
Chapter 12: Pointers and Arrays

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

1

Chapter 12

Pointers and Arrays

Chapter 12: Pointers and Arrays

Introduction
• C allows us to perform arithmetic—addition and

subtraction—on pointers to array elements.
• This leads to an alternative way of processing

arrays in which pointers take the place of array
subscripts.

• The relationship between pointers and arrays in C
is a close one.

• Understanding this relationship is critical for
mastering C.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

2

Chapter 12: Pointers and Arrays

Pointer Arithmetic
• Chapter 11 showed that pointers can point to array

elements:
int a[10], *p;
p = &a[0];

• A graphical representation:

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

3

Chapter 12: Pointers and Arrays

Pointer Arithmetic
• We can now access a[0] through p; for example,

we can store the value 5 in a[0] by writing
*p = 5;

• An updated picture:

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

4

Chapter 12: Pointers and Arrays

Pointer Arithmetic
• If p points to an element of an array a, the other

elements of a can be accessed by performing
pointer arithmetic (or address arithmetic) on p.

• C supports three (and only three) forms of pointer
arithmetic:
– Adding an integer to a pointer
– Subtracting an integer from a pointer
– Subtracting one pointer from another

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

5

Chapter 12: Pointers and Arrays

Adding an Integer to a Pointer
• Adding an integer j to a pointer p yields a pointer

to the element j places after the one that p points
to.

• More precisely, if p points to the array element
a[i], then p + j points to a[i+j].

• Assume that the following declarations are in
effect:
int a[10], *p, *q, i;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

6

Chapter 12: Pointers and Arrays

Adding an Integer to a Pointer
• Example of pointer addition:
p = &a[2];

q = p + 3;

p += 6;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

7

Chapter 12: Pointers and Arrays

Subtracting an Integer from a Pointer
• If p points to a[i], then p - j points to a[i-j].
• Example:
p = &a[8];

q = p - 3;

p -= 6;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

8

Chapter 12: Pointers and Arrays

Subtracting One Pointer from Another
• When one pointer is subtracted from another, the result

is the distance (measured in array elements) between the
pointers.

• If p points to a[i] and q points to a[j], then p - q is
equal to i - j.

• Example:
p = &a[5];
q = &a[1];

i = p - q; /* i is 4 */
i = q - p; /* i is -4 */

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

9

Chapter 12: Pointers and Arrays

Subtracting One Pointer from Another
• Operations that cause undefined behavior:

– Performing arithmetic on a pointer that doesn’t point to
an array element

– Subtracting pointers unless both point to elements of
the same array

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

10

Chapter 12: Pointers and Arrays

Comparing Pointers
• Pointers can be compared using the relational

operators (<, <=, >, >=) and the equality operators
(== and !=).
– Using relational operators is meaningful only for pointers to

elements of the same array.

• The outcome of the comparison depends on the
relative positions of the two elements in the array.

• After the assignments
p = &a[5];
q = &a[1];

the value of p <= q is 0 and the value of p >= q is 1.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

11

Chapter 12: Pointers and Arrays

Using Pointers for Array Processing
• Pointer arithmetic allows us to visit the elements

of an array by repeatedly incrementing a pointer
variable.

• A loop that sums the elements of an array a:
#define N 10
…
int a[N], sum, *p;
…
sum = 0;
for (p = &a[0]; p < &a[N]; p++)

sum += *p;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

12

Chapter 12: Pointers and Arrays

Using Pointers for Array Processing
At the end of the first iteration:

At the end of the second iteration:

At the end of the third iteration:

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

13

Chapter 12: Pointers and Arrays

Using Pointers for Array Processing
• The condition p < &a[N] in the for statement

deserves special mention.
• It’s legal to apply the address operator to a[N],

even though this element doesn’t exist.
• Pointer arithmetic may save execution time.
• However, some C compilers produce better code

for loops that rely on subscripting.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

14

Chapter 12: Pointers and Arrays

Combining the * and ++ Operators
• C programmers often combine the * (indirection)

and ++ operators.
• A statement that modifies an array element and

then advances to the next element:
a[i++] = j;

• The corresponding pointer version:
*p++ = j;

• Because the postfix version of ++ takes
precedence over *, the compiler sees this as
*(p++) = j;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

15

Chapter 12: Pointers and Arrays

Combining the * and ++ Operators
• Possible combinations of * and ++:

Expression Meaning
*p++ or *(p++) Value of expression is *p before increment;

increment p later
(*p)++ Value of expression is *p before increment;

increment *p later
*++p or *(++p) Increment p first;

value of expression is *p after increment
++*p or ++(*p) Increment *p first;

value of expression is *p after increment

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

16

Chapter 12: Pointers and Arrays

Combining the * and ++ Operators
• The most common combination of * and ++ is
*p++, which is handy in loops.

