
Chapter 9: Functions

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

1

Chapter 9

Functions

Chapter 9: Functions

Introduction
• A function is a series of statements that have been

grouped together and given a name.
• Each function is essentially a small program, with

its own declarations and statements.
• Advantages of functions:

– A program can be divided into small pieces that are
easier to understand and modify.

– We can avoid duplicating code that’s used more than
once.

– A function that was originally part of one program can
be reused in other programs.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

2

Chapter 9: Functions

Program: Computing Averages
• A function named average that computes the

average of two double values:
double average(double a, double b)
{

return (a + b) / 2;
}

• The word double at the beginning is the return
type of average.

• The identifiers a and b (the function’s
parameters) represent the numbers that will be
supplied when average is called.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

3

Chapter 9: Functions

Program: Computing Averages
• Every function has an executable part, called the

body, which is enclosed in braces.
• The body of average consists of a single
return statement.

• Executing this statement causes the function to
“return” to the place from which it was called; the
value of (a + b) / 2 will be the value returned
by the function.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

4

Chapter 9: Functions

Program: Computing Averages
• A function call consists of a function name

followed by a list of arguments.
– average(x, y) is a call of the average function.

• Arguments are used to supply information to a
function.
– The call average(x, y) causes the values of x and
y to be copied into the parameters a and b.

• An argument doesn’t have to be a variable; any
expression of a compatible type will do.
– average(5.1, 8.9) and average(x/2, y/3)

are legal.
Copyright © 2008 W. W. Norton & Company.
All rights reserved.

5

Chapter 9: Functions

Program: Computing Averages
• We’ll put the call of average in the place where

we need to use the return value.
• A statement that prints the average of x and y:
printf("Average: %g\n", average(x, y));

The return value of average isn’t saved; the
program prints it and then discards it.

• If we had needed the return value later in the
program, we could have captured it in a variable:
avg = average(x, y);

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

6

Chapter 9: Functions

Program: Computing Averages
• The average.c program reads three numbers

and uses the average function to compute their
averages, one pair at a time:
Enter three numbers: 3.5 9.6 10.2
Average of 3.5 and 9.6: 6.55
Average of 9.6 and 10.2: 9.9
Average of 3.5 and 10.2: 6.85

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

7

Chapter 9: Functions

average.c
/* Computes pairwise averages of three numbers */

#include <stdio.h>

double average(double a, double b)
{

return (a + b) / 2;
}

int main(void)
{

double x, y, z;

printf("Enter three numbers: ");
scanf("%lf%lf%lf", &x, &y, &z);
printf("Average of %g and %g: %g\n", x, y, average(x, y));
printf("Average of %g and %g: %g\n", y, z, average(y, z));
printf("Average of %g and %g: %g\n", x, z, average(x, z));

return 0;
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

8

Chapter 9: Functions

Function Definitions
• General form of a function definition:

return-type function-name (parameters)
{

declarations
statements

}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

9

Chapter 9: Functions

Function Definitions
• The return type of a function is the type of value

that the function returns.
• Rules governing the return type:

– Functions may not return arrays.
– Specifying that the return type is void indicates that

the function doesn’t return a value.
• If the return type is omitted in C89, the function is

presumed to return a value of type int.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

10

Chapter 9: Functions

Function Definitions
• After the function name comes a list of

parameters.
• Each parameter is preceded by a specification of

its type; parameters are separated by commas.
• If the function has no parameters, the word void

should appear between the parentheses.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

11

Chapter 9: Functions

Function Definitions
• The body of a function may include both

declarations and statements.
• An alternative version of the average function:
double average(double a, double b)
{

double sum; /* declaration */

sum = a + b; /* statement */
return sum / 2; /* statement */

}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

12

Chapter 9: Functions

Function Calls
• A function call consists of a function name

followed by a list of arguments, enclosed in
parentheses:
average(x, y)

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

13

Chapter 9: Functions

Function Declarations
• A function declaration provides the compiler with a

brief glimpse at a function whose full definition will
appear later.

