
Chapter 8: Arrays

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

1

Chapter 8

Arrays

Chapter 8: Arrays

Scalar Variables versus Aggregate Variables
• So far, the only variables we’ve seen are scalar:

capable of holding a single data item.
• C also supports aggregate variables, which can

store collections of values.
• There are two kinds of aggregates in C: arrays and

structures.
• The focus of the chapter is on one-dimensional

arrays, which play a much bigger role in C than do
multidimensional arrays.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

2

Chapter 8: Arrays

One-Dimensional Arrays
• An array is a data structure containing a number of

data values, all of which have the same type.
• These values, known as elements, can be individually

selected by their position within the array.
• The simplest kind of array has just one dimension.
• The elements of a one-dimensional array a are

conceptually arranged one after another in a single
row (or column):

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

3

Chapter 8: Arrays

One-Dimensional Arrays
• To declare an array, we must specify the type of

the array’s elements and the number of elements:
int a[10];

• The elements may be of any type; the length of the
array can be any (integer) constant expression.

• Using a macro to define the length of an array is
an excellent practice:
#define N 10
…
int a[N];

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

4

Chapter 8: Arrays

Array Subscripting
• To access an array element, write the array name

followed by an integer value in square brackets.
• This is referred to as subscripting or indexing the

array.
• The elements of an array of length n are indexed

from 0 to n – 1.
• If a is an array of length 10, its elements are

designated by a[0], a[1], …, a[9]:

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

5

Chapter 8: Arrays

Array Subscripting
• Expressions of the form a[i] are lvalues, so they

can be used in the same way as ordinary variables:
a[0] = 1;
printf("%d\n", a[5]);
++a[i];

• In general, if an array contains elements of type T,
then each element of the array is treated as if it
were a variable of type T.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

6

Chapter 8: Arrays

Array Subscripting
• Many programs contain for loops whose job is to perform

some operation on every element in an array.
• Examples of typical operations on an array a of length N:

for (i = 0; i < N; i++)
a[i] = 0; /* clears a */

for (i = 0; i < N; i++)
scanf("%d", &a[i]); /* reads data into a */

for (i = 0; i < N; i++)
sum += a[i]; /* sums the elements of a */

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

7

Chapter 8: Arrays

Array Subscripting
• C doesn’t require that subscript bounds be

checked; if a subscript goes out of range, the
program’s behavior is undefined.

• A common mistake: forgetting that an array with n
elements is indexed from 0 to n – 1, not 1 to n:

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

8

Chapter 8: Arrays

Array Subscripting
• An array subscript may be any integer expression:
a[i+j*10] = 0;

• The expression can even have side effects:
i = 0;
while (i < N)

a[i++] = 0;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

9

Chapter 8: Arrays

Array Subscripting
• Be careful when an array subscript has a side effect:

i = 0;
while (i < N)

a[i] = b[i++];

• The expression a[i] = b[i++] accesses the value
of i and also modifies i, causing undefined behavior.

• The problem can be avoided by removing the
increment from the subscript:
for (i = 0; i < N; i++)

a[i] = b[i];

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

10

Chapter 8: Arrays

Program: Reversing a Series of Numbers
• The reverse.c program prompts the user to

enter a series of numbers, then writes the numbers
in reverse order:
Enter 10 numbers: 34 82 49 102 7 94 23 11 50 31
In reverse order: 31 50 11 23 94 7 102 49 82 34

• The program stores the numbers in an array as
they’re read, then goes through the array
backwards, printing the elements one by one.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

11

Chapter 8: Arrays

reverse.c
/* Reverses a series of numbers */

#include <stdio.h>

#define N 10

int main(void)
{

int a[N], i;

printf("Enter %d numbers: ", N);
for (i = 0; i < N; i++)

scanf("%d", &a[i]);

printf("In reverse order:");
for (i = N - 1; i >= 0; i--)

printf(" %d", a[i]);
printf("\n");

return 0;
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

12

Chapter 8: Arrays

Array Initialization
• An array, like any other variable, can be given an

initial value at the time it’s declared.
• The most common form of array initializer is a

list of constant expressions enclosed in braces and
separated by commas:
int a[10] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

13

Chapter 8: Arrays

Array Initialization
• If the initializer is shorter than the array, the remaining

elements of the array are given the value 0:
int a[10] = {1, 2, 3, 4, 5, 6};
/* initial value of a is {1, 2, 3, 4, 5, 6, 0, 0, 0, 0} */

• Using this feature, we can easily initialize an array to all
zeros:
int a[10] = {0};
/* initial value of a is {0, 0, 0, 0, 0, 0, 0, 0, 0, 0} */

There’s a single 0 inside the braces because it’s illegal for
an initializer to be completely empty.

• It’s also illegal for an initializer to be longer than the array
it initializes.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

14

Chapter 8: Arrays

Array Initialization
• If an initializer is present, the length of the array

may be omitted:
int a[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

• The compiler uses the length of the initializer to
determine how long the array is.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

15

Chapter 8: Arrays

Using the sizeof Operator with Arrays
• The sizeof operator can determine the size of

an array (in bytes).
• If a is an array of 10 integers, then sizeof(a)

is typically 40 (assuming that each integer requires
four bytes).

