
Chapter 13: Strings

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

1

Chapter 13

Strings

Chapter 13: Strings

Introduction
• This chapter covers both string constants (or

literals, as they’re called in the C standard) and
string variables.

• Strings are arrays of characters in which a special
character—the null character—marks the end.

• The C library provides a collection of functions
for working with strings.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

2

Chapter 13: Strings

String Literals
• A string literal is a sequence of characters enclosed within double

quotes:
"When you come to a fork in the road, take it."

• String literals may contain escape sequences.
• Character escapes often appear in printf and scanf format

strings.
• For example, each \n character in the string

"Candy\nIs dandy\nBut liquor\nIs quicker.\n --Ogden Nash\n"

causes the cursor to advance to the next line:
Candy
Is dandy
But liquor
Is quicker.

--Ogden Nash

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

3

Chapter 13: Strings

Continuing a String Literal
• The backslash character (\) can be used to

continue a string literal from one line to the next:
printf("When you come to a fork in the road, take it. \
--Yogi Berra");

• In general, the \ character can be used to join two
or more lines of a program into a single line.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

4

Chapter 13: Strings

Continuing a String Literal
• There’s a better way to deal with long string

literals.
• When two or more string literals are adjacent, the

compiler will join them into a single string.
• This rule allows us to split a string literal over two

or more lines:
printf("When you come to a fork in the road, take it. "

"--Yogi Berra");

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

5

Chapter 13: Strings

How String Literals Are Stored
• When a C compiler encounters a string literal of

length n in a program, it sets aside n + 1 bytes of
memory for the string.

• This memory will contain the characters in the
string, plus one extra character—the null
character—to mark the end of the string.

• The null character is a byte whose bits are all zero,
so it’s represented by the \0 escape sequence.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

6

Chapter 13: Strings

How String Literals Are Stored
• The string literal "abc" is stored as an array of

four characters:

• The string "" is stored as a single null character:

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

7

Chapter 13: Strings

How String Literals Are Stored
• Since a string literal is stored as an array, the

compiler treats it as a pointer of type char *.
• Both printf and scanf expect a value of type
char * as their first argument.

• The following call of printf passes the address
of "abc" (a pointer to where the letter a is stored
in memory):
printf("abc");

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

8

Chapter 13: Strings

Operations on String Literals
• We can use a string literal wherever C allows a
char * pointer:

char *p;

p = "abc";

• This assignment makes p point to the first
character of the string.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

9

Chapter 13: Strings

Operations on String Literals
• String literals can be subscripted:
char ch;

ch = "abc"[1];

The new value of ch will be the letter b.
• A function that converts a number between 0 and

15 into the equivalent hex digit:
char digit_to_hex_char(int digit)
{

return "0123456789ABCDEF"[digit];
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

10

Chapter 13: Strings

Operations on String Literals
• Attempting to modify a string literal causes

undefined behavior:
char *p = "abc";

*p = 'd'; /*** WRONG ***/

• A program that tries to change a string literal may
crash or behave erratically.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

11

Chapter 13: Strings

String Literals versus Character Constants
• A string literal containing a single character isn’t

the same as a character constant.
– "a" is represented by a pointer.
– 'a' is represented by an integer.

• A legal call of printf:
printf("\n");

• An illegal call:
printf('\n'); /*** WRONG ***/

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

12

Chapter 13: Strings

String Variables
• Any one-dimensional array of characters can be

used to store a string.
• A string must be terminated by a null character.
• Difficulties with this approach:

– It can be hard to tell whether an array of characters is
being used as a string.

– String-handling functions must be careful to deal
properly with the null character.

– Finding the length of a string requires searching for the
null character.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

13

Chapter 13: Strings

String Variables
• If a string variable needs to hold 80 characters, it

must be declared to have length 81:
#define STR_LEN 80
…
char str[STR_LEN+1];

• Adding 1 to the desired length allows room for the
null character at the end of the string.

