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Chapter 9: Functions

Introduction
• A function is a series of statements that have been 

grouped together and given a name.
• Each function is essentially a small program, with 

its own declarations and statements.
• Advantages of functions:

– A program can be divided into small pieces that are 
easier to understand and modify.

– We can avoid duplicating code that’s used more than 
once.

– A function that was originally part of one program can 
be reused in other programs.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

2



Chapter 9: Functions

Program: Computing Averages
• A function named average that computes the 

average of two double values:
double average(double a, double b)
{

return (a + b) / 2;
}

• The word double at the beginning is the return 
type of average.

• The identifiers a and b (the function’s 
parameters) represent the numbers that will be 
supplied when average is called.
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Program: Computing Averages
• Every function has an executable part, called the 

body, which is enclosed in braces.
• The body of average consists of a single 
return statement.

• Executing this statement causes the function to 
“return” to the place from which it was called; the 
value of (a + b) / 2 will be the value returned 
by the function.
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Program: Computing Averages
• A function call consists of a function name 

followed by a list of arguments.
– average(x, y) is a call of the average function.

• Arguments are used to supply information to a 
function.
– The call average(x, y) causes the values of x and 
y to be copied into the parameters a and b.

• An argument doesn’t have to be a variable; any 
expression of a compatible type will do.
– average(5.1, 8.9) and average(x/2, y/3)

are legal.
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Program: Computing Averages
• We’ll put the call of average in the place where 

we need to use the return value.
• A statement that prints the average of x and y:
printf("Average: %g\n", average(x, y));

The return value of average isn’t saved; the 
program prints it and then discards it.

• If we had needed the return value later in the 
program, we could have captured it in a variable:
avg = average(x, y);
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Program: Computing Averages
• The average.c program reads three numbers 

and uses the average function to compute their 
averages, one pair at a time:
Enter three numbers: 3.5 9.6 10.2
Average of 3.5 and 9.6: 6.55
Average of 9.6 and 10.2: 9.9
Average of 3.5 and 10.2: 6.85
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average.c
/* Computes pairwise averages of three numbers */

#include <stdio.h>

double average(double a, double b)
{

return (a + b) / 2;
}

int main(void)
{

double x, y, z;

printf("Enter three numbers: ");
scanf("%lf%lf%lf", &x, &y, &z);
printf("Average of %g and %g: %g\n", x, y, average(x, y));
printf("Average of %g and %g: %g\n", y, z, average(y, z));
printf("Average of %g and %g: %g\n", x, z, average(x, z));

return 0;
}
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Function Definitions
• General form of a function definition:

return-type function-name ( parameters )
{

declarations
statements

}
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Function Definitions
• The return type of a function is the type of value 

that the function returns.
• Rules governing the return type:

– Functions may not return arrays.
– Specifying that the return type is void indicates that 

the function doesn’t return a value.
• If the return type is omitted in C89, the function is 

presumed to return a value of type int.
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Function Definitions
• After the function name comes a list of 

parameters.
• Each parameter is preceded by a specification of 

its type; parameters are separated by commas.
• If the function has no parameters, the word void

should appear between the parentheses.
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Function Definitions
• The body of a function may include both 

declarations and statements.
• An alternative version of the average function:
double average(double a, double b)
{

double sum;       /* declaration */

sum = a + b;      /* statement */
return sum / 2;   /* statement */

}
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Function Calls
• A function call consists of a function name 

followed by a list of arguments, enclosed in 
parentheses:
average(x, y)
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Function Declarations
• A function declaration provides the compiler with a 

brief glimpse at a function whose full definition will 
appear later.

• General form of a function declaration:
return-type function-name ( parameters ) ;

• The declaration of a function must be consistent with 
the function’s definition.

• Here’s the average.c program with a declaration of 
average added.
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Function Declarations
#include <stdio.h>

double average(double a, double b);   /* DECLARATION */

int main(void)
{
double x, y, z;

printf("Enter three numbers: ");
scanf("%lf%lf%lf", &x, &y, &z);
printf("Average of %g and %g: %g\n", x, y, average(x, y));
printf("Average of %g and %g: %g\n", y, z, average(y, z));
printf("Average of %g and %g: %g\n", x, z, average(x, z));

return 0;
}

double average(double a, double b)    /* DEFINITION */
{
return (a + b) / 2;

}
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Function Declarations
• Function declarations of the kind we’re discussing 

are known as function prototypes.
• C also has an older style of function declaration in 

which the parentheses are left empty.
• A function prototype doesn’t have to specify the 

names of the function’s parameters, as long as 
their types are present:
double average(double, double);

• It’s usually best not to omit parameter names.
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Arguments
• In C, arguments are passed by value: when a 

function is called, each argument is evaluated and 
its value assigned to the corresponding parameter.

