
Chapter 7: Basic Types

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

1

Chapter 7

Basic Types

Chapter 7: Basic Types

Basic Types
• C’s basic (built-in) types:

– Integer types, including long integers, short integers,
and unsigned integers

– Floating types (float, double, and long double)
– char

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

2

Chapter 7: Basic Types

Integer Types
• C supports two fundamentally different kinds of

numeric types: integer types and floating types.
• Values of an integer type are whole numbers.
• Values of a floating type can have a fractional part

as well.
• The integer types, in turn, are divided into two

categories: signed and unsigned.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

3

Chapter 7: Basic Types

Signed and Unsigned Integers
• The leftmost bit of a signed integer (known as the sign bit) is

0 if the number is positive or zero, 1 if it’s negative.
• The largest 16-bit integer has the binary representation

0111111111111111, which has the value 32,767 (215 – 1).
• The largest 32-bit integer is

01111111111111111111111111111111
which has the value 2,147,483,647 (231 – 1).

• An integer with no sign bit (the leftmost bit is considered part
of the number’s magnitude) is said to be unsigned.

• The largest 16-bit unsigned integer is 65,535 (216 – 1).
• The largest 32-bit unsigned integer is 4,294,967,295 (232 – 1).

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

4

Chapter 7: Basic Types

Signed and Unsigned Integers
• By default, integer variables are signed in C—the

leftmost bit is reserved for the sign.
• To tell the compiler that a variable has no sign bit,

declare it to be unsigned.
• Unsigned numbers are primarily useful for

systems programming and low-level, machine-
dependent applications.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

5

Chapter 7: Basic Types

Integer Types
• The range of values represented by each of the six

integer types varies from one machine to another.
• However, the C standard requires that short
int, int, and long int must each cover a
certain minimum range of values.

• Also, int must not be shorter than short int,
and long int must not be shorter than int.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

6

Chapter 7: Basic Types

Integer Types
• Typical ranges on a 32-bit machine:

Type Smallest Value Largest Value
short int –32,768 32,767
unsigned short int 0 65,535
int –2,147,483,648 2,147,483,647
unsigned int 0 4,294,967,295
long int –2,147,483,648 2,147,483,647
unsigned long int 0 4,294,967,295

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

7

Chapter 7: Basic Types

Integer Types
• Typical ranges on a 64-bit machine:

Type Smallest Value Largest Value
short int –32,768 32,767
unsigned short int 0 65,535
int –2,147,483,648 2,147,483,647
unsigned int 0 4,294,967,295
long int –263 263–1
unsigned long int 0 264–1

• The <limits.h> header defines macros that
represent the smallest and largest values of each
integer type.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

8

Chapter 7: Basic Types

Integer Overflow
• When arithmetic operations are performed on

integers, it’s possible that the result will be too
large to represent.

• For example, when an arithmetic operation is
performed on two int values, the result must be
able to be represented as an int.

• If the result can’t be represented as an int
(because it requires too many bits), we say that
overflow has occurred.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

9

Chapter 7: Basic Types

Floating Types
• C provides three floating types, corresponding to

different floating-point formats:
– float Single-precision floating-point
– double Double-precision floating-point
– long double Extended-precision floating-point

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

10

Chapter 7: Basic Types

Floating Types
• float is suitable when the amount of precision isn’t

critical.
• double provides enough precision for most

programs.
• long double is rarely used.
• The C standard doesn’t state how much precision the
float, double, and long double types provide,
since that depends on how numbers are stored.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

11

Chapter 7: Basic Types

Floating Types
• Characteristics of float and double when

implemented according to the IEEE standard:
Type Smallest Positive Value Largest Value Precision
float 1.17549 × 10–38 3.40282 × 1038 6 digits
double 2.22507 × 10–308 1.79769 × 10308 15 digits

• On computers that don’t follow the IEEE standard,
this table won’t be valid.

• In fact, on some machines, float may have the
same set of values as double, or double may
have the same values as long double.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

12

Chapter 7: Basic Types

Reading and Writing
Floating-Point Numbers

• The conversion specification %f is used for reading and
writing single-precision floating-point numbers.

• When reading a value of type double, put the letter l in
front of f:
double d;

scanf("%lf", &d);

• Note: Use l only in a scanf format string, not a printf
string.

• In a printf format string, the f conversion can be used to
write either float or double values.

• When reading or writing a value of type long double, put
the letter l in front of f.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

13

Chapter 7: Basic Types

Character Types
• The only remaining basic type is char, the

character type.
• The values of type char can vary from one

computer to another, because different machines
may have different underlying character sets.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

14

Chapter 7: Basic Types

Character Sets
• Today’s most popular character set is ASCII

(American Standard Code for Information
Interchange), a 7-bit code capable of representing
128 characters.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

15

Chapter 7: Basic Types

Character Sets
• A variable of type char can be assigned any

single character:
char ch;

ch = 'a'; /* lower-case a */
ch = 'A'; /* upper-case A */
ch = '0'; /* zero */
ch = ' '; /* space */

• Notice that character constants are enclosed in
single quotes, not double quotes.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

16

Chapter 7: Basic Types

Operations on Characters
• Working with characters in C is simple, because

of one fact: C treats characters as small integers.
• In ASCII, character codes range from 0000000 to

1111111, which we can think of as the integers
from 0 to 127.