• Defining a macro that represents 80 and then
adding 1 separately is a common practice.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

14

Chapter 13: Strings

String Variables
• Be sure to leave room for the null character when

declaring a string variable.
• Failing to do so may cause unpredictable results

when the program is executed.
• The actual length of a string depends on the

position of the terminating null character.
• An array of STR_LEN + 1 characters can hold

strings with lengths between 0 and STR_LEN.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

15

Chapter 13: Strings

Initializing a String Variable
• A string variable can be initialized at the same

time it’s declared:
char date1[8] = "June 14";

• The compiler will automatically add a null
character so that date1 can be used as a string:

• "June 14" is not a string literal in this context.
• Instead, C views it as an abbreviation for an array

initializer.
Copyright © 2008 W. W. Norton & Company.
All rights reserved.

16

Chapter 13: Strings

Initializing a String Variable
• If the initializer is too short to fill the string

variable, the compiler adds extra null characters:
char date2[9] = "June 14";

Appearance of date2:

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

17

Chapter 13: Strings

Initializing a String Variable
• An initializer for a string variable can’t be longer

than the variable, but it can be the same length:
char date3[7] = "June 14";

• There’s no room for the null character, so the
compiler makes no attempt to store one:

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

18

Chapter 13: Strings

Initializing a String Variable
• The declaration of a string variable may omit its

length, in which case the compiler computes it:
char date4[] = "June 14";

• The compiler sets aside eight characters for
date4, enough to store the characters in "June
14" plus a null character.

• Omitting the length of a string variable is
especially useful if the initializer is long, since
computing the length by hand is error-prone.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

19

Chapter 13: Strings

Character Arrays versus Character Pointers
• The declaration
char date[] = "June 14";

declares date to be an array,
• The similar-looking
char *date = "June 14";

declares date to be a pointer.
• Thanks to the close relationship between arrays

and pointers, either version can be used as a string.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

20

Chapter 13: Strings

Character Arrays versus Character Pointers
• However, there are significant differences between

the two versions of date.
– In the array version, the characters stored in date can

be modified. In the pointer version, date points to a
string literal that shouldn’t be modified.

– In the array version, date is an array name. In the
pointer version, date is a variable that can point to
other strings.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

21

Chapter 13: Strings

Character Arrays versus Character Pointers
• The declaration

char *p;

does not allocate space for a string.
• Before we can use p as a string, it must point to an

array of characters.
• One possibility is to make p point to a string variable:

char str[STR_LEN+1], *p;

p = str;

• Another possibility is to make p point to a
dynamically allocated string.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

22

Chapter 13: Strings

Character Arrays versus Character Pointers
• Using an uninitialized pointer variable as a string

is a serious error.
• An attempt at building the string "abc":
char *p;

p[0] = 'a'; /*** WRONG ***/
p[1] = 'b'; /*** WRONG ***/
p[2] = 'c'; /*** WRONG ***/
p[3] = '\0'; /*** WRONG ***/

• Since p hasn’t been initialized, this causes
undefined behavior.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

23

Chapter 13: Strings

Reading and Writing Strings
• Writing a string is easy using either printf or
puts.

• Reading a string is a bit harder, because the input
may be longer than the string variable into which
it’s being stored.

• To read a string in a single step, we can use either
scanf or gets.

• As an alternative, we can read strings one
character at a time.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

24

Chapter 13: Strings

Writing Strings Using printf and puts
• The %s conversion specification allows printf

to write a string:
char str[] = "Are we having fun yet?";

printf("%s\n", str);

The output will be
Are we having fun yet?

• printf writes the characters in a string one by
one until it encounters a null character.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

25

Chapter 13: Strings

Writing Strings Using printf and puts
• To print part of a string, use the conversion

specification %.ps.
• p is the number of characters to be displayed.
• The statement
printf("%.6s\n", str);

will print
Are we

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

26

Chapter 13: Strings

Writing Strings Using printf and puts
• The %ms conversion will display a string in a field

of size m.
• If the string has fewer than m characters, it will be

right-justified within the field.
• To force left justification instead, we can put a

minus sign in front of m.
• The m and p values can be used in combination.
• A conversion specification of the form %m.ps

causes the first p characters of a string to be
displayed in a field of size m.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

27

Chapter 13: Strings

Writing Strings Using printf and puts
• printf isn’t the only function that can write

strings.
• The C library also provides puts:
puts(str);

• After writing a string, puts always writes an
additional new-line character.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

28

Chapter 13: Strings

Reading Strings Using scanf and gets
• The %s conversion specification allows scanf to

read a string into a character array:
scanf("%s", str);

• str is treated as a pointer, so there’s no need to
put the & operator in front of str.

