
Chapter 6: Loops

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

1

Chapter 6

Loops

Chapter 6: Loops

Iteration Statements
• C’s iteration statements are used to set up loops.
• A loop is a statement whose job is to repeatedly

execute some other statement (the loop body).
• In C, every loop has a controlling expression.
• Each time the loop body is executed (an iteration

of the loop), the controlling expression is
evaluated.
– If the expression is true (has a value that’s not zero) the

loop continues to execute.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

2

Chapter 6: Loops

Iteration Statements
• C provides three iteration statements:

– The while statement is used for loops whose
controlling expression is tested before the loop body is
executed.

– The do statement is used if the expression is tested
after the loop body is executed.

– The for statement is convenient for loops that
increment or decrement a counting variable.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

3

Chapter 6: Loops

The while Statement
• Using a while statement is the easiest way to set

up a loop.
• The while statement has the form
while (expression) statement

• expression is the controlling expression; statement
is the loop body.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

4

Chapter 6: Loops

The while Statement
• Example of a while statement:

while (i < n) /* controlling expression */
i = i * 2; /* loop body */

• When a while statement is executed, the
controlling expression is evaluated first.

• If its value is nonzero (true), the loop body is
executed and the expression is tested again.

• The process continues until the controlling
expression eventually has the value zero.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

5

Chapter 6: Loops

The while Statement
• A while statement that computes the smallest power of

2 that is greater than or equal to a number n:
i = 1;
while (i < n)
i = i * 2;

• A trace of the loop when n has the value 10:
i = 1; i is now 1.
Is i < n? Yes; continue.
i = i * 2; i is now 2.
Is i < n? Yes; continue.
i = i * 2; i is now 4.
Is i < n? Yes; continue.
i = i * 2; i is now 8.
Is i < n? Yes; continue.
i = i * 2; i is now 16.
Is i < n? No; exit from loop.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

6

Chapter 6: Loops

The while Statement
• Although the loop body must be a single statement,

that’s merely a technicality.
• If multiple statements are needed, use braces to create

a single compound statement:
while (i > 0) {

printf("T minus %d and counting\n", i);
i--;

}

• Some programmers always use braces, even when
they’re not strictly necessary:
while (i < n) {

i = i * 2;
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

7

Chapter 6: Loops

The while Statement
• The following statements display a series of

“countdown” messages:
i = 10;
while (i > 0) {
printf("T minus %d and counting\n", i);
i--;

}

• The final message printed is T minus 1 and
counting.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

8

Chapter 6: Loops

The while Statement
• Observations about the while statement:

– The controlling expression is false when a while loop
terminates. Thus, when a loop controlled by i > 0
terminates, i must be less than or equal to 0.

– The body of a while loop may not be executed at all,
because the controlling expression is tested before the
body is executed.

– A while statement can often be written in a variety of
ways. A more concise version of the countdown loop:
while (i > 0)
printf("T minus %d and counting\n", i--);

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

9

Chapter 6: Loops

Infinite Loops
• A while statement won’t terminate if the controlling

expression always has a nonzero value.
• C programmers sometimes deliberately create an

infinite loop by using a nonzero constant as the
controlling expression:
while (1) …

• A while statement of this form will execute forever
unless its body contains a statement that transfers
control out of the loop (break, goto, return) or
calls a function that causes the program to terminate.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

10

Chapter 6: Loops

Program: Printing a Table of Squares
• The square.c program uses a while statement

to print a table of squares.
• The user specifies the number of entries in the

table:
This program prints a table of squares.
Enter number of entries in table: 5

1 1
2 4
3 9
4 16
5 25

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

11

Chapter 6: Loops

square.c
/* Prints a table of squares using a while statement */

#include <stdio.h>

int main(void)
{
int i, n;

printf("This program prints a table of squares.\n");
printf("Enter number of entries in table: ");
scanf("%d", &n);

i = 1;
while (i <= n) {

printf("%10d%10d\n", i, i * i);
i++;

}

return 0;
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

12

Chapter 6: Loops

Program: Summing a Series of Numbers
• The sum.c program sums a series of integers

entered by the user:
This program sums a series of integers.
Enter integers (0 to terminate): 8 23 71 5 0
The sum is: 107

• The program will need a loop that uses scanf to
read a number and then adds the number to a
running total.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

13

Chapter 6: Loops

sum.c
/* Sums a series of numbers */

#include <stdio.h>

int main(void)
{
int n, sum = 0;

printf("This program sums a series of integers.\n");
printf("Enter integers (0 to terminate): ");

scanf("%d", &n);
while (n != 0) {

sum += n;
scanf("%d", &n);

}
printf("The sum is: %d\n", sum);

return 0;
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

14

Chapter 6: Loops

The do Statement
• General form of the do statement:
do statement while (expression) ;

• When a do statement is executed, the loop body is
executed first, then the controlling expression is
evaluated.