• The character 'a' has the value 97, 'A' has the
value 65, '0' has the value 48, and ' ' has the
value 32.

• Character constants actually have int type rather
than char type.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

17

Chapter 7: Basic Types

Operations on Characters
• When a character appears in a computation, C uses

its integer value.
• Consider the following examples, which assume

the ASCII character set:
char ch;
int i;

i = 'a'; /* i is now 97 */
ch = 65; /* ch is now 'A' */
ch = ch + 1; /* ch is now 'B' */
ch++; /* ch is now 'C' */

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

18

Chapter 7: Basic Types

Operations on Characters
• Characters can be compared, just as numbers can.
• An if statement that converts a lower-case letter

to upper case:
if ('a' <= ch && ch <= 'z')

ch = ch - 'a' + 'A';

• Comparisons such as 'a' <= ch are done using
the integer values of the characters involved.

• These values depend on the character set in use, so
programs that use <, <=, >, and >= to compare
characters may not be portable.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

19

Chapter 7: Basic Types

Operations on Characters
• The fact that characters have the same properties as

numbers has advantages.
• For example, it is easy to write a for statement whose

control variable steps through all the upper-case letters:
for (ch = 'A'; ch <= 'Z'; ch++) …

• Disadvantages of treating characters as numbers:
– Can lead to errors that won’t be caught by the compiler.
– Allows meaningless expressions such as'a' * 'b' / 'c'.
– Can hamper portability, since programs may rely on

assumptions about the underlying character set.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

20

Chapter 7: Basic Types

Reading and Writing Characters
Using getchar and putchar

• For single-character input and output, getchar and
putchar are an alternative to scanf and printf.

• putchar writes a character:
putchar(ch);

• Each time getchar is called, it reads one character,
which it returns:
ch = getchar();

• getchar returns an int value rather than a char
value, so ch will often have type int.

• Like scanf, getchar doesn’t skip white-space
characters as it reads.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

21

Chapter 7: Basic Types

Reading and Writing Characters
Using getchar and putchar

• Consider the scanf loop that we used to skip the
rest of an input line:
do {

scanf("%c", &ch);
} while (ch != '\n');

• Rewriting this loop using getchar gives us the
following:
do {

ch = getchar();
} while (ch != '\n');

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

22

Chapter 7: Basic Types

Type Conversion
• For a computer to perform an arithmetic operation, the

operands must usually be of the same size (the same
number of bits) and be stored in the same way.

• When operands of different types are mixed in
expressions, the C compiler may have to generate
instructions that change the types of some operands so
that hardware will be able to evaluate the expression.
– If we add a 16-bit short and a 32-bit int, the compiler

will arrange for the short value to be converted to 32 bits.
– If we add an int and a float, the compiler will arrange

for the int to be converted to float format.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

23

Chapter 7: Basic Types

Type Conversion
• Because the compiler handles these conversions

automatically, without the programmer’s
involvement, they’re known as implicit
conversions.

• C also allows the programmer to perform explicit
conversions, using the cast operator.

• The rules for performing implicit conversions are
somewhat complex, primarily because C has so
many different arithmetic types.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

24

Chapter 7: Basic Types

Type Conversion
• Implicit conversions are performed:

– When the operands in an arithmetic or logical expression
don’t have the same type. (C performs what are known as
the usual arithmetic conversions.)

– When the type of the expression on the right side of an
assignment doesn’t match the type of the variable on the
left side.

– When the type of an argument in a function call doesn’t
match the type of the corresponding parameter.

– When the type of the expression in a return statement
doesn’t match the function’s return type.

• Chapter 9 discusses the last two cases.
Copyright © 2008 W. W. Norton & Company.
All rights reserved.

25

Chapter 7: Basic Types

The Usual Arithmetic Conversions
• The usual arithmetic conversions are applied to the operands

of most binary operators.
• If f has type float and i has type int, the usual

arithmetic conversions will be applied to the operands in the
expression f + i.

• Clearly it’s safer to convert i to type float (matching f’s
type) rather than convert f to type int (matching i’s type).
– When an integer is converted to float, the worst that can happen is

a minor loss of precision.
– Converting a floating-point number to int, on the other hand,

causes the fractional part of the number to be lost. Worse still, the
result will be meaningless if the original number is larger than the
largest possible integer or smaller than the smallest integer.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

26

Chapter 7: Basic Types

The Usual Arithmetic Conversions
• Strategy behind the usual arithmetic conversions: convert

operands to the “narrowest” type that will safely
accommodate both values.

• Operand types can often be made to match by converting the
operand of the narrower type to the type of the other operand
(this act is known as promotion).

