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Iteration Statements
• C’s iteration statements are used to set up loops.
• A loop is a statement whose job is to repeatedly 

execute some other statement (the loop body). 
• In C, every loop has a controlling expression. 
• Each time the loop body is executed (an iteration

of the loop), the controlling expression is 
evaluated.
– If the expression is true (has a value that’s not zero) the 

loop continues to execute.
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Iteration Statements
• C provides three iteration statements:

– The while statement is used for loops whose 
controlling expression is tested before the loop body is 
executed. 

– The do statement is used if the expression is tested 
after the loop body is executed. 

– The for statement is convenient for loops that 
increment or decrement a counting variable. 
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The while Statement
• Using a while statement is the easiest way to set 

up a loop. 
• The while statement has the form
while ( expression ) statement

• expression is the controlling expression; statement
is the loop body. 
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The while Statement
• Example of a while statement:

while (i < n)  /* controlling expression */
i = i * 2;   /* loop body */

• When a while statement is executed, the 
controlling expression is evaluated first. 

• If its value is nonzero (true), the loop body is 
executed and the expression is tested again. 

• The process continues until the controlling 
expression eventually has the value zero.
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The while Statement
• A while statement that computes the smallest power of 

2 that is greater than or equal to a number n:
i = 1;
while (i < n)
i = i * 2;

• A trace of the loop when n has the value 10:
i = 1; i is now 1.
Is i < n? Yes; continue.
i = i * 2; i is now 2.
Is i < n? Yes; continue.
i = i * 2; i is now 4.
Is i < n? Yes; continue.
i = i * 2; i is now 8.
Is i < n? Yes; continue.
i = i * 2; i is now 16.
Is i < n? No; exit from loop.
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The while Statement
• Although the loop body must be a single statement, 

that’s merely a technicality. 
• If multiple statements are needed, use braces to create 

a single compound statement:
while (i > 0) {

printf("T minus %d and counting\n", i);
i--;

}

• Some programmers always use braces, even when 
they’re not strictly necessary:
while (i < n) {

i = i * 2;
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

7



Chapter 6: Loops

The while Statement
• The following statements display a series of 

“countdown” messages:
i = 10;
while (i > 0) {
printf("T minus %d and counting\n", i);
i--;

}

• The final message printed is T minus 1 and
counting.
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The while Statement
• Observations about the while statement:

– The controlling expression is false when a while loop 
terminates. Thus, when a loop controlled by i > 0
terminates, i must be less than or equal to 0.

– The body of a while loop may not be executed at all, 
because the controlling expression is tested before the 
body is executed.

– A while statement can often be written in a variety of 
ways. A more concise version of the countdown loop:
while (i > 0)
printf("T minus %d and counting\n", i--);
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Infinite Loops
• A while statement won’t terminate if the controlling 

expression always has a nonzero value.
• C programmers sometimes deliberately create an 

infinite loop by using a nonzero constant as the 
controlling expression:
while (1) …

• A while statement of this form will execute forever 
unless its body contains a statement that transfers 
control out of the loop (break, goto, return) or 
calls a function that causes the program to terminate.
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Program: Printing a Table of Squares
• The square.c program uses a while statement 

to print a table of squares.
• The user specifies the number of entries in the 

table:
This program prints a table of squares.
Enter number of entries in table: 5

1         1
2         4
3         9
4        16
5        25
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square.c
/* Prints a table of squares using a while statement */

#include <stdio.h>

int main(void)
{
int i, n;

printf("This program prints a table of squares.\n");
printf("Enter number of entries in table: ");
scanf("%d", &n);

i = 1;
while (i <= n) {

printf("%10d%10d\n", i, i * i);
i++;

}

return 0;
}
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Program: Summing a Series of Numbers
• The sum.c program sums a series of integers 

entered by the user:
This program sums a series of integers.
Enter integers (0 to terminate): 8 23 71 5 0
The sum is: 107

