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Pointer Variables
• The first step in understanding pointers is 

visualizing what they represent at the machine 
level.

• In most modern computers, main memory is 
divided into bytes, with each byte capable of 
storing eight bits of information:

• Each byte has a unique address.
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Pointer Variables
• If there are n bytes in memory, we can think of 

addresses as numbers that range from 0 to n – 1:

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

3



Chapter 11: Pointers

Pointer Variables
• Each variable in a program occupies one or more 

bytes of memory.
• The address of the first byte is said to be the 

address of the variable.
• In the following figure, the address of the variable 
i is 2000:
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Pointer Variables
• Addresses can be stored in special pointer 

variables.
• When we store the address of a variable i in the 

pointer variable p, we say that p “points to” i.
• A graphical representation:
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Declaring Pointer Variables
• When a pointer variable is declared, its name must 

be preceded by an asterisk:
int *p;

• p is a pointer variable capable of pointing to 
objects of type int.

• We use the term object instead of variable since p
might point to an area of memory that doesn’t 
belong to a variable.
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Declaring Pointer Variables
• Pointer variables can appear in declarations along with 

other variables:
int i, j, a[10], b[20], *p, *q;

• C requires that every pointer variable point only to 
objects of a particular type (the referenced type):
int *p;     /* points only to integers   */
double *q;  /* points only to doubles    */
char *r;    /* points only to characters */

• There are no restrictions on what the referenced type 
may be.
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The Address and Indirection Operators
• C provides a pair of operators designed 

specifically for use with pointers.
– To find the address of a variable, we use the & (address) 

operator.
– To gain access to the object that a pointer points to, we 

use the * (indirection) operator.
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The Address Operator
• Declaring a pointer variable sets aside space for a 

pointer but doesn’t make it point to an object:
int *p; /* points nowhere in particular */

• It’s crucial to initialize p before we use it.
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The Address Operator
• One way to initialize a pointer variable is to assign 

it the address of a variable:
int i, *p;
…
p = &i;

• Assigning the address of i to the variable p makes 
p point to i:
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The Address Operator
• It’s also possible to initialize a pointer variable at 

the time it’s declared:
int i;
int *p = &i;

• The declaration of i can even be combined with 
the declaration of p:
int i, *p = &i;
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The Indirection Operator
• Once a pointer variable points to an object, we can 

use the * (indirection) operator to access what’s 
stored in the object.

• If p points to i, we can print the value of i as 
follows:
printf("%d\n", *p);

• Applying & to a variable produces a pointer to the 
variable. Applying * to the pointer takes us back 
to the original variable:
j = *&i;   /* same as j = i; */
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The Indirection Operator
• As long as p points to i, *p is an alias for i.

– *p has the same value as i.
– Changing the value of *p changes the value of i.

• The example on the next slide illustrates the 
equivalence of *p and i.
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The Indirection Operator
p = &i;

i = 1;

printf("%d\n", i);    /* prints 1 */
printf("%d\n", *p);   /* prints 1 */
*p = 2;

printf("%d\n", i);    /* prints 2 */
printf("%d\n", *p);   /* prints 2 */
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The Indirection Operator
• Applying the indirection operator to an 

uninitialized pointer variable causes undefined 
behavior:
int *p;
printf("%d", *p);   /*** WRONG ***/

• Assigning a value to *p is particularly dangerous:
int *p;
*p = 1;   /*** WRONG ***/
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Pointer Assignment
• C allows the use of the assignment operator to 

copy pointers of the same type.
• Assume that the following declaration is in effect:
int i, j, *p, *q;

• Example of pointer assignment:
p = &i;
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Pointer Assignment
• Another example of pointer assignment:
q = p;

q now points to the same place as p:
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Pointer Assignment
• If p and q both point to i, we can change i by 

assigning a new value to either *p or *q:
*p = 1;

*q = 2;

• Any number of pointer variables may point to the 
same object.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

18



Chapter 11: Pointers

Pointer Assignment
• Be careful not to confuse
q = p;

with
*q = *p;

• The first statement is a pointer assignment, but the 
second is not.

• The example on the next slide shows the effect of 
the second statement.
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Pointer Assignment
p = &i;
q = &j;
i = 1;

*q = *p;
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Pointers as Arguments
• In Chapter 9, we tried—and failed—to write a 
decompose function that could modify its 
arguments.