• When scanf is called, it skips white space, then
reads characters and stores them in str until it
encounters a white-space character.

• scanf always stores a null character at the end of
the string.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

29

Chapter 13: Strings

Reading Strings Using scanf and gets
• scanf won’t usually read a full line of input.
• A new-line character will cause scanf to stop

reading, but so will a space or tab character.
• To read an entire line of input, we can use gets.
• Properties of gets:

– Doesn’t skip white space before starting to read input.
– Reads until it finds a new-line character.
– Discards the new-line character instead of storing it; the

null character takes its place.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

30

Chapter 13: Strings

Reading Strings Using scanf and gets
• Consider the following program fragment:
char sentence[SENT_LEN+1];

printf("Enter a sentence:\n");
scanf("%s", sentence);

• Suppose that after the prompt
Enter a sentence:

the user enters the line
To C, or not to C: that is the question.

• scanf will store the string "To" in sentence.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

31

Chapter 13: Strings

Reading Strings Using scanf and gets
• Suppose that we replace scanf by gets:
gets(sentence);

• When the user enters the same input as before,
gets will store the string
" To C, or not to C: that is the question."

in sentence.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

32

Chapter 13: Strings

Reading Strings Using scanf and gets
• As they read characters into an array, scanf and
gets have no way to detect when it’s full.

• Consequently, they may store characters past the
end of the array, causing undefined behavior.

• scanf can be made safer by using the conversion
specification %ns instead of %s.

• n is an integer indicating the maximum number of
characters to be stored.

• gets is inherently unsafe; fgets is a much
better alternative.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

33

Chapter 13: Strings

Reading Strings Character by Character
• Programmers often write their own input functions.
• Issues to consider:

– Should the function skip white space before beginning
to store the string?

– What character causes the function to stop reading: a
new-line character, any white-space character, or some
other character? Is this character stored in the string or
discarded?

– What should the function do if the input string is too
long to store: discard the extra characters or leave them
for the next input operation?

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

34

Chapter 13: Strings

Reading Strings Character by Character
• Suppose we need a function that (1) doesn’t skip

white-space characters, (2) stops reading at the first
new-line character (which isn’t stored in the string),
and (3) discards extra characters.

• A prototype for the function:
int read_line(char str[], int n);

• If the input line contains more than n characters,
read_line will discard the additional characters.

• read_line will return the number of characters it
stores in str.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

35

Chapter 13: Strings

Reading Strings Character by Character
• read_line consists primarily of a loop that calls
getchar to read a character and then stores the character
in str, provided that there’s room left:
int read_line(char str[], int n)
{
int ch, i = 0;

while ((ch = getchar()) != '\n')
if (i < n)
str[i++] = ch;

str[i] = '\0'; /* terminates string */
return i; /* number of characters stored */

}

• ch has int type rather than char type because
getchar returns an int value.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

36

Chapter 13: Strings

Reading Strings Character by Character
• Before returning, read_line puts a null

character at the end of the string.
• Standard functions such as scanf and gets

automatically put a null character at the end of an
input string.

• If we’re writing our own input function, we must
take on that responsibility.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

37

Chapter 13: Strings

Accessing the Characters in a String
• Since strings are stored as arrays, we can use

subscripting to access the characters in a string.
• To process every character in a string s, we can

set up a loop that increments a counter i and
selects characters via the expression s[i].

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

38

Chapter 13: Strings

Accessing the Characters in a String
• A function that counts the number of spaces in a

string:
int count_spaces(const char s[])
{

int count = 0, i;

for (i = 0; s[i] != '\0'; i++)
if (s[i] == ' ')

count++;
return count;

}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

39

Chapter 13: Strings

Accessing the Characters in a String
• A version that uses pointer arithmetic instead of

array subscripting :
int count_spaces(const char *s)
{

int count = 0;

for (; *s != '\0'; s++)
if (*s == ' ')

count++;
return count;

}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

40

Chapter 13: Strings

Accessing the Characters in a String
• Questions raised by the count_spaces

example:
– Is it better to use array operations or pointer

operations to access the characters in a string? We can
use either or both. Traditionally, C programmers lean
toward using pointer operations.

