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Introduction
• C allows us to perform arithmetic—addition and 

subtraction—on pointers to array elements.
• This leads to an alternative way of processing 

arrays in which pointers take the place of array 
subscripts.

• The relationship between pointers and arrays in C 
is a close one.

• Understanding this relationship is critical for 
mastering C.
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Pointer Arithmetic
• Chapter 11 showed that pointers can point to array 

elements:
int a[10], *p;
p = &a[0];

• A graphical representation:
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Pointer Arithmetic
• We can now access a[0] through p; for example, 

we can store the value 5 in a[0] by writing
*p = 5;

• An updated picture:
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Pointer Arithmetic
• If p points to an element of an array a, the other 

elements of a can be accessed by performing 
pointer arithmetic (or address arithmetic) on p.

• C supports three (and only three) forms of pointer 
arithmetic:
– Adding an integer to a pointer
– Subtracting an integer from a pointer
– Subtracting one pointer from another
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Adding an Integer to a Pointer
• Adding an integer j to a pointer p yields a pointer 

to the element j places after the one that p points 
to.

• More precisely, if p points to the array element 
a[i], then p + j points to a[i+j].

• Assume that the following declarations are in 
effect:
int a[10], *p, *q, i;
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Adding an Integer to a Pointer
• Example of pointer addition:
p = &a[2];

q = p + 3;

p += 6;
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Subtracting an Integer from a Pointer
• If p points to a[i], then p - j points to a[i-j].
• Example:
p = &a[8];

q = p - 3;

p -= 6;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

8



Chapter 12: Pointers and Arrays

Subtracting One Pointer from Another
• When one pointer is subtracted from another, the result 

is the distance (measured in array elements) between the 
pointers.

• If p points to a[i] and q points to a[j], then p - q is 
equal to i - j.

• Example:
p = &a[5];
q = &a[1];

i = p - q;   /* i is 4 */
i = q - p;   /* i is -4 */
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Subtracting One Pointer from Another
• Operations that cause undefined behavior:

– Performing arithmetic on a pointer that doesn’t point to 
an array element

– Subtracting pointers unless both point to elements of 
the same array
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Comparing Pointers
• Pointers can be compared using the relational 

operators (<, <=, >, >=) and the equality operators 
(== and !=).
– Using relational operators is meaningful only for pointers to 

elements of the same array.

• The outcome of the comparison depends on the 
relative positions of the two elements in the array.

• After the assignments
p = &a[5];
q = &a[1];

the value of p <= q is 0 and the value of p >= q is 1.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

11



Chapter 12: Pointers and Arrays

Using Pointers for Array Processing
• Pointer arithmetic allows us to visit the elements 

of an array by repeatedly incrementing a pointer 
variable.

• A loop that sums the elements of an array a:
#define N 10
…
int a[N], sum, *p;
…
sum = 0;
for (p = &a[0]; p < &a[N]; p++)

sum += *p;
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Using Pointers for Array Processing
At the end of the first iteration:

At the end of the second iteration:

At the end of the third iteration:
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Using Pointers for Array Processing
• The condition p < &a[N] in the for statement 

deserves special mention.
• It’s legal to apply the address operator to a[N], 

even though this element doesn’t exist.
• Pointer arithmetic may save execution time.
• However, some C compilers produce better code 

for loops that rely on subscripting.
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Combining the * and ++ Operators
• C programmers often combine the * (indirection) 

and ++ operators.
• A statement that modifies an array element and 

then advances to the next element:
a[i++] = j;

• The corresponding pointer version:
*p++ = j;

• Because the postfix version of ++ takes 
precedence over *, the compiler sees this as
*(p++) = j;
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Combining the * and ++ Operators
• Possible combinations of * and ++:

Expression Meaning
*p++ or *(p++) Value of expression is *p before increment;

increment p later
(*p)++ Value of expression is *p before increment;

increment *p later
*++p or *(++p) Increment p first;

value of expression is *p after increment
++*p or ++(*p) Increment *p first;

value of expression is *p after increment
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Combining the * and ++ Operators
• The most common combination of * and ++ is 
*p++, which is handy in loops.

• Instead of writing
for (p = &a[0]; p < &a[N]; p++)

sum += *p;

to sum the elements of the array a, we could write
p = &a[0];
while (p < &a[N])

sum += *p++;
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Using an Array Name as a Pointer
• Pointer arithmetic is one way in which arrays and 

pointers are related.
• Another key relationship:

The name of an array can be used as a pointer to 
the first element in the array.

• This relationship simplifies pointer arithmetic and 
makes both arrays and pointers more versatile.
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Using an Array Name as a Pointer
• Suppose that a is declared as follows:
int a[10];

• Examples of using a as a pointer:
*a = 7;   /* stores 7 in a[0] */
*(a+1) = 12;   /* stores 12 in a[1] */

• In general, a + i is the same as &a[i].
– Both represent a pointer to element i of a.

• Also, *(a+i) is equivalent to a[i].
– Both represent element i itself.
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Using an Array Name as a Pointer
• The fact that an array name can serve as a pointer 

makes it easier to write loops that step through an 
array.

