
}
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The “Dangling else” Problem
• When if statements are nested, the “dangling else” 

problem may occur:
if (y != 0)

if (x != 0)
result = x / y;

else
printf("Error: y is equal to 0\n");

• The indentation suggests that the else clause belongs 
to the outer if statement.

• However, C follows the rule that an else clause 
belongs to the nearest if statement that hasn’t already 
been paired with an else.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

32



Chapter 5: Selection Statements

The “Dangling else” Problem
• A correctly indented version would look like this:
if (y != 0)

if (x != 0)
result = x / y;

else
printf("Error: y is equal to 0\n");
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The “Dangling else” Problem
• To make the else clause part of the outer if

statement, we can enclose the inner if statement 
in braces: 
if (y != 0) {

if (x != 0)
result = x / y;

} else
printf("Error: y is equal to 0\n");

• Using braces in the original if statement would 
have avoided the problem in the first place.
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Conditional Expressions
• C’s conditional operator allows an expression to 

produce one of two values depending on the value 
of a condition.

• The conditional operator consists of two symbols 
(? and :), which must be used together:
expr1 ? expr2 : expr3

• The operands can be of any type.
• The resulting expression is said to be a 

conditional expression.
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Conditional Expressions
• The conditional operator requires three operands, 

so it is often referred to as a ternary operator.
• The conditional expression expr1 ? expr2 : expr3

should be read “if expr1 then expr2 else expr3.”
• The expression is evaluated in stages: expr1 is 

evaluated first; if its value isn’t zero, then expr2 is 
evaluated, and its value is the value of the entire 
conditional expression.

• If the value of expr1 is zero, then the value of 
expr3 is the value of the conditional.
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Conditional Expressions
• Example:

int i, j, k;

i = 1;
j = 2;
k = i > j ? i : j;          /* k is now 2 */
k = (i >= 0 ? i : 0) + j;   /* k is now 3 */

• The parentheses are necessary, because the 
precedence of the conditional operator is less than 
that of the other operators discussed so far, with 
the exception of the assignment operators.
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Conditional Expressions
• Conditional expressions tend to make programs 

shorter but harder to understand, so it’s probably 
best to use them sparingly.

• Conditional expressions are often used in return
statements:
return i > j ? i : j;
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Conditional Expressions
• Calls of printf can sometimes benefit from 

condition expressions. Instead of
if (i > j)

printf("%d\n", i);
else

printf("%d\n", j);

we could simply write
printf("%d\n", i > j ? i : j);

• Conditional expressions are also common in 
certain kinds of macro definitions.
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The switch Statement
• A cascaded if statement can be used to compare an 

expression against a series of values:
if (grade == 4)

printf("Excellent");
else if (grade == 3)

printf("Good");
else if (grade == 2)

printf("Average");
else if (grade == 1)

printf("Poor");
else if (grade == 0)

printf("Failing");
else

printf("Illegal grade");
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The switch Statement
• The switch statement is an alternative:

switch (grade) {
case 4:  printf("Excellent");

break;
case 3:  printf("Good");

break;
case 2:  printf("Average");

break;
case 1:  printf("Poor");

break;
case 0:  printf("Failing");

break;
default: printf("Illegal grade");

break;
}
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The switch Statement
• A switch statement may be easier to read than a 

cascaded if statement.
• switch statements are often faster than if

statements.
• Most common form of the switch statement:
switch ( expression ) {

case constant-expression : statements 
…
case constant-expression : statements
default : statements

}
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The switch Statement
• The word switch must be followed by an integer 

expression—the controlling expression—in 
parentheses.

• Characters are treated as integers in C and thus can 
be tested in switch statements.

• Floating-point numbers and strings don’t qualify, 
however.
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The switch Statement
• Each case begins with a label of the form
case constant-expression :

• A constant expression is much like an ordinary 
expression except that it can’t contain variables or 
function calls.
– 5 is a constant expression, and 5 + 10 is a constant 

expression, but n + 10 isn’t a constant expression 
(unless n is a macro that represents a constant).

• The constant expression in a case label must 
evaluate to an integer (characters are acceptable).
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The switch Statement
• After each case label comes any number of 

statements.
• No braces are required around the statements. 
• The last statement in each group is normally 
break.
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The switch Statement
• Duplicate case labels aren’t allowed.
• The order of the cases doesn’t matter, and the default

case doesn’t need to come last.
• Several case labels may precede a group of statements:

switch (grade) {
case 4:
case 3:
case 2:
case 1:  printf("Passing");

break;
case 0:  printf("Failing");

break;
default: printf("Illegal grade");

break;
}
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The switch Statement
• To save space, several case labels can be put on the 

same line:
switch (grade) {
case 4: case 3: case 2: case 1:

printf("Passing");
break;

case 0:  printf("Failing");
break;

default: printf("Illegal grade");
break;

}

• If the default case is missing and the controlling 
expression’s value doesn’t match any case label, 
control passes to the next statement after the switch.
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The Role of the break Statement
• Executing a break statement causes the program 

to “break” out of the switch statement; execution 
continues at the next statement after the switch.

• The switch statement is really a form of 
“computed jump.”

• When the controlling expression is evaluated, 
control jumps to the case label matching the value 
of the switch expression.

• A case label is nothing more than a marker 
indicating a position within the switch.
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The Role of the break Statement
• Without break (or some other jump statement) at the 

end of a case, control will flow into the next case.
• Example:

switch (grade) {
case 4:  printf("Excellent");
case 3:  printf("Good");
case 2:  printf("Average");
case 1:  printf("Poor");
case 0:  printf("Failing");
default: printf("Illegal grade");

}

• If the value of grade is 3, the message printed is
GoodAveragePoorFailingIllegal grade
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The Role of the break Statement
• Omitting break is sometimes done intentionally, but 

it’s usually just an oversight.
• It’s a good idea to point out deliberate omissions of 
break:
switch (grade) {
case 4: case 3: case 2: case 1:

num_passing++;
/* FALL THROUGH */

case 0: total_grades++;
break;

}

• Although the last case never needs a break statement, 
including one makes it easy to add cases in the future.
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