• By passing a pointer to a variable instead of the 
value of the variable, decompose can be fixed.
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Pointers as Arguments
• New definition of decompose:
void decompose(double x, long *int_part,

double *frac_part)
{
*int_part = (long) x;
*frac_part = x - *int_part;

}

• Possible prototypes for decompose:
void decompose(double x, long *int_part,

double *frac_part);

void decompose(double, long *, double *);
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Pointers as Arguments
• A call of decompose:
decompose(3.14159, &i, &d);

• As a result of the call, int_part points to i and 
frac_part points to d:
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Pointers as Arguments
• The first assignment in the body of decompose

converts the value of x to type long and stores it 
in the object pointed to by int_part:
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Pointers as Arguments
• The second assignment stores x - *int_part 

into the object that frac_part points to:
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Pointers as Arguments
• Arguments in calls of scanf are pointers:
int i;
…
scanf("%d", &i);

Without the &, scanf would be supplied with the 
value of i.
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Pointers as Arguments
• Although scanf’s arguments must be pointers, 

it’s not always true that every argument needs the 
& operator:
int i, *p;
…
p = &i;
scanf("%d", p);

• Using the & operator in the call would be wrong:
scanf("%d", &p);   /*** WRONG ***/
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Pointers as Arguments
• Failing to pass a pointer to a function when one is expected 

can have disastrous results.
• A call of decompose in which the & operator is missing:

decompose(3.14159, i, d);

• When decompose stores values in *int_part and 
*frac_part, it will attempt to change unknown memory 
locations instead of modifying i and d.

• If we’ve provided a prototype for decompose, the 
compiler will detect the error.

• In the case of scanf, however, failing to pass pointers 
may go undetected.
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Program: Finding the Largest and 
Smallest Elements in an Array

• The max_min.c program uses a function named max_min
to find the largest and smallest elements in an array.

• Prototype for max_min:
void max_min(int a[], int n, int *max, int *min);

• Example call of max_min:
max_min(b, N, &big, &small);

• When max_min finds the largest element in b, it stores the 
value in big by assigning it to *max. 

• max_min stores the smallest element of b in small by 
assigning it to *min.
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Program: Finding the Largest and 
Smallest Elements in an Array

• max_min.c will read 10 numbers into an array, pass 
it to the max_min function, and print the results:
Enter 10 numbers: 34 82 49 102 7 94 23 11 50 31
Largest: 102
Smallest: 7
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maxmin.c
/* Finds the largest and smallest elements in an array */

#include <stdio.h>

#define N 10

void max_min(int a[], int n, int *max, int *min);

int main(void)
{
int b[N], i, big, small;

printf("Enter %d numbers: ", N);
for (i = 0; i < N; i++) 
scanf("%d", &b[i]);
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max_min(b, N, &big, &small);

printf("Largest: %d\n", big);
printf("Smallest: %d\n", small);

return 0;
}

void max_min(int a[], int n, int *max, int *min)
{
int i;

*max = *min = a[0];
for (i = 1; i < n; i++) {
if (a[i] > *max)
*max = a[i];

else if (a[i] < *min)
*min = a[i];

}
}
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Using const to Protect Arguments
• When an argument is a pointer to a variable x, we 

normally assume that x will be modified:
f(&x);

• It’s possible, though, that f merely needs to 
examine the value of x, not change it.

• The reason for the pointer might be efficiency: 
passing the value of a variable can waste time and 
space if the variable requires a large amount of 
storage.
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Using const to Protect Arguments
• We can use const to document that a function 

won’t change an object whose address is passed to 
the function.

• const goes in the parameter’s declaration, just 
before the specification of its type:
void f(const int *p)
{

*p = 0;   /*** WRONG ***/
}

Attempting to modify *p is an error that the 
compiler will detect.
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Pointers as Return Values
• Functions are allowed to return pointers:

int *max(int *a, int *b)
{

if (*a > *b)
return a;

else
return b;

}

• A call of the max function:
int *p, i, j;
…
p = max(&i, &j);

After the call, p points to either i or j.
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Pointers as Return Values
• Although max returns one of the pointers passed to it 

as an argument, that’s not the only possibility.
• A function could also return a pointer to an external 

variable or to a static local variable.
• Never return a pointer to an automatic local variable:

int *f(void)
{

int i;
…
return &i;

}

The variable i won’t exist after f returns.
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Pointers as Return Values
• Pointers can point to array elements.
• If a is an array, then &a[i] is a pointer to 

element i of a.
• It’s sometimes useful for a function to return a 

pointer to one of the elements in an array.
• A function that returns a pointer to the middle 

element of a, assuming that a has n elements:
int *find_middle(int a[], int n) {

return &a[n/2];
}
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