• If the value of the expression is nonzero, the loop
body is executed again and then the expression is
evaluated once more.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

15

Chapter 6: Loops

The do Statement
• The countdown example rewritten as a do

statement:
i = 10;
do {
printf("T minus %d and counting\n", i);
--i;

} while (i > 0);

• The do statement is often indistinguishable from the
while statement.

• The only difference is that the body of a do
statement is always executed at least once.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

16

Chapter 6: Loops

The do Statement
• It’s a good idea to use braces in all do statements,

whether or not they’re needed, because a do
statement without braces can easily be mistaken
for a while statement:
do

printf("T minus %d and counting\n", i--);
while (i > 0);

• A careless reader might think that the word
while was the beginning of a while statement.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

17

Chapter 6: Loops

The for Statement
• The for statement is ideal for loops that have a

“counting” variable, but it’s versatile enough to be
used for other kinds of loops as well.

• General form of the for statement:
for (expr1 ; expr2 ; expr3) statement
expr1, expr2, and expr3 are expressions.

• Example:
for (i = 10; i > 0; i--)
printf("T minus %d and counting\n", i);

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

18

Chapter 6: Loops

The for Statement
• The for statement is closely related to the while

statement.
• Except in a few rare cases, a for loop can always be

replaced by an equivalent while loop:
expr1;
while (expr2) {

statement
expr3;

}

• expr1 is an initialization step that’s performed only
once, before the loop begins to execute.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

19

Chapter 6: Loops

The for Statement
• expr2 controls loop termination (the loop continues

executing as long as the value of expr2 is nonzero).
• expr3 is an operation to be performed at the end of

each loop iteration.
• The result when this pattern is applied to the previous
for loop:
i = 10;
while (i > 0) {

printf("T minus %d and counting\n", i);
i--;

}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

20

Chapter 6: Loops

The for Statement
• Studying the equivalent while statement can

help clarify the fine points of a for statement.
• For example, what if i-- is replaced by --i?
for (i = 10; i > 0; --i)
printf("T minus %d and counting\n", i);

• The equivalent while loop shows that the change
has no effect on the behavior of the loop:
i = 10;
while (i > 0) {
printf("T minus %d and counting\n", i);
--i;

}
Copyright © 2008 W. W. Norton & Company.
All rights reserved.

21

Chapter 6: Loops

The for Statement
• Since the first and third expressions in a for

statement are executed as statements, their values
are irrelevant—they’re useful only for their side
effects.

• Consequently, these two expressions are usually
assignments or increment/decrement expressions.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

22

Chapter 6: Loops

for Statement Idioms
• The for statement is usually the best choice for

loops that “count up” (increment a variable) or “count
down” (decrement a variable).

• A for statement that counts up or down a total of n
times will usually have one of the following forms:

Counting up from 0 to n–1: for (i = 0; i < n; i++) …

Counting up from 1 to n: for (i = 1; i <= n; i++) …

Counting down from n–1 to 0: for (i = n - 1; i >= 0; i--) …

Counting down from n to 1: for (i = n; i > 0; i--) …

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

23

Chapter 6: Loops

for Statement Idioms
• Common for statement errors:

– Using < instead of > (or vice versa) in the controlling
expression. “Counting up” loops should use the < or <=
operator. “Counting down” loops should use > or >=.

– Using == in the controlling expression instead of <, <=,
>, or >=.

– “Off-by-one” errors such as writing the controlling
expression as i <= n instead of i < n.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

24

Chapter 6: Loops

Omitting Expressions in a for Statement
• C allows any or all of the expressions that control a
for statement to be omitted.

