
Chapter 10: Program Organization

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

1

Chapter 10

Program Organization

Chapter 10: Program Organization

Local Variables
• A variable declared in the body of a function is

said to be local to the function:
int sum_digits(int n)
{

int sum = 0; /* local variable */

while (n > 0) {
sum += n % 10;
n /= 10;

}

return sum;
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

2

Chapter 10: Program Organization

Local Variables
• Default properties of local variables:

– Automatic storage duration. Storage is “automatically”
allocated when the enclosing function is called and
deallocated when the function returns.

– Block scope. A local variable is visible from its point of
declaration to the end of the enclosing function body.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

3

Chapter 10: Program Organization

Static Local Variables
• Including static in the declaration of a local variable

causes it to have static storage duration.
• A variable with static storage duration has a permanent

storage location, so it retains its value throughout the
execution of the program.

• Example:
void f(void)
{
static int i; /* static local variable */
…

}

• A static local variable still has block scope, so it’s not
visible to other functions.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

4

Chapter 10: Program Organization

Static Local Variables: Example
• What will be the value of f(10) if f has never

been called before? What will be the value of
f(10) if f has been called five times previously?

int f(int i)

{
static int j = 0;

return i * j++;

}

Answers: 0, 50

Chapter 10: Program Organization

Parameters
• Parameters have the same properties—automatic

storage duration and block scope—as local
variables.

• Each parameter is initialized automatically when a
function is called (by being assigned the value of
the corresponding argument).

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

6

Chapter 10: Program Organization

External Variables
• Passing arguments is one way to transmit

information to a function.
• Functions can also communicate through external

variables—variables that are declared outside the
body of any function.

• External variables are sometimes known as global
variables.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

7

Chapter 10: Program Organization

External Variables
• Properties of external variables:

– Static storage duration
– File scope

• Having file scope means that an external variable
is visible from its point of declaration to the end of
the enclosing file.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

8

Chapter 10: Program Organization

Pros and Cons of External Variables
• External variables are convenient when many functions

must share a variable or when a few functions share a
large number of variables.

• In most cases, it’s better for functions to communicate
through parameters rather than by sharing variables:
– If we change an external variable during program maintenance

(by altering its type, say), we’ll need to check every function in
the same file to see how the change affects it.

– If an external variable is assigned an incorrect value, it may be
difficult to identify the guilty function.

– Functions that rely on external variables are hard to reuse in
other programs.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

9

Chapter 10: Program Organization

Pros and Cons of External Variables
• Don’t use the same external variable for different

purposes in different functions.
• Suppose that several functions need a variable

named i to control a for statement.
• Instead of declaring i in each function that uses it,

some programmers declare it just once at the top
of the program.

• This practice is misleading; someone reading the
program later may think that the uses of i are
related, when in fact they’re not.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

10

Chapter 10: Program Organization

Pros and Cons of External Variables
• Make sure that external variables have meaningful

names.
• Local variables don’t always need meaningful

names: it’s often hard to think of a better name
than i for the control variable in a for loop.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

11

Chapter 10: Program Organization

Pros and Cons of External Variables
• Making variables external when they should be local can lead to

some rather frustrating bugs.
• Code that is supposed to display a 10 × 10 arrangement of asterisks:

int i;

void print_one_row(void)
{
for (i = 1; i <= 10; i++)
printf("*");

}

void print_all_rows(void)
{
for (i = 1; i <= 10; i++) {
print_one_row();
printf("\n");

}
}

• Instead of printing 10 rows, print_all_rows prints only one.
Copyright © 2008 W. W. Norton & Company.
All rights reserved.

12

Chapter 10: Program Organization

Blocks
• In Section 5.2, we encountered compound

statements of the form
{ statements }

• C allows compound statements to contain
declarations as well as statements:
{ declarations statements }

• This kind of compound statement is called a
block.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

13

Chapter 10: Program Organization

Blocks
• Example of a block:
if (i > j) {

/* swap values of i and j */
int temp = i;
i = j;
j = temp;

}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

14

Chapter 10: Program Organization

Blocks
• By default, the storage duration of a variable

declared in a block is automatic: storage for the
variable is allocated when the block is entered and
deallocated when the block is exited.

• The variable has block scope; it can’t be
referenced outside the block.

• A variable that belongs to a block can be declared
static to give it static storage duration.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

15

Chapter 10: Program Organization

Blocks
• The body of a function is a block.
• Blocks are also useful inside a function body when

we need variables for temporary use.
• Advantages of declaring temporary variables in

blocks:
– Avoids cluttering declarations at the beginning of the

function body with variables that are used only briefly.
– Reduces name conflicts.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

16

Chapter 10: Program Organization

Scope
• In a C program, the same identifier may have several

different meanings.
• C’s scope rules enable the programmer (and the

compiler) to determine which meaning is relevant at a
given point in the program.

• The most important scope rule: When a declaration
inside a block names an identifier that’s already
visible, the new declaration temporarily “hides” the
old one, and the identifier takes on a new meaning.

• At the end of the block, the identifier regains its old
meaning.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

17

Chapter 10: Program Organization

Scope
• In the example on the next slide, the identifier i

has four different meanings:
– In Declaration 1, i is a variable with static storage

duration and file scope.
– In Declaration 2, i is a parameter with block scope.
– In Declaration 3, i is an automatic variable with block

scope.
– In Declaration 4, i is also automatic and has block

scope.
• C’s scope rules allow us to determine the meaning

of i each time it’s used (indicated by arrows).
Copyright © 2008 W. W. Norton & Company.
All rights reserved.

18

Chapter 10: Program Organization

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

19

	Chapter 10
	Local Variables
	Local Variables
	Static Local Variables
	Static Local Variables: Example
	Parameters
	External Variables
	External Variables
	Pros and Cons of External Variables
	Pros and Cons of External Variables
	Pros and Cons of External Variables
	Pros and Cons of External Variables
	Blocks
	Blocks
	Blocks
	Blocks
	Scope
	Scope
	Slide Number 19