• The program will need a loop that uses scanf to 
read a number and then adds the number to a 
running total.
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sum.c
/* Sums a series of numbers */

#include <stdio.h>

int main(void)
{
int n, sum = 0;

printf("This program sums a series of integers.\n");
printf("Enter integers (0 to terminate): ");

scanf("%d", &n);
while (n != 0) {

sum += n;
scanf("%d", &n);

}
printf("The sum is: %d\n", sum);

return 0;
}
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The do Statement
• General form of the do statement:
do statement while ( expression ) ;

• When a do statement is executed, the loop body is 
executed first, then the controlling expression is 
evaluated. 

• If the value of the expression is nonzero, the loop 
body is executed again and then the expression is 
evaluated once more. 
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The do Statement
• The countdown example rewritten as a do

statement:
i = 10;
do {
printf("T minus %d and counting\n", i);
--i;

} while (i > 0);

• The do statement is often indistinguishable from the 
while statement.

• The only difference is that the body of a do
statement is always executed at least once.
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The do Statement
• It’s a good idea to use braces in all do statements, 

whether or not they’re needed, because a do
statement without braces can easily be mistaken 
for a while statement:
do

printf("T minus %d and counting\n", i--);
while (i > 0);

• A careless reader might think that the word 
while was the beginning of a while statement.
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The for Statement
• The for statement is ideal for loops that have a 

“counting” variable, but it’s versatile enough to be 
used for other kinds of loops as well.

• General form of the for statement:
for ( expr1 ; expr2 ; expr3 ) statement 
expr1, expr2, and expr3 are expressions.

• Example:
for (i = 10; i > 0; i--) 
printf("T minus %d and counting\n", i);
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The for Statement
• The for statement is closely related to the while

statement. 
• Except in a few rare cases, a for loop can always be 

replaced by an equivalent while loop:
expr1;
while ( expr2 ) {

statement
expr3;

}

• expr1 is an initialization step that’s performed only 
once, before the loop begins to execute.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

19



Chapter 6: Loops

The for Statement
• expr2 controls loop termination (the loop continues 

executing as long as the value of expr2 is nonzero).
• expr3 is an operation to be performed at the end of 

each loop iteration.
• The result when this pattern is applied to the previous 
for loop:
i = 10;
while (i > 0) {

printf("T minus %d and counting\n", i);
i--;

}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

20



Chapter 6: Loops

The for Statement
• Studying the equivalent while statement can 

help clarify the fine points of a for statement.
• For example, what if i-- is replaced by --i?
for (i = 10; i > 0; --i) 
printf("T minus %d and counting\n", i);

• The equivalent while loop shows that the change 
has no effect on the behavior of the loop:
i = 10;
while (i > 0) {
printf("T minus %d and counting\n", i);
--i;

}
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The for Statement
• Since the first and third expressions in a for

statement are executed as statements, their values 
are irrelevant—they’re useful only for their side 
effects. 

• Consequently, these two expressions are usually 
assignments or increment/decrement expressions.
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for Statement Idioms
• The for statement is usually the best choice for 

loops that “count up” (increment a variable) or “count 
down” (decrement a variable).

• A for statement that counts up or down a total of n
times will usually have one of the following forms:

Counting up from 0 to n–1: for (i = 0; i < n; i++) …

Counting up from 1 to n: for (i = 1; i <= n; i++) …

Counting down from n–1 to 0: for (i = n - 1; i >= 0; i--) …

Counting down from n to 1: for (i = n; i > 0; i--) …
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for Statement Idioms
• Common for statement errors:

– Using < instead of > (or vice versa) in the controlling 
expression. “Counting up” loops should use the < or <=
operator. “Counting down” loops should use > or >=. 

– Using == in the controlling expression instead of <, <=, 
>, or >=.

