Chapter 8

Arrays

C PROGRANMMING :

A Modern Approach secowo eoimion

Scalar Variables versus Aggregate Variables

* So far, the only variables we’ve seen are scalar:
capable of holding a single data item.

» (C also supports aggregate variables, which can
store collections of values.

* There are two kinds of aggregates in C: arrays and
structures.

* The focus of the chapter 1s on one-dimensional
arrays, which play a much bigger role in C than do
multidimensional arrays.

@ pnoanmmmc 2

A Modern Approach secowo

One-Dimensional Arrays

An array 1s a data structure containing a number of
data values, all of which have the same type.

These values, known as elements, can be individually
selected by their position within the array.

The simplest kind of array has just one dimension.

The elements of a one-dimensional array a are

conceptually arranged one after another in a single
row (or column):

L]

C PROGRANMMING 3

A Modern Approach secowo eoimion

One-Dimensional Arrays

* To declare an array, we must specify the fype of
the array’s elements and the number of elements:
int a[l0];

* The elements may be of any type; the length of the
array can be any (integer) constant expression.

» Using a macro to define the length of an array 1s
an excellent practice:

#define N 10
int al[N];

@ PROGRAMMII\IG 4

A Modern Approach secowo

Array Subscripting

To access an array element, write the array name
followed by an integer value 1n square brackets.

This 1s referred to as subscripting or indexing the
array.

The elements of an array of length » are indexed
fromOton— 1.

If a 1s an array of length 10, its elements are
designated by a[0],a[1],...,a[9]:

1]

al0] all] al2] al3] al4] alb5] ale] al7] al8] al9]
C PROGRANMMING 5

A Modern Approach secowo eoimion

Array Subscripting

Expressions of the form a [i] are lvalues, so they
can be used 1n the same way as ordinary variables:
al0] = 1;

printf ("$d\n", al[5]);

++al[1];

In general, 1f an array contains elements of type T,
then each element of the array 1s treated as 1f 1t
were a variable of type T.

C PROGRANMMING 6

A Modern Approach secowo eoimion

Array Subscripting

* Many programs contain for loops whose job 1s to perform
some operation on every element 1n an array.

« Examples of typical operations on an array a of length N:

for (1 = 0; 1 < N; 1i++)

ali] = 0; /* clears a */
for (1 = 0; 1 < N; 1i+4+)
scanf ("%d", &al[i]); /* reads data into a */

for (i = 0; 1 < N; 1i++)
sum += al[i]; /* sums the elements of a */

@ PROGRAMMII\IG 7

A Modern Approach secowo eoimion

Array Subscripting

* C doesn’t require that subscript bounds be
checked; 1f a subscript goes out of range, the
program’s behavior 1s undefined.

* A common mistake: forgetting that an array with n
elements 1s indexed from O ton — 1, not 1 to n:

@ pnoanmmmc g

A Modern AI{)IUY‘UC!C;& SECOND ED

Array Subscripting

* An array subscript may be any integer expression:
a[i+3*10] = 0;
* The expression can even have side effects:
1 = 0;
while (i < N)
ali++] = 0;

@ PROGRAMMII\IG 9

A Modern Approach secowo

Array Subscripting

* Be careful when an array subscript has a side effect:

i = 0;
while (i < N)
ali] = b[i++];

 The expressiona[i] =b[i++] accesses the value
of 1 and also modifies i, causing undefined behavior.

* The problem can be avoided by removing the
increment from the subscript:
for (1 = 0; 1 < N; 1i++)
ali] = bl1i];

@ pnoanmmmc 10

A Modern AI{)IUY‘UC!C;& SECOND ED

Program: Reversing a Series of Numbers

 The reverse. c program prompts the user to
enter a series of numbers, then writes the numbers

1n reverse order:

Enter 10 numbers: 34 82 49 102 7 94 23 11 50 31
In reverse order: 31 50 11 23 94 7 102 49 82 34

* The program stores the numbers 1n an array as
they’re read, then goes through the array
backwards, printing the elements one by one.