• General form of a function declaration:
return-type function-name (parameters) ;

• The declaration of a function must be consistent with
the function’s definition.

• Here’s the average.c program with a declaration of
average added.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

14

Chapter 9: Functions

Function Declarations
#include <stdio.h>

double average(double a, double b); /* DECLARATION */

int main(void)
{
double x, y, z;

printf("Enter three numbers: ");
scanf("%lf%lf%lf", &x, &y, &z);
printf("Average of %g and %g: %g\n", x, y, average(x, y));
printf("Average of %g and %g: %g\n", y, z, average(y, z));
printf("Average of %g and %g: %g\n", x, z, average(x, z));

return 0;
}

double average(double a, double b) /* DEFINITION */
{
return (a + b) / 2;

}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

15

Chapter 9: Functions

Function Declarations
• Function declarations of the kind we’re discussing

are known as function prototypes.
• C also has an older style of function declaration in

which the parentheses are left empty.
• A function prototype doesn’t have to specify the

names of the function’s parameters, as long as
their types are present:
double average(double, double);

• It’s usually best not to omit parameter names.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

16

Chapter 9: Functions

Arguments
• In C, arguments are passed by value: when a

function is called, each argument is evaluated and
its value assigned to the corresponding parameter.

• Since the parameter contains a copy of the
argument’s value, any changes made to the
parameter during the execution of the function
don’t affect the argument.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

17

Chapter 9: Functions

Arguments
• The fact that arguments are passed by value has

both advantages and disadvantages.
• Since a parameter can be modified without

affecting the corresponding argument, we can use
parameters as variables within the function,
reducing the number of genuine variables needed.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

18

Chapter 9: Functions

Arguments
• Consider the following function, which raises a

number x to a power n:
int power(int x, int n)
{

int i, result = 1;

for (i = 1; i <= n; i++)
result = result * x;

return result;
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

19

Chapter 9: Functions

Arguments
• Since n is a copy of the original exponent, the

function can safely modify it, removing the need
for i:
int power(int x, int n)
{

int result = 1;

while (n-- > 0)
result = result * x;

return result;
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

20

Chapter 9: Functions

Arguments
• C’s requirement that arguments be passed by value

makes it difficult to write certain kinds of functions.
• Suppose that we need a function that will decompose a
double value into an integer part and a fractional part.

• Since a function can’t return two numbers, we might try
passing a pair of variables to the function and having it
modify them:
void decompose(double x, long int_part,

double frac_part)
{
int_part = (long) x;
frac_part = x - int_part;

}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

21

Chapter 9: Functions

Arguments
• A call of the function:
decompose(3.14159, i, d);

• Unfortunately, i and d won’t be affected by the
assignments to int_part and frac_part.

• Chapter 11 shows how to make decompose
work correctly.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

22

Chapter 9: Functions

Argument Conversions
• C allows function calls in which the types of the

arguments don’t match the types of the
parameters.

• The rules governing how the arguments are
converted depend on whether or not the compiler
has seen a prototype for the function (or the
function’s full definition) prior to the call.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

23

Chapter 9: Functions

Array Arguments
• When a function parameter is a one-dimensional

array, the length of the array can be left unspecified:
int f(int a[]) /* no length specified */
{
…

}

• C doesn’t provide any easy way for a function to
determine the length of an array passed to it.

