
Chapter 11: Pointers

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

1

Chapter 11

Pointers

Chapter 11: Pointers

Pointer Variables
• The first step in understanding pointers is

visualizing what they represent at the machine
level.

• In most modern computers, main memory is
divided into bytes, with each byte capable of
storing eight bits of information:

• Each byte has a unique address.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

2

Chapter 11: Pointers

Pointer Variables
• If there are n bytes in memory, we can think of

addresses as numbers that range from 0 to n – 1:

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

3

Chapter 11: Pointers

Pointer Variables
• Each variable in a program occupies one or more

bytes of memory.
• The address of the first byte is said to be the

address of the variable.
• In the following figure, the address of the variable
i is 2000:

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

4

Chapter 11: Pointers

Pointer Variables
• Addresses can be stored in special pointer

variables.
• When we store the address of a variable i in the

pointer variable p, we say that p “points to” i.
• A graphical representation:

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

5

Chapter 11: Pointers

Declaring Pointer Variables
• When a pointer variable is declared, its name must

be preceded by an asterisk:
int *p;

• p is a pointer variable capable of pointing to
objects of type int.

• We use the term object instead of variable since p
might point to an area of memory that doesn’t
belong to a variable.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

6

Chapter 11: Pointers

Declaring Pointer Variables
• Pointer variables can appear in declarations along with

other variables:
int i, j, a[10], b[20], *p, *q;

• C requires that every pointer variable point only to
objects of a particular type (the referenced type):
int *p; /* points only to integers */
double *q; /* points only to doubles */
char *r; /* points only to characters */

• There are no restrictions on what the referenced type
may be.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

7

Chapter 11: Pointers

The Address and Indirection Operators
• C provides a pair of operators designed

specifically for use with pointers.
– To find the address of a variable, we use the & (address)

operator.
– To gain access to the object that a pointer points to, we

use the * (indirection) operator.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

8

Chapter 11: Pointers

The Address Operator
• Declaring a pointer variable sets aside space for a

pointer but doesn’t make it point to an object:
int *p; /* points nowhere in particular */

• It’s crucial to initialize p before we use it.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

9

Chapter 11: Pointers

The Address Operator
• One way to initialize a pointer variable is to assign

it the address of a variable:
int i, *p;
…
p = &i;

• Assigning the address of i to the variable p makes
p point to i:

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

10

Chapter 11: Pointers

The Address Operator
• It’s also possible to initialize a pointer variable at

the time it’s declared:
int i;
int *p = &i;

• The declaration of i can even be combined with
the declaration of p:
int i, *p = &i;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

11

Chapter 11: Pointers

The Indirection Operator
• Once a pointer variable points to an object, we can

use the * (indirection) operator to access what’s
stored in the object.

• If p points to i, we can print the value of i as
follows:
printf("%d\n", *p);

• Applying & to a variable produces a pointer to the
variable. Applying * to the pointer takes us back
to the original variable:
j = *&i; /* same as j = i; */

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

12

Chapter 11: Pointers

The Indirection Operator
• As long as p points to i, *p is an alias for i.

– *p has the same value as i.
– Changing the value of *p changes the value of i.

• The example on the next slide illustrates the
equivalence of *p and i.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

13

Chapter 11: Pointers

The Indirection Operator
p = &i;

i = 1;

printf("%d\n", i); /* prints 1 */
printf("%d\n", *p); /* prints 1 */
*p = 2;

printf("%d\n", i); /* prints 2 */
printf("%d\n", *p); /* prints 2 */

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

14

Chapter 11: Pointers

The Indirection Operator
• Applying the indirection operator to an

uninitialized pointer variable causes undefined
behavior:
int *p;
printf("%d", *p); /*** WRONG ***/

• Assigning a value to *p is particularly dangerous:
int *p;
*p = 1; /*** WRONG ***/

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

15

Chapter 11: Pointers

Pointer Assignment
• C allows the use of the assignment operator to

copy pointers of the same type.
• Assume that the following declaration is in effect:
int i, j, *p, *q;

• Example of pointer assignment:
p = &i;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

16

Chapter 11: Pointers

Pointer Assignment
• Another example of pointer assignment:
q = p;

q now points to the same place as p:

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

17

Chapter 11: Pointers

Pointer Assignment
• If p and q both point to i, we can change i by

assigning a new value to either *p or *q:
*p = 1;

*q = 2;

• Any number of pointer variables may point to the
same object.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

18

Chapter 11: Pointers

Pointer Assignment
• Be careful not to confuse
q = p;

with
*q = *p;

• The first statement is a pointer assignment, but the
second is not.

• The example on the next slide shows the effect of
the second statement.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

19

Chapter 11: Pointers

Pointer Assignment
p = &i;
q = &j;
i = 1;

*q = *p;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

20

Chapter 11: Pointers

Pointers as Arguments
• In Chapter 9, we tried—and failed—to write a
decompose function that could modify its
arguments.