@ PROGRAMMII\IG 11

A Modern Approach secowo

reverse.cC

/* Reverses a series of numbers */
#include <stdio.h>

#define N 10

int main(void)

{

int a[N], 1i;

printf ("Enter %d numbers: ", N);
for (1 = 0; 1 < N; 1i++)
scanf ("%d", &alil);

printf ("In reverse order:");
for (i = N - 1; 1 >= 0; i--)

printf (" %d", aflil);
printf ("\n");

return 0;

}

C PROGRANMMING 12

A Modern App-r‘oach SECOND EDITION

Array Initialization

* An array, like any other variable, can be given an
initial value at the time it’s declared.

* The most common form of array initializer 1s a
list of constant expressions enclosed 1n braces and
separated by commas:

int a[l1l0] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

C PROGRANMMING 13

A Modern Approach secowo eoimion

Array Initialization

e If the mnitializer 1s shorter than the array, the remaining
clements of the array are given the value O:
int a[l0] = {1, 2, 3, 4, 5, 6};
/* initial wvalue of a is {1, 2, 3,4,5,6,0,0,0,0} */
« Using this feature, we can easily initialize an array to all
Zeros:
int afl0] = {0};
/* initial value of a is {0, 0,0,0,0,0,0,0,0,0} */
There’s a single 0 inside the braces because it’s 1llegal for
an 1nitializer to be completely empty.

« It’s also illegal for an initializer to be longer than the array
it in1tializes.

@ PROGRAMMII\IG 14

A Modern Approach secowo eoimion

Array Initialization

 If an imitializer 1s present, the length of the array
may be omitted:
int al] = {1, 2, 3, 4, 5, o6, 7, 8, 9, 10};

* The compiler uses the length of the initializer to
determine how long the array is.

@ PROGRAMMII\IG 15

A Modern Approach secowo

Using the sizeof Operator with Arrays

The sizeof operator can determine the size of
an array (in bytes).

If a 1s an array of 10 integers, then sizeof (a)

1s typically 40 (assuming that each integer requires
four bytes).

We can also use sizeof to measure the size of
an array element, suchas a[0].

Dividing the array size by the element size gives
the length of the array:

sizeof(a) / sizeof(al[0])

@ pnoanmmmc 16

A Modern Approach secowo

Multidimensional Arrays

* An array may have any number of dimensions.

« The following declaration creates a two-dimensional array
(a matrix, in mathematical terminology):
int m[5][9];

* m has 5 rows and 9 columns. Both rows and columns are

indexed from O:
0 1 2 3 4 5 6 7 8

@ pnoanmmmc 17

A Modern AI{)IUY‘UC!C;& SECOND ED

Multidimensional Arrays

To access the element of m 1n row 1, column 7,
wemust writem[1] [J].

The expressionm [i] designates row i of m, and
m[i] [J] then selects element j in this row.

Resist the temptation to write m [1, j] instead of
m[1][]].

C treats the comma as an operator 1n this context,
som[i,Jj] 1sthesameasm[7j].

@ pnoanmmmc 18

A Modern AI{)IUY‘UC!C;& SECOND ED

Multidimensional Arrays

* Although we visualize two-dimensional arrays as

tables, that’s not the way they’re actually stored 1n
computer memory.

» C stores arrays in row-major order, with row 0
first, then row 1, and so forth.

 How the m array 1s stored:

row 0O row 1 row 4

C PROGRANMMING 19

A Modern Approach secowo eoimion

Multidimensional Arrays

* Nested for loops are 1deal for processing
multidimensional arrays.