• Instead, we’ll have to supply the length—if the
function needs it—as an additional argument.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

24

Chapter 9: Functions

Array Arguments
• Example:
int sum_array(int a[], int n)
{
int i, sum = 0;

for (i = 0; i < n; i++)
sum += a[i];

return sum;
}

• Since sum_array needs to know the length of a,
we must supply it as a second argument.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

25

Chapter 9: Functions

Array Arguments
• The prototype for sum_array has the following

appearance:
int sum_array(int a[], int n);

• As usual, we can omit the parameter names if we
wish:
int sum_array(int [], int);

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

26

Chapter 9: Functions

Array Arguments
• When sum_array is called, the first argument will be the

name of an array, and the second will be its length:
#define LEN 100

int main(void)
{
int b[LEN], total;
…
total = sum_array(b, LEN);
…

}

• Notice that we don’t put brackets after an array name when
passing it to a function:
total = sum_array(b[], LEN); /*** WRONG ***/

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

27

Chapter 9: Functions

Array Arguments
• A function has no way to check that we’ve passed

it the correct array length.
• We can exploit this fact by telling the function that

the array is smaller than it really is.
• Suppose that we’ve only stored 50 numbers in the
b array, even though it can hold 100.

• We can sum just the first 50 elements by writing
total = sum_array(b, 50);

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

28

Chapter 9: Functions

Array Arguments
• Be careful not to tell a function that an array

argument is larger than it really is:
total = sum_array(b, 150); /*** WRONG ***/

sum_array will go past the end of the array,
causing undefined behavior.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

29

Chapter 9: Functions

Array Arguments
• A function is allowed to change the elements of an

array parameter, and the change is reflected in the
corresponding argument.

• A function that modifies an array by storing zero
into each of its elements:
void store_zeros(int a[], int n)
{

int i;

for (i = 0; i < n; i++)
a[i] = 0;

}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

30

Chapter 9: Functions

Array Arguments
• A call of store_zeros:
store_zeros(b, 100);

• The ability to modify the elements of an array
argument may seem to contradict the fact that C
passes arguments by value.

• Chapter 12 explains why there’s actually no
contradiction.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

31

Chapter 9: Functions

Array Arguments
• If a parameter is a multidimensional array, only the length

of the first dimension may be omitted.
• If we revise sum_array so that a is a two-dimensional

array, we must specify the number of columns in a:
#define LEN 10

int sum_two_dimensional_array(int a[][LEN], int n)
{
int i, j, sum = 0;

for (i = 0; i < n; i++)
for (j = 0; j < LEN; j++)
sum += a[i][j];

return sum;
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

32

Chapter 9: Functions

The return Statement
• A non-void function must use the return

statement to specify what value it will return.
• The return statement has the form
return expression ;

• The expression is often just a constant or variable:
return 0;
return status;

• More complex expressions are possible:
return n >= 0 ? n : 0;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

33

Chapter 9: Functions

The return Statement
• If the type of the expression in a return

statement doesn’t match the function’s return type,
the expression will be implicitly converted to the
return type.
– If a function returns an int, but the return statement

contains a double expression, the value of the
expression is converted to int.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

34

Chapter 9: Functions

The return Statement
• return statements may appear in functions

whose return type is void, provided that no
expression is given:
return; /* return in a void function */

• Example:
void print_int(int i)
{

if (i < 0)
return;

printf("%d", i);
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

35

Chapter 9: Functions

The return Statement
• A return statement may appear at the end of a
void function:
void print_pun(void)
{
printf("To C, or not to C: that is the question.\n");
return; /* OK, but not needed */

}

Using return here is unnecessary.
• If a non-void function fails to execute a return

statement, the behavior of the program is undefined
if it attempts to use the function’s return value.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

36

	Chapter 9
	Introduction
	Program: Computing Averages
	Program: Computing Averages
	Program: Computing Averages
	Program: Computing Averages
	Program: Computing Averages
	Slide Number 8
	Function Definitions
	Function Definitions
	Function Definitions
	Function Definitions
	Function Calls
	Function Declarations
	Function Declarations
	Function Declarations
	Arguments
	Arguments
	Arguments
	Arguments
	Arguments
	Arguments
	Argument Conversions
	Array Arguments
	Array Arguments
	Array Arguments
	Array Arguments
	Array Arguments
	Array Arguments
	Array Arguments
	Array Arguments
	Array Arguments
	The return Statement
	The return Statement
	The return Statement
	The return Statement

