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Introduction
• This chapter covers both string constants (or 

literals, as they’re called in the C standard) and 
string variables.

• Strings are arrays of characters in which a special 
character—the null character—marks the end.

• The C library provides a collection of functions 
for working with strings.
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String Literals
• A string literal is a sequence of characters enclosed within double 

quotes:
"When you come to a fork in the road, take it."

• String literals may contain escape sequences.
• Character escapes often appear in printf and scanf format 

strings.
• For example, each \n character in the string

"Candy\nIs dandy\nBut liquor\nIs quicker.\n  --Ogden Nash\n"

causes the cursor to advance to the next line:
Candy
Is dandy
But liquor
Is quicker.

--Ogden Nash
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Continuing a String Literal
• The backslash character (\) can be used to 

continue a string literal from one line to the next:
printf("When you come to a fork in the road, take it. \
--Yogi Berra");

• In general, the \ character can be used to join two 
or more lines of a program into a single line.
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Continuing a String Literal
• There’s a better way to deal with long string 

literals.
• When two or more string literals are adjacent, the 

compiler will join them into a single string.
• This rule allows us to split a string literal over two 

or more lines:
printf("When you come to a fork in the road, take it. "

"--Yogi Berra");
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How String Literals Are Stored
• When a C compiler encounters a string literal of 

length n in a program, it sets aside n + 1 bytes of 
memory for the string.

• This memory will contain the characters in the 
string, plus one extra character—the null
character—to mark the end of the string.

• The null character is a byte whose bits are all zero, 
so it’s represented by the \0 escape sequence.
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How String Literals Are Stored
• The string literal "abc" is stored as an array of 

four characters:

• The string "" is stored as a single null character:
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How String Literals Are Stored
• Since a string literal is stored as an array, the 

compiler treats it as a pointer of type char *.
• Both printf and scanf expect a value of type 
char * as their first argument.

• The following call of printf passes the address 
of "abc" (a pointer to where the letter a is stored 
in memory):
printf("abc");
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Operations on String Literals
• We can use a string literal wherever C allows a 
char * pointer:

char *p;

p = "abc";

• This assignment makes p point to the first 
character of the string.
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Operations on String Literals
• String literals can be subscripted:
char ch;

ch = "abc"[1];

The new value of ch will be the letter b.
• A function that converts a number between 0 and 

15 into the equivalent hex digit:
char digit_to_hex_char(int digit)
{

return "0123456789ABCDEF"[digit];
}
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Operations on String Literals
• Attempting to modify a string literal causes 

undefined behavior:
char *p = "abc";

*p = 'd';   /*** WRONG ***/

• A program that tries to change a string literal may 
crash or behave erratically.
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String Literals versus Character Constants
• A string literal containing a single character isn’t 

the same as a character constant.
– "a" is represented by a pointer.
– 'a' is represented by an integer.

• A legal call of printf:
printf("\n");

• An illegal call:
printf('\n');   /*** WRONG ***/
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String Variables
• Any one-dimensional array of characters can be 

used to store a string.
• A string must be terminated by a null character.
• Difficulties with this approach:

– It can be hard to tell whether an array of characters is 
being used as a string.

– String-handling functions must be careful to deal 
properly with the null character.

– Finding the length of a string requires searching for the 
null character.
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String Variables
• If a string variable needs to hold 80 characters, it 

must be declared to have length 81:
#define STR_LEN 80
…
char str[STR_LEN+1];

• Adding 1 to the desired length allows room for the 
null character at the end of the string.

• Defining a macro that represents 80 and then 
adding 1 separately is a common practice.
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String Variables
• Be sure to leave room for the null character when 

declaring a string variable.
• Failing to do so may cause unpredictable results 

when the program is executed.
• The actual length of a string depends on the 

position of the terminating null character.
• An array of STR_LEN + 1 characters can hold 

strings with lengths between 0 and STR_LEN.
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Initializing a String Variable
• A string variable can be initialized at the same 

time it’s declared:
char date1[8] = "June 14";

• The compiler will automatically add a null 
character so that date1 can be used as a string:

• "June 14" is not a string literal in this context.
• Instead, C views it as an abbreviation for an array 

initializer.
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Initializing a String Variable
• If the initializer is too short to fill the string 

variable, the compiler adds extra null characters:
char date2[9] = "June 14";

Appearance of date2:
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Initializing a String Variable
• An initializer for a string variable can’t be longer 

than the variable, but it can be the same length:
char date3[7] = "June 14";

• There’s no room for the null character, so the 
compiler makes no attempt to store one:
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Initializing a String Variable
• The declaration of a string variable may omit its 

length, in which case the compiler computes it:
char date4[] = "June 14";

• The compiler sets aside eight characters for 
date4, enough to store the characters in "June  
14" plus a null character.