* Consider the problem of initializing an array for use as an
identity matrix. A pair of nested for loops 1s perfect:
#tdefine N 10

double ident [N] [N];
int row, col;

for (row = 0; row < N; rowt++)
for (col = 0; col < N; col++)
1f (row == col)
ident[row] [col] = 1.0;
else
ident[row] [col] = 0.0;
@ PROGRAMMII\IG 20

A Modern Approach secowo

Initializing a Multidimensional Array

We can create an initializer for a two-dimensional
array by nesting one-dimensional 1nitializers:
int m[S] [9] = {{1/ 1/]—r]—r]—r OI 1/ 1/ 1}1

{6, ., 0, 1, o0, 1, O, 1, O},
{6, ., 06, 1, 1, O, O, 1, O},
{1, 1, o0, 1, o0, O, O, 1, O},
{1, 1, o0, 1, O, O, 1, 1, 1}1};

Initializers for higher-dimensional arrays are
constructed in a similar fashion.

C provides a variety of ways to abbreviate
initializers for multidimensional arrays

@ pnoanmmmc 21

A Modern Approach secowo

Initializing a Multidimensional Array

 If an mitializer 1sn’t large enough to fill a
multidimensional array, the remaining elements
are given the value O.

* The following initializer fills only the first three
rows of m; the last two rows will contain zeros:
int m[5][9] = {{1, 1, 1, 1, 1, O, 1, 1, 1},

{OI 1/ OI :I-I OI 1/ OI 1/ O}I
{OI 1/ OI l/ l’ OI OI 1/ O}};

@ PROGRAMMII\IG 22

A Modern Approach secowo

Initializing a Multidimensional Array

 If an mmner list 1sn’t long enough to fill a row, the
remaining elements in the row are initialized to 0:

int m[5][9] = {{1, 1,
{0, 1,
{0, 1,
{1, 1,
{1, 1,
@ PROGRAMMII\IG 23

A Modern Approach secows eo

1,

’

~

o O O O
~

~

1,

4

~

S = W S
~

~

1,

’

o O+ O
N W

~

0,

4

o o o
D

~

1,

14

~

P O O O
~

~

1, 14},
1},

1},

1},

1, 1}1}7

Initializing a Multidimensional Array

We can even omit the inner braces:

int m(5(19] = {1, 1, 1, 1, 1, O, 1, 1, 1,
¢, 1, o0, 1, o0, 1, O, 1, O,
g, 1, o0, 1, 1, O, O, 1, O,
i, 1, o0, 1, o0, O, O, 1, O,
1, 1, o0, 1, 0, O, 1, 1, 1};

Once the compiler has seen enough values to fill
one row, 1t begins filling the next.

Omitting the inner braces can be risky, since an
extra element (or even worse, a missing element)
will affect the rest of the initializer.

@ pnoanmmmc 24

A Modern Approach secowo

Constant Arrays

An array can be made “constant” by starting its
declaration with the word const:

const char hex chars[] =
{IOV, llV, 121, IBV, '41, '5![l6l’ l7l’ I8V’ l9"
IAV’ IBV, ICV, IDV, 'El, 'Fl}’.

An array that’s been declared const should not
be modified by the program.

@ pnoanmmmc 25

A Modern Approach secowo eoimion

Constant Arrays

* Advantages of declaring an array to be const:
— Documents that the program won’t change the array.
— Helps the compiler catch errors.
 const 1sn’t limited to arrays, but it’s particularly
useful 1n array declarations.

@ pnoanmmmc 26

A Modern AI{)IUY‘UC!C;& SECOND ED

	Chapter 8
	Scalar Variables versus Aggregate Variables
	One-Dimensional Arrays
	One-Dimensional Arrays
	Array Subscripting
	Array Subscripting
	Array Subscripting
	Array Subscripting
	Array Subscripting
	Array Subscripting
	Program: Reversing a Series of Numbers
	Slide Number 12
	Array Initialization
	Array Initialization
	Array Initialization
	Using the sizeof Operator with Arrays
	Multidimensional Arrays
	Multidimensional Arrays
	Multidimensional Arrays
	Multidimensional Arrays
	Initializing a Multidimensional Array
	Initializing a Multidimensional Array
	Initializing a Multidimensional Array
	Initializing a Multidimensional Array
	Constant Arrays
	Constant Arrays