– “Off-by-one” errors such as writing the controlling 
expression as i <= n instead of i < n.
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Omitting Expressions in a for Statement
• C allows any or all of the expressions that control a 
for statement to be omitted.

• If the first expression is omitted, no initialization is 
performed before the loop is executed:
i = 10; 
for (; i > 0; --i) 

printf("T minus %d and counting\n", i);

• If the third expression is omitted, the loop body is 
responsible for ensuring that the value of the second 
expression eventually becomes false:
for (i = 10; i > 0;) 

printf("T minus %d and counting\n", i--);
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Omitting Expressions in a for Statement
• When the first and third expressions are both 

omitted, the resulting loop is nothing more than a 
while statement in disguise:
for (; i > 0;) 

printf("T minus %d and counting\n", i--);

is the same as
while (i > 0)

printf("T minus %d and counting\n", i--);

• The while version is clearer and therefore 
preferable.
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Omitting Expressions in a for Statement
• If the second expression is missing, it defaults to a 

true value, so the for statement doesn’t terminate 
(unless stopped in some other fashion). 

• For example, some programmers use the 
following for statement to establish an infinite 
loop:
for (;;) …
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The Comma Operator
• On occasion, a for statement may need to have 

two (or more) initialization expressions or one that 
increments several variables each time through the 
loop.

• This effect can be accomplished by using a 
comma expression as the first or third expression 
in the for statement.

• A comma expression has the form
expr1 , expr2
where expr1 and expr2 are any two expressions. 
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The Comma Operator
• A comma expression is evaluated in two steps:

– First, expr1 is evaluated and its value discarded. 
– Second, expr2 is evaluated; its value is the value of the entire 

expression. 

• Evaluating expr1 should always have a side effect; if 
it doesn’t, then expr1 serves no purpose.

• When the comma expression ++i, i + j is 
evaluated, i is first incremented, then i + j is 
evaluated.
– If i and j have the values 1 and 5, respectively, the value of 

the expression will be 7, and i will be incremented to 2.
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The Comma Operator
• The comma operator is left associative, so the 

compiler interprets
i = 1, j = 2, k = i + j

as
((i = 1), (j = 2)), (k = (i + j))

• Since the left operand in a comma expression is 
evaluated before the right operand, the 
assignments i = 1, j = 2, and k = i + j will be 
performed from left to right.
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The Comma Operator
• The comma operator makes it possible to “glue” two 

expressions together to form a single expression.
• Certain macro definitions can benefit from the comma 

operator. 
• The for statement is the only other place where the 

comma operator is likely to be found. 
• Example:

for (sum = 0, i = 1; i <= N; i++)
sum += i;

• With additional commas, the for statement could 
initialize more than two variables.
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Program: Printing a Table
of Squares (Revisited)

• The square.c program (Section 6.1) can be 
improved by converting its while loop to a for
loop.
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square2.c
/* Prints a table of squares using a for statement */

#include <stdio.h>

int main(void)
{
int i, n;

printf("This program prints a table of squares.\n");
printf("Enter number of entries in table: ");
scanf("%d", &n);

for (i = 1; i <= n; i++)
printf("%10d%10d\n", i, i * i);

return 0;
}
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Exiting from a Loop
• The normal exit point for a loop is at the 

beginning (as in a while or for statement) or at 
the end (the do statement).

• Using the break statement, it’s possible to write 
a loop with an exit point in the middle or a loop 
with more than one exit point.
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The break Statement
• The break statement can transfer control out of a 

switch statement, but it can also be used to jump 
out of a while, do, or for loop.

• A loop that checks whether a number n is prime 
can use a break statement to terminate the loop 
as soon as a divisor is found:
for (d = 2; d < n; d++)

if (n % d == 0)
break;
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The break Statement
• After the loop has terminated, an if statement can 

be use to determine whether termination was 
premature (hence n isn’t prime) or normal (n is 
prime):
if (d < n)

printf("%d is divisible by %d\n", n, d);
else

printf("%d is prime\n", n);
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The break Statement
• The break statement is particularly useful for writing 

loops in which the exit point is in the middle of the body 
rather than at the beginning or end. 