• Omitting the length of a string variable is 
especially useful if the initializer is long, since 
computing the length by hand is error-prone.
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Character Arrays versus Character Pointers
• The declaration
char date[] = "June 14";

declares date to be an array,
• The similar-looking
char *date = "June 14";

declares date to be a pointer.
• Thanks to the close relationship between arrays 

and pointers, either version can be used as a string.
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Character Arrays versus Character Pointers
• However, there are significant differences between 

the two versions of date.
– In the array version, the characters stored in date can 

be modified. In the pointer version, date points to a 
string literal that shouldn’t be modified.

– In the array version, date is an array name. In the 
pointer version, date is a variable that can point to 
other strings.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

21



Chapter 13: Strings

Character Arrays versus Character Pointers
• The declaration

char *p;

does not allocate space for a string.
• Before we can use p as a string, it must point to an 

array of characters.
• One possibility is to make p point to a string variable:

char str[STR_LEN+1], *p;

p = str;

• Another possibility is to make p point to a 
dynamically allocated string.
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Character Arrays versus Character Pointers
• Using an uninitialized pointer variable as a string 

is a serious error.
• An attempt at building the string "abc":
char *p;

p[0] = 'a';    /*** WRONG ***/
p[1] = 'b';    /*** WRONG ***/
p[2] = 'c';    /*** WRONG ***/
p[3] = '\0';   /*** WRONG ***/

• Since p hasn’t been initialized, this causes 
undefined behavior.
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Reading and Writing Strings
• Writing a string is easy using either printf or 
puts.

• Reading a string is a bit harder, because the input 
may be longer than the string variable into which 
it’s being stored.

• To read a string in a single step, we can use either 
scanf or gets.

• As an alternative, we can read strings one 
character at a time.
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Writing Strings Using printf and puts
• The %s conversion specification allows printf

to write a string:
char str[] = "Are we having fun yet?";

printf("%s\n", str);

The output will be
Are we having fun yet?

• printf writes the characters in a string one by 
one until it encounters a null character.
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Writing Strings Using printf and puts
• To print part of a string, use the conversion 

specification %.ps.
• p is the number of characters to be displayed.
• The statement
printf("%.6s\n", str);

will print
Are we
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Writing Strings Using printf and puts
• The %ms conversion will display a string in a field 

of size m.
• If the string has fewer than m characters, it will be 

right-justified within the field.
• To force left justification instead, we can put a 

minus sign in front of m.
• The m and p values can be used in combination.
• A conversion specification of the form %m.ps

causes the first p characters of a string to be 
displayed in a field of size m.
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Writing Strings Using printf and puts
• printf isn’t the only function that can write 

strings.
• The C library also provides puts:
puts(str);

• After writing a string, puts always writes an 
additional new-line character.
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Reading Strings Using scanf and gets
• The %s conversion specification allows scanf to 

read a string into a character array:
scanf("%s", str);

• str is treated as a pointer, so there’s no need to 
put the & operator in front of str.

• When scanf is called, it skips white space, then 
reads characters and stores them in str until it 
encounters a white-space character.

• scanf always stores a null character at the end of 
the string.
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Reading Strings Using scanf and gets
• scanf won’t usually read a full line of input.
• A new-line character will cause scanf to stop 

reading, but so will a space or tab character.
• To read an entire line of input, we can use gets.
• Properties of gets:

– Doesn’t skip white space before starting to read input.
– Reads until it finds a new-line character.
– Discards the new-line character instead of storing it; the 

null character takes its place.
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Reading Strings Using scanf and gets
• Consider the following program fragment:
char sentence[SENT_LEN+1];

printf("Enter a sentence:\n");
scanf("%s", sentence);

• Suppose that after the prompt
Enter a sentence:

the user enters the line
To C, or not to C: that is the question.

• scanf will store the string "To" in sentence.
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Reading Strings Using scanf and gets
• Suppose that we replace scanf by gets:
gets(sentence);

• When the user enters the same input as before, 
gets will store the string
" To C, or not to C: that is the question."

in sentence.
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Reading Strings Using scanf and gets
• As they read characters into an array, scanf and 
gets have no way to detect when it’s full.

• Consequently, they may store characters past the 
end of the array, causing undefined behavior.

• scanf can be made safer by using the conversion 
specification %ns instead of %s.

• n is an integer indicating the maximum number of 
characters to be stored.