• Instead of writing
for (p = &a[0]; p < &a[N]; p++)

sum += *p;

to sum the elements of the array a, we could write
p = &a[0];
while (p < &a[N])

sum += *p++;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

17

Chapter 12: Pointers and Arrays

Using an Array Name as a Pointer
• Pointer arithmetic is one way in which arrays and

pointers are related.
• Another key relationship:

The name of an array can be used as a pointer to
the first element in the array.

• This relationship simplifies pointer arithmetic and
makes both arrays and pointers more versatile.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

18

Chapter 12: Pointers and Arrays

Using an Array Name as a Pointer
• Suppose that a is declared as follows:
int a[10];

• Examples of using a as a pointer:
a = 7; / stores 7 in a[0] */
(a+1) = 12; / stores 12 in a[1] */

• In general, a + i is the same as &a[i].
– Both represent a pointer to element i of a.

• Also, *(a+i) is equivalent to a[i].
– Both represent element i itself.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

19

Chapter 12: Pointers and Arrays

Using an Array Name as a Pointer
• The fact that an array name can serve as a pointer

makes it easier to write loops that step through an
array.

• Original loop:
for (p = &a[0]; p < &a[N]; p++)

sum += *p;

• Simplified version:
for (p = a; p < a + N; p++)

sum += *p;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

20

Chapter 12: Pointers and Arrays

Using an Array Name as a Pointer
• Although an array name can be used as a pointer,

it’s not possible to assign it a new value.
• Attempting to make it point elsewhere is an error:
while (*a != 0)

a++; /*** WRONG ***/

• This is no great loss; we can always copy a into a
pointer variable, then change the pointer variable:
p = a;
while (*p != 0)

p++;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

21

Chapter 12: Pointers and Arrays

Program: Reversing a Series
of Numbers (Revisited)

• The reverse.c program of Chapter 8 reads 10
numbers, then writes the numbers in reverse order.

• The original program stores the numbers in an
array, with subscripting used to access elements of
the array.

• reverse3.c is a new version of the program in
which subscripting has been replaced with pointer
arithmetic.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

22

Chapter 12: Pointers and Arrays

reverse3.c
/* Reverses a series of numbers (pointer version) */

#include <stdio.h>

#define N 10

int main(void)
{
int a[N], *p;

printf("Enter %d numbers: ", N);
for (p = a; p < a + N; p++)
scanf("%d", p);

printf("In reverse order:");
for (p = a + N - 1; p >= a; p--)
printf(" %d", *p);

printf("\n");

return 0;
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

23

Chapter 12: Pointers and Arrays

Array Arguments (Revisited)
• When passed to a function, an array name is treated as a pointer.
• Example:

int find_largest(int a[], int n)
{
int i, max;

max = a[0];
for (i = 1; i < n; i++)
if (a[i] > max)
max = a[i];

return max;
}

• A call of find_largest:
largest = find_largest(b, N);

This call causes a pointer to the first element of b to be assigned
to a; the array itself isn’t copied.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

24

Chapter 12: Pointers and Arrays

Array Arguments (Revisited)
• The fact that an array argument is treated as a

pointer has some important consequences.
• Consequence 1: When an ordinary variable is

passed to a function, its value is copied; any
changes to the corresponding parameter don’t
affect the variable.

• In contrast, an array used as an argument isn’t
protected against change.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

25

Chapter 12: Pointers and Arrays

Array Arguments (Revisited)
• For example, the following function modifies an

array by storing zero into each of its elements:
void store_zeros(int a[], int n)
{

int i;

for (i = 0; i < n; i++)
a[i] = 0;

}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

26

Chapter 12: Pointers and Arrays

Array Arguments (Revisited)
• To indicate that an array parameter won’t be

changed, we can include the word const in its
declaration:
int find_largest(const int a[], int n)
{

…
}

• If const is present, the compiler will check that
no assignment to an element of a appears in the
body of find_largest.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

27

Chapter 12: Pointers and Arrays

Array Arguments (Revisited)
• Consequence 2: The time required to pass an array

to a function doesn’t depend on the size of the
array.