• If the first expression is omitted, no initialization is
performed before the loop is executed:
i = 10;
for (; i > 0; --i)

printf("T minus %d and counting\n", i);

• If the third expression is omitted, the loop body is
responsible for ensuring that the value of the second
expression eventually becomes false:
for (i = 10; i > 0;)

printf("T minus %d and counting\n", i--);

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

25

Chapter 6: Loops

Omitting Expressions in a for Statement
• When the first and third expressions are both

omitted, the resulting loop is nothing more than a
while statement in disguise:
for (; i > 0;)

printf("T minus %d and counting\n", i--);

is the same as
while (i > 0)

printf("T minus %d and counting\n", i--);

• The while version is clearer and therefore
preferable.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

26

Chapter 6: Loops

Omitting Expressions in a for Statement
• If the second expression is missing, it defaults to a

true value, so the for statement doesn’t terminate
(unless stopped in some other fashion).

• For example, some programmers use the
following for statement to establish an infinite
loop:
for (;;) …

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

27

Chapter 6: Loops

The Comma Operator
• On occasion, a for statement may need to have

two (or more) initialization expressions or one that
increments several variables each time through the
loop.

• This effect can be accomplished by using a
comma expression as the first or third expression
in the for statement.

• A comma expression has the form
expr1 , expr2
where expr1 and expr2 are any two expressions.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

28

Chapter 6: Loops

The Comma Operator
• A comma expression is evaluated in two steps:

– First, expr1 is evaluated and its value discarded.
– Second, expr2 is evaluated; its value is the value of the entire

expression.

• Evaluating expr1 should always have a side effect; if
it doesn’t, then expr1 serves no purpose.

• When the comma expression ++i, i + j is
evaluated, i is first incremented, then i + j is
evaluated.
– If i and j have the values 1 and 5, respectively, the value of

the expression will be 7, and i will be incremented to 2.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

29

Chapter 6: Loops

The Comma Operator
• The comma operator is left associative, so the

compiler interprets
i = 1, j = 2, k = i + j

as
((i = 1), (j = 2)), (k = (i + j))

• Since the left operand in a comma expression is
evaluated before the right operand, the
assignments i = 1, j = 2, and k = i + j will be
performed from left to right.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

30

Chapter 6: Loops

The Comma Operator
• The comma operator makes it possible to “glue” two

expressions together to form a single expression.
• Certain macro definitions can benefit from the comma

operator.
• The for statement is the only other place where the

comma operator is likely to be found.
• Example:

for (sum = 0, i = 1; i <= N; i++)
sum += i;

• With additional commas, the for statement could
initialize more than two variables.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

31

Chapter 6: Loops

Program: Printing a Table
of Squares (Revisited)

• The square.c program (Section 6.1) can be
improved by converting its while loop to a for
loop.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

32

Chapter 6: Loops

square2.c
/* Prints a table of squares using a for statement */

#include <stdio.h>

int main(void)
{
int i, n;

printf("This program prints a table of squares.\n");
printf("Enter number of entries in table: ");
scanf("%d", &n);

for (i = 1; i <= n; i++)
printf("%10d%10d\n", i, i * i);

return 0;
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

33

Chapter 6: Loops

Exiting from a Loop
• The normal exit point for a loop is at the

beginning (as in a while or for statement) or at
the end (the do statement).

• Using the break statement, it’s possible to write
a loop with an exit point in the middle or a loop
with more than one exit point.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

34

Chapter 6: Loops

The break Statement
• The break statement can transfer control out of a

switch statement, but it can also be used to jump
out of a while, do, or for loop.

• A loop that checks whether a number n is prime
can use a break statement to terminate the loop
as soon as a divisor is found:
for (d = 2; d < n; d++)

if (n % d == 0)
break;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

35

Chapter 6: Loops

The break Statement
• After the loop has terminated, an if statement can

be use to determine whether termination was
premature (hence n isn’t prime) or normal (n is
prime):
if (d < n)

printf("%d is divisible by %d\n", n, d);
else

printf("%d is prime\n", n);

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

36

Chapter 6: Loops

The break Statement
• The break statement is particularly useful for writing

loops in which the exit point is in the middle of the body
rather than at the beginning or end.

• Loops that read user input, terminating when a particular
value is entered, often fall into this category:
for (;;) {
printf("Enter a number (enter 0 to stop): ");
scanf("%d", &n);
if (n == 0)
break;

printf("%d cubed is %d\n", n, n * n * n);
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

37

Chapter 6: Loops

The break Statement
• A break statement transfers control out of the innermost

enclosing while, do, for, or switch.
• When these statements are nested, the break statement

can escape only one level of nesting.
• Example:

while (…) {
switch (…) {
…
break;
…

}
}

• break transfers control out of the switch statement, but
not out of the while loop.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

38

Chapter 6: Loops

The continue Statement
• The continue statement is similar to break:

– break transfers control just past the end of a loop.
– continue transfers control to a point just before the

end of the loop body.
• With break, control leaves the loop; with
continue, control remains inside the loop.