• gets is inherently unsafe; fgets is a much 
better alternative. 
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Reading Strings Character by Character
• Programmers often write their own input functions.
• Issues to consider:

– Should the function skip white space before beginning 
to store the string?

– What character causes the function to stop reading: a 
new-line character, any white-space character, or some 
other character? Is this character stored in the string or 
discarded?

– What should the function do if the input string is too 
long to store: discard the extra characters or leave them 
for the next input operation?
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Reading Strings Character by Character
• Suppose we need a function that (1) doesn’t skip 

white-space characters, (2) stops reading at the first 
new-line character (which isn’t stored in the string), 
and (3) discards extra characters.

• A prototype for the function:
int read_line(char str[], int n);

• If the input line contains more than n characters, 
read_line will discard the additional characters.

• read_line will return the number of characters it 
stores in str.
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Reading Strings Character by Character
• read_line consists primarily of a loop that calls 
getchar to read a character and then stores the character 
in str, provided that there’s room left:
int read_line(char str[], int n)
{
int ch, i = 0;

while ((ch = getchar()) != '\n')
if (i < n)
str[i++] = ch;

str[i] = '\0';   /* terminates string */
return i;        /* number of characters stored */

}

• ch has int type rather than char type because 
getchar returns an int value.
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Reading Strings Character by Character
• Before returning, read_line puts a null 

character at the end of the string.
• Standard functions such as scanf and gets

automatically put a null character at the end of an 
input string.

• If we’re writing our own input function, we must 
take on that responsibility.
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Accessing the Characters in a String
• Since strings are stored as arrays, we can use 

subscripting to access the characters in a string.
• To process every character in a string s, we can 

set up a loop that increments a counter i and 
selects characters via the expression s[i].
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Accessing the Characters in a String
• A function that counts the number of spaces in a 

string:
int count_spaces(const char s[])
{

int count = 0, i;

for (i = 0; s[i] != '\0'; i++)
if (s[i] == ' ')

count++;
return count;

}
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Accessing the Characters in a String
• A version that uses pointer arithmetic instead of 

array subscripting :
int count_spaces(const char *s)
{

int count = 0;

for (; *s != '\0'; s++)
if (*s == ' ')

count++;
return count;

}
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Accessing the Characters in a String
• Questions raised by the count_spaces

example:
– Is it better to use array operations or pointer 

operations to access the characters in a string? We can 
use either or both. Traditionally, C programmers lean 
toward using pointer operations.

– Should a string parameter be declared as an array or 
as a pointer? There’s no difference between the two.

– Does the form of the parameter (s[] or *s) affect 
what can be supplied as an argument? No.
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Using the C String Library
• Some programming languages provide operators 

that can copy strings, compare strings, concatenate 
strings, select substrings, and the like.

• C’s operators, in contrast, are essentially useless
for working with strings.

• Strings are treated as arrays in C, so they’re 
restricted in the same ways as arrays.

• In particular, they cannot be copied or compared 
using operators.
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Using the C String Library
• Direct attempts to copy or compare strings will fail.
• Copying a string into a character array using the =

operator is not possible:
char str1[10], str2[10];
…
str1 = "abc";  /*** WRONG ***/
str2 = str1;   /*** WRONG ***/

Using an array name as the left operand of = is illegal.
• Initializing a character array using = is legal, though:

char str1[10] = "abc";

In this context, = is not the assignment operator.
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Using the C String Library
• Attempting to compare strings using a relational 

or equality operator is legal but won’t produce the 
desired result:
if (str1 == str2) …   /*** WRONG ***/

• This statement compares str1 and str2 as 
pointers.

• Since str1 and str2 have different addresses, 
the expression str1 == str2 must have the 
value 0.
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Using the C String Library
• The C library provides a rich set of functions for 

performing operations on strings.
• Programs that need string operations should 

contain the following line:
#include <string.h>

• In subsequent examples, assume that str1 and 
str2 are character arrays used as strings.
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The strcpy (String Copy) Function
• Prototype for the strcpy function:
char *strcpy(char *s1, const char *s2);

• strcpy copies the string s2 into the string s1.
– To be precise, we should say “strcpy copies the 

string pointed to by s2 into the array pointed to by 
s1.”

• strcpy returns s1 (a pointer to the destination 
string).
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The strcpy (String Copy) Function
• A call of strcpy that stores the string "abcd"

in str2:
strcpy(str2, "abcd");

/* str2 now contains "abcd" */

• A call that copies the contents of str2 into 
str1:
strcpy(str1, str2);

/* str1 now contains "abcd" */
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The strcpy (String Copy) Function
• In the call strcpy(str1, str2), strcpy has 

no way to check that the str2 string will fit in the 
array pointed to by str1.