• By passing a pointer to a variable instead of the
value of the variable, decompose can be fixed.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

21

Chapter 11: Pointers

Pointers as Arguments
• New definition of decompose:
void decompose(double x, long *int_part,

double *frac_part)
{
*int_part = (long) x;
*frac_part = x - *int_part;

}

• Possible prototypes for decompose:
void decompose(double x, long *int_part,

double *frac_part);

void decompose(double, long *, double *);

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

22

Chapter 11: Pointers

Pointers as Arguments
• A call of decompose:
decompose(3.14159, &i, &d);

• As a result of the call, int_part points to i and
frac_part points to d:

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

23

Chapter 11: Pointers

Pointers as Arguments
• The first assignment in the body of decompose

converts the value of x to type long and stores it
in the object pointed to by int_part:

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

24

Chapter 11: Pointers

Pointers as Arguments
• The second assignment stores x - *int_part

into the object that frac_part points to:

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

25

Chapter 11: Pointers

Pointers as Arguments
• Arguments in calls of scanf are pointers:
int i;
…
scanf("%d", &i);

Without the &, scanf would be supplied with the
value of i.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

26

Chapter 11: Pointers

Pointers as Arguments
• Although scanf’s arguments must be pointers,

it’s not always true that every argument needs the
& operator:
int i, *p;
…
p = &i;
scanf("%d", p);

• Using the & operator in the call would be wrong:
scanf("%d", &p); /*** WRONG ***/

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

27

Chapter 11: Pointers

Pointers as Arguments
• Failing to pass a pointer to a function when one is expected

can have disastrous results.
• A call of decompose in which the & operator is missing:

decompose(3.14159, i, d);

• When decompose stores values in *int_part and
*frac_part, it will attempt to change unknown memory
locations instead of modifying i and d.

• If we’ve provided a prototype for decompose, the
compiler will detect the error.

• In the case of scanf, however, failing to pass pointers
may go undetected.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

28

Chapter 11: Pointers

Program: Finding the Largest and
Smallest Elements in an Array

• The max_min.c program uses a function named max_min
to find the largest and smallest elements in an array.

• Prototype for max_min:
void max_min(int a[], int n, int *max, int *min);

• Example call of max_min:
max_min(b, N, &big, &small);

• When max_min finds the largest element in b, it stores the
value in big by assigning it to *max.

• max_min stores the smallest element of b in small by
assigning it to *min.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

29

Chapter 11: Pointers

Program: Finding the Largest and
Smallest Elements in an Array

• max_min.c will read 10 numbers into an array, pass
it to the max_min function, and print the results:
Enter 10 numbers: 34 82 49 102 7 94 23 11 50 31
Largest: 102
Smallest: 7

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

30

Chapter 11: Pointers

maxmin.c
/* Finds the largest and smallest elements in an array */

#include <stdio.h>

#define N 10

void max_min(int a[], int n, int *max, int *min);

int main(void)
{
int b[N], i, big, small;

printf("Enter %d numbers: ", N);
for (i = 0; i < N; i++)
scanf("%d", &b[i]);

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

31

Chapter 11: Pointers

max_min(b, N, &big, &small);

printf("Largest: %d\n", big);
printf("Smallest: %d\n", small);

return 0;
}

void max_min(int a[], int n, int *max, int *min)
{
int i;

*max = *min = a[0];
for (i = 1; i < n; i++) {
if (a[i] > *max)
*max = a[i];

else if (a[i] < *min)
*min = a[i];

}
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

32

Chapter 11: Pointers

Using const to Protect Arguments
• When an argument is a pointer to a variable x, we

normally assume that x will be modified:
f(&x);

• It’s possible, though, that f merely needs to
examine the value of x, not change it.

• The reason for the pointer might be efficiency:
passing the value of a variable can waste time and
space if the variable requires a large amount of
storage.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

33

Chapter 11: Pointers

Using const to Protect Arguments
• We can use const to document that a function

won’t change an object whose address is passed to
the function.

• const goes in the parameter’s declaration, just
before the specification of its type:
void f(const int *p)
{

*p = 0; /*** WRONG ***/
}

Attempting to modify *p is an error that the
compiler will detect.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

34

Chapter 11: Pointers

Pointers as Return Values
• Functions are allowed to return pointers:

int *max(int *a, int *b)
{

if (*a > *b)
return a;

else
return b;

}

• A call of the max function:
int *p, i, j;
…
p = max(&i, &j);

After the call, p points to either i or j.
Copyright © 2008 W. W. Norton & Company.
All rights reserved.

35

Chapter 11: Pointers

Pointers as Return Values
• Although max returns one of the pointers passed to it

as an argument, that’s not the only possibility.
• A function could also return a pointer to an external

variable or to a static local variable.
• Never return a pointer to an automatic local variable:

int *f(void)
{

int i;
…
return &i;

}

The variable i won’t exist after f returns.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

36

Chapter 11: Pointers

Pointers as Return Values
• Pointers can point to array elements.
• If a is an array, then &a[i] is a pointer to

element i of a.
• It’s sometimes useful for a function to return a

pointer to one of the elements in an array.
• A function that returns a pointer to the middle

element of a, assuming that a has n elements:
int *find_middle(int a[], int n) {

return &a[n/2];
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

37

	Chapter 11
	Pointer Variables
	Pointer Variables
	Pointer Variables
	Pointer Variables
	Declaring Pointer Variables
	Declaring Pointer Variables
	The Address and Indirection Operators
	The Address Operator
	The Address Operator
	The Address Operator
	The Indirection Operator
	The Indirection Operator
	The Indirection Operator
	The Indirection Operator
	Pointer Assignment
	Pointer Assignment
	Pointer Assignment
	Pointer Assignment
	Pointer Assignment
	Pointers as Arguments
	Pointers as Arguments
	Pointers as Arguments
	Pointers as Arguments
	Pointers as Arguments
	Pointers as Arguments
	Pointers as Arguments
	Pointers as Arguments
	Program: Finding the Largest and Smallest Elements in an Array
	Program: Finding the Largest and Smallest Elements in an Array
	Slide Number 31
	Slide Number 32
	Using const to Protect Arguments
	Using const to Protect Arguments
	Pointers as Return Values
	Pointers as Return Values
	Pointers as Return Values