• Common promotions include the integral promotions, which
convert a character or short integer to type int (or to
unsigned int in some cases).

• The rules for performing the usual arithmetic conversions can
be divided into two cases:
– The type of either operand is a floating type.
– Neither operand type is a floating type.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

27

Chapter 7: Basic Types

The Usual Arithmetic Conversions
• The type of either operand is a floating type.

– If one operand has type long double, then convert
the other operand to type long double.

– Otherwise, if one operand has type double, convert
the other operand to type double.

– Otherwise, if one operand has type float, convert the
other operand to type float.

• Example: If one operand has type long int and
the other has type double, the long int
operand is converted to double.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

28

Chapter 7: Basic Types

The Usual Arithmetic Conversions
• Neither operand type is a floating type. First

perform integral promotion on both operands.
• Then use the following diagram to promote the

operand whose type is narrower:
unsigned long int

long int

unsigned int

int

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

29

Chapter 7: Basic Types

The Usual Arithmetic Conversions
• Example of the usual arithmetic conversions:

char c;
short int s;
int i;
unsigned int u;
long int l;
unsigned long int ul;
float f;
double d;
long double ld;

i = i + c; /* c is converted to int */
i = i + s; /* s is converted to int */
u = u + i; /* i is converted to unsigned int */
l = l + u; /* u is converted to long int */
ul = ul + l; /* l is converted to unsigned long int */
f = f + ul; /* ul is converted to float */
d = d + f; /* f is converted to double */
ld = ld + d; /* d is converted to long double */

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

30

Chapter 7: Basic Types

Conversion During Assignment
• The usual arithmetic conversions don’t apply to

assignment.
• Instead, the expression on the right side of the

assignment is converted to the type of the variable on
the left side:
char c;
int i;
float f;
double d;

i = c; /* c is converted to int */
f = i; /* i is converted to float */
d = f; /* f is converted to double */

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

31

Chapter 7: Basic Types

Conversion During Assignment
• Assigning a floating-point number to an integer

variable drops the fractional part of the number:
int i;

i = 842.97; /* i is now 842 */
i = -842.97; /* i is now -842 */

• Assigning a value to a variable of a narrower type
will give a meaningless result (or worse) if the
value is outside the range of the variable’s type:
c = 10000; /*** WRONG ***/
i = 1.0e20; /*** WRONG ***/
f = 1.0e100; /*** WRONG ***/

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

32

Chapter 7: Basic Types

Casting
• Although C’s implicit conversions are convenient,

we sometimes need a greater degree of control
over type conversion.

• For this reason, C provides casts.
• A cast expression has the form
(type-name) expression
type-name specifies the type to which the
expression should be converted.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

33

Chapter 7: Basic Types

Casting
• Using a cast expression to compute the fractional

part of a float value:
float f, frac_part;

frac_part = f - (int) f;

• The difference between f and (int) f is the
fractional part of f, which was dropped during the
cast.

• Cast expressions enable us to document type
conversions that would take place anyway:
i = (int) f; /* f is converted to int */

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

34

Chapter 7: Basic Types

Casting
• Cast expressions also let us force the compiler to

perform conversions.
• Example:

float quotient;
int dividend, divisor;

quotient = dividend / divisor;

• To avoid truncation during division, we need to cast
one of the operands:
quotient = (float) dividend / divisor;

• Casting dividend to float causes the compiler to
convert divisor to float also.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

35

Chapter 7: Basic Types

Casting
• C regards (type-name) as a unary operator.
• Unary operators have higher precedence than

binary operators, so the compiler interprets
(float) dividend / divisor

as
((float) dividend) / divisor

• Other ways to accomplish the same effect:
quotient = dividend / (float) divisor;
quotient = (float) dividend / (float) divisor;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

36

Chapter 7: Basic Types

The sizeof Operator
• The value of the expression
sizeof (type-name)

is an unsigned integer representing the number of
bytes required to store a value belonging to type-
name.

• sizeof(char) is always 1, but the sizes of the
other types may vary.

• On a 32-bit machine, sizeof(int) is normally
4.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

37

	Chapter 7
	Basic Types
	Integer Types
	Signed and Unsigned Integers
	Signed and Unsigned Integers
	Integer Types
	Integer Types
	Integer Types
	Integer Overflow
	Floating Types
	Floating Types
	Floating Types
	Reading and Writing�Floating-Point Numbers
	Character Types
	Character Sets
	Character Sets
	Operations on Characters
	Operations on Characters
	Operations on Characters
	Operations on Characters
	Reading and Writing Characters�Using getchar and putchar
	Reading and Writing Characters�Using getchar and putchar
	Type Conversion
	Type Conversion
	Type Conversion
	The Usual Arithmetic Conversions
	The Usual Arithmetic Conversions
	The Usual Arithmetic Conversions
	The Usual Arithmetic Conversions
	The Usual Arithmetic Conversions
	Conversion During Assignment
	Conversion During Assignment
	Casting
	Casting
	Casting
	Casting
	The sizeof Operator