• If it doesn’t, undefined behavior occurs.
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The strcpy (String Copy) Function
• Calling the strncpy function is a safer, albeit 

slower, way to copy a string.
• strncpy has a third argument that limits the 

number of characters that will be copied.
• A call of strncpy that copies str2 into str1:
strncpy(str1, str2, sizeof(str1));
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The strcpy (String Copy) Function
• strncpy will leave str1 without a terminating 

null character if the length of str2 is greater than 
the size of the str1 array.

• A safer way to use strncpy:
strncpy(str1, str2, sizeof(str1) - 1);
str1[sizeof(str1)-1] = '\0';

• The second statement guarantees that str1 is 
always null-terminated.
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The strlen (String Length) Function
• Prototype for the strlen function:
size_t strlen(const char *s);

• size_t is a typedef name that represents one 
of C’s unsigned integer types.
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The strlen (String Length) Function
• strlen returns the length of a string s, not 

including the null character.
• Examples:
int len;

len = strlen("abc"); /* len is now 3 */
len = strlen("");   /* len is now 0 */
strcpy(str1, "abc");
len = strlen(str1); /* len is now 3 */
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The strcat (String Concatenation) Function
• Prototype for the strcat function:

char *strcat(char *s1, const char *s2);

• strcat appends the contents of the string s2 to the end of 
the string s1.

• It returns s1 (a pointer to the resulting string).
• strcat examples:

strcpy(str1, "abc");
strcat(str1, "def");
/* str1 now contains "abcdef" */

strcpy(str1, "abc");
strcpy(str2, "def");
strcat(str1, str2);
/* str1 now contains "abcdef" */
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The strcat (String Concatenation) Function
• As with strcpy, the value returned by strcat

is normally discarded.
• The following example shows how the return 

value might be used:
strcpy(str1, "abc");
strcpy(str2, "def");
strcat(str1, strcat(str2, "ghi"));

/* str1 now contains "abcdefghi";
str2 contains "defghi" */
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The strcat (String Concatenation) Function
• strcat(str1, str2) causes undefined 

behavior if the str1 array isn’t long enough to 
accommodate the characters from str2.

• Example:
char str1[6] = "abc";

strcat(str1, "def");   /*** WRONG ***/

• str1 is limited to six characters, causing 
strcat to write past the end of the array.
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The strcat (String Concatenation) Function
• The strncat function is a safer but slower 

version of strcat.
• Like strncpy, it has a third argument that limits 

the number of characters it will copy.
• A call of strncat:

strncat(str1, str2, sizeof(str1) - strlen(str1) - 1);

• strncat will terminate str1 with a null 
character, which isn’t included in the third 
argument.
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The strcmp (String Comparison) Function
• Prototype for the strcmp function:

int strcmp(const char *s1, const char *s2);

• strcmp compares the strings s1 and s2, 
returning a value less than, equal to, or greater 
than 0, depending on whether s1 is less than, 
equal to, or greater than s2.
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The strcmp (String Comparison) Function
• Testing whether str1 is less than str2:

if (strcmp(str1, str2) < 0) /* is str1 < str2? */
…

• Testing whether str1 is less than or equal to 
str2:
if (strcmp(str1, str2) <= 0) /* is str1 <= str2? */
…

• By choosing the proper operator (<, <=, >, >=, 
==, !=), we can test any possible relationship 
between str1 and str2.
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The strcmp (String Comparison) Function
• strcmp considers s1 to be less than s2 if either 

one of the following conditions is satisfied:
– The first i characters of s1 and s2 match, but the 

(i+1)st character of s1 is less than the (i+1)st character 
of s2.

– All characters of s1 match s2, but s1 is shorter than 
s2.
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The strcmp (String Comparison) Function
• As it compares two strings, strcmp looks at the 

numerical codes for the characters in the strings.
• Some knowledge of the underlying character set is 

helpful to predict what strcmp will do.
• Important properties of ASCII:

– A–Z, a–z, and 0–9 have consecutive codes.
– All upper-case letters are less than all lower-case 

letters.
– Digits are less than letters.
– Spaces are less than all printing characters.
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Arrays of Strings
• There is more than one way to store an array of 

strings.
• One option is to use a two-dimensional array of 

characters, with one string per row:
char planets[][8] = {"Mercury", "Venus", "Earth",

"Mars", "Jupiter", "Saturn",
"Uranus", "Neptune", "Pluto"};

• The number of rows in the array can be omitted, 
but we must specify the number of columns.
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Arrays of Strings
• Unfortunately, the planets array contains a fair 

bit of wasted space (extra null characters):
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Arrays of Strings
• Most collections of strings will have a mixture of 

long strings and short strings.
• What we need is a ragged array, whose rows can 

have different lengths.
• We can simulate a ragged array in C by creating 

an array whose elements are pointers to strings:
char *planets[] = {"Mercury", "Venus", "Earth",

"Mars", "Jupiter", "Saturn",
"Uranus", "Neptune", "Pluto"};
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Arrays of Strings
• This small change has a dramatic effect on how 
planets is stored:
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Arrays of Strings
• To access one of the planet names, all we need do 

is subscript the planets array.
• Accessing a character in a planet name is done in 

the same way as accessing an element of a two-
dimensional array.