• Original loop:
for (p = &a[0]; p < &a[N]; p++)

sum += *p;

• Simplified version:
for (p = a; p < a + N; p++)

sum += *p;
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Using an Array Name as a Pointer
• Although an array name can be used as a pointer, 

it’s not possible to assign it a new value.
• Attempting to make it point elsewhere is an error:
while (*a != 0)

a++;           /*** WRONG ***/

• This is no great loss; we can always copy a into a 
pointer variable, then change the pointer variable:
p = a;
while (*p != 0)

p++;
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Program: Reversing a Series
of Numbers (Revisited)

• The reverse.c program of Chapter 8 reads 10 
numbers, then writes the numbers in reverse order.

• The original program stores the numbers in an 
array, with subscripting used to access elements of 
the array.

• reverse3.c is a new version of the program in 
which subscripting has been replaced with pointer 
arithmetic.
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reverse3.c
/* Reverses a series of numbers (pointer version) */

#include <stdio.h>

#define N 10

int main(void)
{
int a[N], *p;

printf("Enter %d numbers: ", N);
for (p = a; p < a + N; p++)
scanf("%d", p);

printf("In reverse order:");
for (p = a + N - 1; p >= a; p--)
printf(" %d", *p);

printf("\n");

return 0;
}
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Array Arguments (Revisited)
• When passed to a function, an array name is treated as a pointer.
• Example:

int find_largest(int a[], int n)
{
int i, max;

max = a[0];
for (i = 1; i < n; i++)
if (a[i] > max)
max = a[i];

return max;
}

• A call of find_largest:
largest = find_largest(b, N);

This call causes a pointer to the first element of b to be assigned 
to a; the array itself isn’t copied.
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Array Arguments (Revisited)
• The fact that an array argument is treated as a 

pointer has some important consequences.
• Consequence 1: When an ordinary variable is 

passed to a function, its value is copied; any 
changes to the corresponding parameter don’t 
affect the variable.

• In contrast, an array used as an argument isn’t 
protected against change.
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Array Arguments (Revisited)
• For example, the following function modifies an 

array by storing zero into each of its elements:
void store_zeros(int a[], int n)
{

int i;

for (i = 0; i < n; i++) 
a[i] = 0;

}
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Array Arguments (Revisited)
• To indicate that an array parameter won’t be 

changed, we can include the word const in its 
declaration:
int find_largest(const int a[], int n)
{

…
}

• If const is present, the compiler will check that 
no assignment to an element of a appears in the 
body of find_largest.
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Array Arguments (Revisited)
• Consequence 2: The time required to pass an array 

to a function doesn’t depend on the size of the 
array.

• There’s no penalty for passing a large array, since 
no copy of the array is made.
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Array Arguments (Revisited)
• Consequence 3: An array parameter can be 

declared as a pointer if desired.
• find_largest could be defined as follows:
int find_largest(int *a, int n)
{

…
}

• Declaring a to be a pointer is equivalent to 
declaring it to be an array; the compiler treats the 
declarations as though they were identical.
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Array Arguments (Revisited)
• Although declaring a parameter to be an array is 

the same as declaring it to be a pointer, the same 
isn’t true for a variable.

• The following declaration causes the compiler to 
set aside space for 10 integers:
int a[10];

• The following declaration causes the compiler to 
allocate space for a pointer variable:
int *a;
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Array Arguments (Revisited)
• In the latter case, a is not an array; attempting to 

use it as an array can have disastrous results.
• For example, the assignment
*a = 0;   /*** WRONG ***/

will store 0 where a is pointing.
• Since we don’t know where a is pointing, the 

effect on the program is undefined.
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Array Arguments (Revisited)
• Consequence 4: A function with an array 

parameter can be passed an array “slice”—a 
sequence of consecutive elements.

• An example that applies find_largest to 
elements 5 through 14 of an array b:
largest = find_largest(&b[5], 10);
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Using a Pointer as an Array Name
• C allows us to subscript a pointer as though it 

were an array name:
#define N 10
…
int a[N], i, sum = 0, *p = a;
…
for (i = 0; i < N; i++)

sum += p[i];

The compiler treats p[i] as *(p+i).
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Pointers and Multidimensional Arrays
• Just as pointers can point to elements of one-

dimensional arrays, they can also point to 
elements of multidimensional arrays.

• This section explores common techniques for 
using pointers to process the elements of 
multidimensional arrays.
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Processing the Elements
of a Multidimensional Array

• Chapter 8 showed that C stores two-dimensional 
arrays in row-major order.

• Layout of an array with r rows: 

• If p initially points to the element in row 0, column 0, 
we can visit every element in the array by 
incrementing p repeatedly.
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Processing the Elements
of a Multidimensional Array

• Consider the problem of initializing all elements of the following 
array to zero:
int a[NUM_ROWS][NUM_COLS];

• The obvious technique would be to use nested for loops:
int row, col;
…
for (row = 0; row < NUM_ROWS; row++)
for (col = 0; col < NUM_COLS; col++)
a[row][col] = 0;

• If we view a as a one-dimensional array of integers, a single loop 
is sufficient:
int *p;
…
for (p = &a[0][0]; p <= &a[NUM_ROWS-1][NUM_COLS-1]; p++)

*p = 0;
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