• Loops that read user input, terminating when a particular 
value is entered, often fall into this category:
for (;;) {
printf("Enter a number (enter 0 to stop): ");
scanf("%d", &n);
if (n == 0)
break;

printf("%d cubed is %d\n", n, n * n * n);
}
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The break Statement
• A break statement transfers control out of the innermost 

enclosing while, do, for, or switch. 
• When these statements are nested, the break statement 

can escape only one level of nesting. 
• Example:

while (…) {
switch (…) {
…
break;
…

}
}

• break transfers control out of the switch statement, but 
not out of the while loop.
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The continue Statement
• The continue statement is similar to break:

– break transfers control just past the end of a loop.
– continue transfers control to a point just before the 

end of the loop body. 
• With break, control leaves the loop; with 
continue, control remains inside the loop. 

• There’s another difference between break and 
continue: break can be used in switch
statements and loops (while, do, and for), 
whereas continue is limited to loops.
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The continue Statement
• A loop that uses the continue statement:
n = 0;
sum = 0;
while (n < 10) {

scanf("%d", &i);
if (i == 0)

continue;
sum += i;
n++;
/* continue jumps to here */

}
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The continue Statement
• The same loop written without using continue:
n = 0;
sum = 0;
while (n < 10) {

scanf("%d", &i);
if (i != 0) {

sum += i;
n++;

}
}
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The goto Statement
• The goto statement is capable of jumping to any 

statement in a function, provided that the statement has a 
label.

• A label is just an identifier placed at the beginning of a 
statement:
identifier : statement

• A statement may have more than one label. 
• The goto statement itself has the form

goto identifier ;

• Executing the statement goto L; transfers control to the 
statement that follows the label L, which must be in the 
same function as the goto statement itself.
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The goto Statement
• If C didn’t have a break statement, a goto

statement could be used to exit from a loop:
for (d = 2; d < n; d++)

if (n % d == 0)
goto done;

done: 
if (d < n)

printf("%d is divisible by %d\n", n, d);
else

printf("%d is prime\n", n);
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The goto Statement
• The goto statement is rarely needed in everyday 

C programming. 
• The break, continue, and return

statements—which are essentially restricted goto
statements—and the exit function are sufficient 
to handle most situations that might require a 
goto in other languages.

• Nonetheless, the goto statement can be helpful 
once in a while. 

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

44



Chapter 6: Loops

The goto Statement
• Consider the problem of exiting a loop from within a 
switch statement. 

• The break statement doesn’t have the desired effect: it exits 
from the switch, but not from the loop. 

• A goto statement solves the problem:
while (…) {

switch (…) {
…
goto loop_done;   /* break won't work here */
…

}
}
loop_done: …

• The goto statement is also useful for exiting from nested 
loops.
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The Null Statement
• Accidentally putting a semicolon after the parentheses in an if, 

while, or for statement creates a null statement.
• Example 1:

if (d == 0);                          /*** WRONG ***/
printf("Error: Division by zero\n");

The call of printf isn’t inside the if statement, so it’s 
performed regardless of whether d is equal to 0.

• Example 2:
i = 10;
while (i > 0);                        /*** WRONG ***/
{
printf("T minus %d and counting\n", i);
--i;

}

The extra semicolon creates an infinite loop.
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The Null Statement
• Example 3:

i = 11;
while (--i > 0);                /*** WRONG ***/
printf("T minus %d and counting\n", i);

The printf statement is executed only once; the message 
printed is:
T minus 0 and counting

• Example 4:
for (i = 10; i > 0; i--);       /*** WRONG ***/
printf("T minus %d and counting\n", i);

Again, the loop body is executed only once, and the same 
message is printed as in Example 3.
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