• A loop that searches the planets array for 
strings beginning with the letter M:
for (i = 0; i < 9; i++)
if (planets[i][0] == 'M')
printf("%s begins with M\n", planets[i]);
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Appendix
• Study the following string idioms by yourselves!
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String Idioms
• Functions that manipulate strings are a rich source 

of idioms.
• We’ll explore some of the most famous idioms by 

using them to write the strlen and strcat
functions.
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Searching for the End of a String
• A version of strlen that searches for the end of 

a string, using a variable to keep track of the 
string’s length:
size_t strlen(const char *s)
{

size_t n;

for (n = 0; *s != '\0'; s++)
n++;

return n;
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

68



Chapter 13: Strings

Searching for the End of a String
• To condense the function, we can move the 

initialization of n to its declaration:
size_t strlen(const char *s)
{

size_t n = 0;

for (; *s != '\0'; s++)
n++;

return n;
}
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Searching for the End of a String
• The condition *s != '\0' is the same as *s != 0, 

which in turn is the same as *s.
• A version of strlen that uses these observations:
size_t strlen(const char *s)
{

size_t n = 0;

for (; *s; s++)
n++;

return n;
}
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Searching for the End of a String
• The next version increments s and tests *s in the 

same expression:
size_t strlen(const char *s)
{

size_t n = 0;

for (; *s++;)
n++;

return n;
}
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Searching for the End of a String
• Replacing the for statement with a while

statement gives the following version of strlen:
size_t strlen(const char *s)
{

size_t n = 0;

while (*s++)
n++;

return n;
}
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Searching for the End of a String
• Although we’ve condensed strlen quite a bit, 

it’s likely that we haven’t increased its speed.
• A version that does run faster, at least with some 

compilers:
size_t strlen(const char *s)
{

const char *p = s;

while (*s)
s++;

return s - p;
}
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Searching for the End of a String
• Idioms for “search for the null character at the end 

of a string”:
while (*s)     while (*s++)

s++;           ;

• The first version leaves s pointing to the null 
character.

• The second version is more concise, but leaves s
pointing just past the null character.
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Copying a String
• Copying a string is another common operation.
• To introduce C’s “string copy” idiom, we’ll 

develop two versions of the strcat function.
• The first version of strcat (next slide) uses a 

two-step algorithm:
– Locate the null character at the end of the string s1 and 

make p point to it.
– Copy characters one by one from s2 to where p is 

pointing.
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Copying a String
char *strcat(char *s1, const char *s2) 
{

char *p = s1;

while (*p != '\0')
p++;

while (*s2 != '\0') {
*p = *s2;
p++;
s2++;

}
*p = '\0';
return s1;

}
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Copying a String
• p initially points to the first character in the s1

string:

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

77



Chapter 13: Strings

Copying a String
• The first while statement locates the null 

character at the end of s1 and makes p point to it:
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Copying a String
• The second while statement repeatedly copies 

one character from where s2 points to where p
points, then increments both p and s2.

• Assume that s2 originally points to the string 
"def".

• The strings after the first loop iteration:
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Copying a String
• The loop terminates when s2 points to the null 

character:

• After putting a null character where p is pointing, 
strcat returns.
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Copying a String
• Condensed version of strcat:
char *strcat(char *s1, const char *s2) 
{

char *p = s1;

while (*p)
p++;

while (*p++ = *s2++)
;

return s1;
}
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Copying a String
• The heart of the streamlined strcat function is 

the “string copy” idiom:
while (*p++ = *s2++)

;

• Ignoring the two ++ operators, the expression 
inside the parentheses is an assignment:
*p = *s2

• After the assignment, p and s2 are incremented.
• Repeatedly evaluating this expression copies 

characters from where s2 points to where p points.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

82



Chapter 13: Strings

Copying a String
• But what causes the loop to terminate?
• The while statement tests the character that was 

copied by the assignment *p = *s2.
• All characters except the null character test true.
• The loop terminates after the assignment, so the 

null character will be copied.
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