• There’s no penalty for passing a large array, since
no copy of the array is made.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

28

Chapter 12: Pointers and Arrays

Array Arguments (Revisited)
• Consequence 3: An array parameter can be

declared as a pointer if desired.
• find_largest could be defined as follows:
int find_largest(int *a, int n)
{

…
}

• Declaring a to be a pointer is equivalent to
declaring it to be an array; the compiler treats the
declarations as though they were identical.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

29

Chapter 12: Pointers and Arrays

Array Arguments (Revisited)
• Although declaring a parameter to be an array is

the same as declaring it to be a pointer, the same
isn’t true for a variable.

• The following declaration causes the compiler to
set aside space for 10 integers:
int a[10];

• The following declaration causes the compiler to
allocate space for a pointer variable:
int *a;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

30

Chapter 12: Pointers and Arrays

Array Arguments (Revisited)
• In the latter case, a is not an array; attempting to

use it as an array can have disastrous results.
• For example, the assignment
*a = 0; /*** WRONG ***/

will store 0 where a is pointing.
• Since we don’t know where a is pointing, the

effect on the program is undefined.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

31

Chapter 12: Pointers and Arrays

Array Arguments (Revisited)
• Consequence 4: A function with an array

parameter can be passed an array “slice”—a
sequence of consecutive elements.

• An example that applies find_largest to
elements 5 through 14 of an array b:
largest = find_largest(&b[5], 10);

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

32

Chapter 12: Pointers and Arrays

Using a Pointer as an Array Name
• C allows us to subscript a pointer as though it

were an array name:
#define N 10
…
int a[N], i, sum = 0, *p = a;
…
for (i = 0; i < N; i++)

sum += p[i];

The compiler treats p[i] as *(p+i).

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

33

Chapter 12: Pointers and Arrays

Pointers and Multidimensional Arrays
• Just as pointers can point to elements of one-

dimensional arrays, they can also point to
elements of multidimensional arrays.

• This section explores common techniques for
using pointers to process the elements of
multidimensional arrays.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

34

Chapter 12: Pointers and Arrays

Processing the Elements
of a Multidimensional Array

• Chapter 8 showed that C stores two-dimensional
arrays in row-major order.

• Layout of an array with r rows:

• If p initially points to the element in row 0, column 0,
we can visit every element in the array by
incrementing p repeatedly.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

35

Chapter 12: Pointers and Arrays

Processing the Elements
of a Multidimensional Array

• Consider the problem of initializing all elements of the following
array to zero:
int a[NUM_ROWS][NUM_COLS];

• The obvious technique would be to use nested for loops:
int row, col;
…
for (row = 0; row < NUM_ROWS; row++)
for (col = 0; col < NUM_COLS; col++)
a[row][col] = 0;

• If we view a as a one-dimensional array of integers, a single loop
is sufficient:
int *p;
…
for (p = &a[0][0]; p <= &a[NUM_ROWS-1][NUM_COLS-1]; p++)

*p = 0;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

36

	Chapter 12
	Introduction
	Pointer Arithmetic
	Pointer Arithmetic
	Pointer Arithmetic
	Adding an Integer to a Pointer
	Adding an Integer to a Pointer
	Subtracting an Integer from a Pointer
	Subtracting One Pointer from Another
	Subtracting One Pointer from Another
	Comparing Pointers
	Using Pointers for Array Processing
	Using Pointers for Array Processing
	Using Pointers for Array Processing
	Combining the * and ++ Operators
	Combining the * and ++ Operators
	Combining the * and ++ Operators
	Using an Array Name as a Pointer
	Using an Array Name as a Pointer
	Using an Array Name as a Pointer
	Using an Array Name as a Pointer
	Program: Reversing a Series�of Numbers (Revisited)
	Slide Number 23
	Array Arguments (Revisited)
	Array Arguments (Revisited)
	Array Arguments (Revisited)
	Array Arguments (Revisited)
	Array Arguments (Revisited)
	Array Arguments (Revisited)
	Array Arguments (Revisited)
	Array Arguments (Revisited)
	Array Arguments (Revisited)
	Using a Pointer as an Array Name
	Pointers and Multidimensional Arrays
	Processing the Elements�of a Multidimensional Array
	Processing the Elements�of a Multidimensional Array