• Since the parameter contains a copy of the 
argument’s value, any changes made to the 
parameter during the execution of the function 
don’t affect the argument.
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Arguments
• The fact that arguments are passed by value has 

both advantages and disadvantages.
• Since a parameter can be modified without 

affecting the corresponding argument, we can use 
parameters as variables within the function, 
reducing the number of genuine variables needed.
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Arguments
• Consider the following function, which raises a 

number x to a power n:
int power(int x, int n)
{

int i, result = 1;

for (i = 1; i <= n; i++)
result = result * x;

return result;
}
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Arguments
• Since n is a copy of the original exponent, the 

function can safely modify it, removing the need 
for i:
int power(int x, int n)
{

int result = 1;

while (n-- > 0)
result = result * x;

return result;
}
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Arguments
• C’s requirement that arguments be passed by value 

makes it difficult to write certain kinds of functions.
• Suppose that we need a function that will decompose a 
double value into an integer part and a fractional part.

• Since a function can’t return two numbers, we might try 
passing a pair of variables to the function and having it 
modify them:
void decompose(double x, long int_part,

double frac_part)
{
int_part = (long) x;
frac_part = x - int_part;

}
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Arguments
• A call of the function:
decompose(3.14159, i, d);

• Unfortunately, i and d won’t be affected by the 
assignments to int_part and frac_part.

• Chapter 11 shows how to make decompose
work correctly.
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Argument Conversions
• C allows function calls in which the types of the 

arguments don’t match the types of the 
parameters.

• The rules governing how the arguments are 
converted depend on whether or not the compiler 
has seen a prototype for the function (or the 
function’s full definition) prior to the call.
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Array Arguments
• When a function parameter is a one-dimensional 

array, the length of the array can be left unspecified:
int f(int a[])  /* no length specified */
{
…

}

• C doesn’t provide any easy way for a function to 
determine the length of an array passed to it.

• Instead, we’ll have to supply the length—if the 
function needs it—as an additional argument.
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Array Arguments
• Example:
int sum_array(int a[], int n)
{
int i, sum = 0;

for (i = 0; i < n; i++)
sum += a[i];

return sum;
}

• Since sum_array needs to know the length of a, 
we must supply it as a second argument.
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Array Arguments
• The prototype for sum_array has the following 

appearance:
int sum_array(int a[], int n);

• As usual, we can omit the parameter names if we 
wish:
int sum_array(int [], int);
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Array Arguments
• When sum_array is called, the first argument will be the 

name of an array, and the second will be its length:
#define LEN 100

int main(void)
{
int b[LEN], total;
…
total = sum_array(b, LEN);
…

}

• Notice that we don’t put brackets after an array name when 
passing it to a function:
total = sum_array(b[], LEN);   /*** WRONG ***/
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Array Arguments
• A function has no way to check that we’ve passed 

it the correct array length.
• We can exploit this fact by telling the function that 

the array is smaller than it really is.
• Suppose that we’ve only stored 50 numbers in the 
b array, even though it can hold 100.

• We can sum just the first 50 elements by writing
total = sum_array(b, 50);
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Array Arguments
• Be careful not to tell a function that an array 

argument is larger than it really is:
total = sum_array(b, 150); /*** WRONG ***/

sum_array will go past the end of the array, 
causing undefined behavior.
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Array Arguments
• A function is allowed to change the elements of an 

array parameter, and the change is reflected in the 
corresponding argument.

• A function that modifies an array by storing zero 
into each of its elements:
void store_zeros(int a[], int n)
{

int i;

for (i = 0; i < n; i++) 
a[i] = 0;

}
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Array Arguments
• A call of store_zeros:
store_zeros(b, 100);

• The ability to modify the elements of an array 
argument may seem to contradict the fact that C 
passes arguments by value.

• Chapter 12 explains why there’s actually no 
contradiction.
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Array Arguments
• If a parameter is a multidimensional array, only the length

of the first dimension may be omitted.
• If we revise sum_array so that a is a two-dimensional 

array, we must specify the number of columns in a:
#define LEN 10

int sum_two_dimensional_array(int a[][LEN], int n)
{
int i, j, sum = 0;

for (i = 0; i < n; i++)
for (j = 0; j < LEN; j++)
sum += a[i][j];

return sum;
}
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The return Statement
• A non-void function must use the return

statement to specify what value it will return.
• The return statement has the form
return expression ;

• The expression is often just a constant or variable:
return 0;
return status;

• More complex expressions are possible:
return n >= 0 ? n : 0;
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The return Statement
• If the type of the expression in a return

statement doesn’t match the function’s return type, 
the expression will be implicitly converted to the 
return type.
– If a function returns an int, but the return statement 

contains a double expression, the value of the 
expression is converted to int.
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The return Statement
• return statements may appear in functions 

whose return type is void, provided that no 
expression is given:
return;  /* return in a void function */

• Example:
void print_int(int i)
{

if (i < 0)
return;

printf("%d", i);
}
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The return Statement
• A return statement may appear at the end of a 
void function:
void print_pun(void)
{
printf("To C, or not to C: that is the question.\n");
return;   /* OK, but not needed */

}

Using return here is unnecessary.
• If a non-void function fails to execute a return

statement, the behavior of the program is undefined 
if it attempts to use the function’s return value.
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