• We can also use sizeof to measure the size of
an array element, such as a[0].

• Dividing the array size by the element size gives
the length of the array:
sizeof(a) / sizeof(a[0])

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

16

Chapter 8: Arrays

Multidimensional Arrays
• An array may have any number of dimensions.
• The following declaration creates a two-dimensional array

(a matrix, in mathematical terminology):
int m[5][9];

• m has 5 rows and 9 columns. Both rows and columns are
indexed from 0:

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

17

Chapter 8: Arrays

Multidimensional Arrays
• To access the element of m in row i, column j,

we must write m[i][j].
• The expression m[i] designates row i of m, and
m[i][j] then selects element j in this row.

• Resist the temptation to write m[i,j] instead of
m[i][j].

• C treats the comma as an operator in this context,
so m[i,j] is the same as m[j].

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

18

Chapter 8: Arrays

Multidimensional Arrays
• Although we visualize two-dimensional arrays as

tables, that’s not the way they’re actually stored in
computer memory.

• C stores arrays in row-major order, with row 0
first, then row 1, and so forth.

• How the m array is stored:

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

19

Chapter 8: Arrays

Multidimensional Arrays
• Nested for loops are ideal for processing

multidimensional arrays.
• Consider the problem of initializing an array for use as an

identity matrix. A pair of nested for loops is perfect:
#define N 10

double ident[N][N];
int row, col;

for (row = 0; row < N; row++)
for (col = 0; col < N; col++)
if (row == col)
ident[row][col] = 1.0;

else
ident[row][col] = 0.0;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

20

Chapter 8: Arrays

Initializing a Multidimensional Array
• We can create an initializer for a two-dimensional

array by nesting one-dimensional initializers:
int m[5][9] = {{1, 1, 1, 1, 1, 0, 1, 1, 1},

{0, 1, 0, 1, 0, 1, 0, 1, 0},
{0, 1, 0, 1, 1, 0, 0, 1, 0},
{1, 1, 0, 1, 0, 0, 0, 1, 0},
{1, 1, 0, 1, 0, 0, 1, 1, 1}};

• Initializers for higher-dimensional arrays are
constructed in a similar fashion.

• C provides a variety of ways to abbreviate
initializers for multidimensional arrays

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

21

Chapter 8: Arrays

Initializing a Multidimensional Array
• If an initializer isn’t large enough to fill a

multidimensional array, the remaining elements
are given the value 0.

• The following initializer fills only the first three
rows of m; the last two rows will contain zeros:
int m[5][9] = {{1, 1, 1, 1, 1, 0, 1, 1, 1},

{0, 1, 0, 1, 0, 1, 0, 1, 0},
{0, 1, 0, 1, 1, 0, 0, 1, 0}};

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

22

Chapter 8: Arrays

Initializing a Multidimensional Array
• If an inner list isn’t long enough to fill a row, the

remaining elements in the row are initialized to 0:
int m[5][9] = {{1, 1, 1, 1, 1, 0, 1, 1, 1},

{0, 1, 0, 1, 0, 1, 0, 1},
{0, 1, 0, 1, 1, 0, 0, 1},
{1, 1, 0, 1, 0, 0, 0, 1},
{1, 1, 0, 1, 0, 0, 1, 1, 1}};

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

23

Chapter 8: Arrays

Initializing a Multidimensional Array
• We can even omit the inner braces:

int m[5][9] = {1, 1, 1, 1, 1, 0, 1, 1, 1,
0, 1, 0, 1, 0, 1, 0, 1, 0,
0, 1, 0, 1, 1, 0, 0, 1, 0,
1, 1, 0, 1, 0, 0, 0, 1, 0,
1, 1, 0, 1, 0, 0, 1, 1, 1};

Once the compiler has seen enough values to fill
one row, it begins filling the next.

• Omitting the inner braces can be risky, since an
extra element (or even worse, a missing element)
will affect the rest of the initializer.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

24

Chapter 8: Arrays

Constant Arrays
• An array can be made “constant” by starting its

declaration with the word const:
const char hex_chars[] =
{'0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
'A', 'B', 'C', 'D', 'E', 'F'};

• An array that’s been declared const should not
be modified by the program.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

25

Chapter 8: Arrays

Constant Arrays
• Advantages of declaring an array to be const:

– Documents that the program won’t change the array.
– Helps the compiler catch errors.

• const isn’t limited to arrays, but it’s particularly
useful in array declarations.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

26

	Chapter 8
	Scalar Variables versus Aggregate Variables
	One-Dimensional Arrays
	One-Dimensional Arrays
	Array Subscripting
	Array Subscripting
	Array Subscripting
	Array Subscripting
	Array Subscripting
	Array Subscripting
	Program: Reversing a Series of Numbers
	Slide Number 12
	Array Initialization
	Array Initialization
	Array Initialization
	Using the sizeof Operator with Arrays
	Multidimensional Arrays
	Multidimensional Arrays
	Multidimensional Arrays
	Multidimensional Arrays
	Initializing a Multidimensional Array
	Initializing a Multidimensional Array
	Initializing a Multidimensional Array
	Initializing a Multidimensional Array
	Constant Arrays
	Constant Arrays