• There’s another difference between break and
continue: break can be used in switch
statements and loops (while, do, and for),
whereas continue is limited to loops.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

39

Chapter 6: Loops

The continue Statement
• A loop that uses the continue statement:
n = 0;
sum = 0;
while (n < 10) {

scanf("%d", &i);
if (i == 0)

continue;
sum += i;
n++;
/* continue jumps to here */

}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

40

Chapter 6: Loops

The continue Statement
• The same loop written without using continue:
n = 0;
sum = 0;
while (n < 10) {

scanf("%d", &i);
if (i != 0) {

sum += i;
n++;

}
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

41

Chapter 6: Loops

The goto Statement
• The goto statement is capable of jumping to any

statement in a function, provided that the statement has a
label.

• A label is just an identifier placed at the beginning of a
statement:
identifier : statement

• A statement may have more than one label.
• The goto statement itself has the form

goto identifier ;

• Executing the statement goto L; transfers control to the
statement that follows the label L, which must be in the
same function as the goto statement itself.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

42

Chapter 6: Loops

The goto Statement
• If C didn’t have a break statement, a goto

statement could be used to exit from a loop:
for (d = 2; d < n; d++)

if (n % d == 0)
goto done;

done:
if (d < n)

printf("%d is divisible by %d\n", n, d);
else

printf("%d is prime\n", n);

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

43

Chapter 6: Loops

The goto Statement
• The goto statement is rarely needed in everyday

C programming.
• The break, continue, and return

statements—which are essentially restricted goto
statements—and the exit function are sufficient
to handle most situations that might require a
goto in other languages.

• Nonetheless, the goto statement can be helpful
once in a while.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

44

Chapter 6: Loops

The goto Statement
• Consider the problem of exiting a loop from within a
switch statement.

• The break statement doesn’t have the desired effect: it exits
from the switch, but not from the loop.

• A goto statement solves the problem:
while (…) {

switch (…) {
…
goto loop_done; /* break won't work here */
…

}
}
loop_done: …

• The goto statement is also useful for exiting from nested
loops.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

45

Chapter 6: Loops

The Null Statement
• Accidentally putting a semicolon after the parentheses in an if,

while, or for statement creates a null statement.
• Example 1:

if (d == 0); /*** WRONG ***/
printf("Error: Division by zero\n");

The call of printf isn’t inside the if statement, so it’s
performed regardless of whether d is equal to 0.

• Example 2:
i = 10;
while (i > 0); /*** WRONG ***/
{
printf("T minus %d and counting\n", i);
--i;

}

The extra semicolon creates an infinite loop.
Copyright © 2008 W. W. Norton & Company.
All rights reserved.

46

Chapter 6: Loops

The Null Statement
• Example 3:

i = 11;
while (--i > 0); /*** WRONG ***/
printf("T minus %d and counting\n", i);

The printf statement is executed only once; the message
printed is:
T minus 0 and counting

• Example 4:
for (i = 10; i > 0; i--); /*** WRONG ***/
printf("T minus %d and counting\n", i);

Again, the loop body is executed only once, and the same
message is printed as in Example 3.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

47

	Chapter 6
	Iteration Statements
	Iteration Statements
	The while Statement
	The while Statement
	The while Statement
	The while Statement
	The while Statement
	The while Statement
	Infinite Loops
	Program: Printing a Table of Squares
	Slide Number 12
	Program: Summing a Series of Numbers
	Slide Number 14
	The do Statement
	The do Statement
	The do Statement
	The for Statement
	The for Statement
	The for Statement
	The for Statement
	The for Statement
	for Statement Idioms
	for Statement Idioms
	Omitting Expressions in a for Statement
	Omitting Expressions in a for Statement
	Omitting Expressions in a for Statement
	The Comma Operator
	The Comma Operator
	The Comma Operator
	The Comma Operator
	Program: Printing a Table�of Squares (Revisited)
	Slide Number 33
	Exiting from a Loop
	The break Statement
	The break Statement
	The break Statement
	The break Statement
	The continue Statement
	The continue Statement
	The continue Statement
	The goto Statement
	The goto Statement
	The goto Statement
	The goto Statement
	The Null Statement
	The Null Statement