– Should a string parameter be declared as an array or
as a pointer? There’s no difference between the two.

– Does the form of the parameter (s[] or *s) affect
what can be supplied as an argument? No.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

41

Chapter 13: Strings

Using the C String Library
• Some programming languages provide operators

that can copy strings, compare strings, concatenate
strings, select substrings, and the like.

• C’s operators, in contrast, are essentially useless
for working with strings.

• Strings are treated as arrays in C, so they’re
restricted in the same ways as arrays.

• In particular, they cannot be copied or compared
using operators.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

42

Chapter 13: Strings

Using the C String Library
• Direct attempts to copy or compare strings will fail.
• Copying a string into a character array using the =

operator is not possible:
char str1[10], str2[10];
…
str1 = "abc"; /*** WRONG ***/
str2 = str1; /*** WRONG ***/

Using an array name as the left operand of = is illegal.
• Initializing a character array using = is legal, though:

char str1[10] = "abc";

In this context, = is not the assignment operator.
Copyright © 2008 W. W. Norton & Company.
All rights reserved.

43

Chapter 13: Strings

Using the C String Library
• Attempting to compare strings using a relational

or equality operator is legal but won’t produce the
desired result:
if (str1 == str2) … /*** WRONG ***/

• This statement compares str1 and str2 as
pointers.

• Since str1 and str2 have different addresses,
the expression str1 == str2 must have the
value 0.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

44

Chapter 13: Strings

Using the C String Library
• The C library provides a rich set of functions for

performing operations on strings.
• Programs that need string operations should

contain the following line:
#include <string.h>

• In subsequent examples, assume that str1 and
str2 are character arrays used as strings.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

45

Chapter 13: Strings

The strcpy (String Copy) Function
• Prototype for the strcpy function:
char *strcpy(char *s1, const char *s2);

• strcpy copies the string s2 into the string s1.
– To be precise, we should say “strcpy copies the

string pointed to by s2 into the array pointed to by
s1.”

• strcpy returns s1 (a pointer to the destination
string).

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

46

Chapter 13: Strings

The strcpy (String Copy) Function
• A call of strcpy that stores the string "abcd"

in str2:
strcpy(str2, "abcd");

/* str2 now contains "abcd" */

• A call that copies the contents of str2 into
str1:
strcpy(str1, str2);

/* str1 now contains "abcd" */

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

47

Chapter 13: Strings

The strcpy (String Copy) Function
• In the call strcpy(str1, str2), strcpy has

no way to check that the str2 string will fit in the
array pointed to by str1.

• If it doesn’t, undefined behavior occurs.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

48

Chapter 13: Strings

The strcpy (String Copy) Function
• Calling the strncpy function is a safer, albeit

slower, way to copy a string.
• strncpy has a third argument that limits the

number of characters that will be copied.
• A call of strncpy that copies str2 into str1:
strncpy(str1, str2, sizeof(str1));

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

49

Chapter 13: Strings

The strcpy (String Copy) Function
• strncpy will leave str1 without a terminating

null character if the length of str2 is greater than
the size of the str1 array.

• A safer way to use strncpy:
strncpy(str1, str2, sizeof(str1) - 1);
str1[sizeof(str1)-1] = '\0';

• The second statement guarantees that str1 is
always null-terminated.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

50

Chapter 13: Strings

The strlen (String Length) Function
• Prototype for the strlen function:
size_t strlen(const char *s);

• size_t is a typedef name that represents one
of C’s unsigned integer types.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

51

Chapter 13: Strings

The strlen (String Length) Function
• strlen returns the length of a string s, not

including the null character.
• Examples:
int len;

len = strlen("abc"); /* len is now 3 */
len = strlen(""); /* len is now 0 */
strcpy(str1, "abc");
len = strlen(str1); /* len is now 3 */

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

52

Chapter 13: Strings

The strcat (String Concatenation) Function
• Prototype for the strcat function:

char *strcat(char *s1, const char *s2);

• strcat appends the contents of the string s2 to the end of
the string s1.

• It returns s1 (a pointer to the resulting string).
• strcat examples:

strcpy(str1, "abc");
strcat(str1, "def");
/* str1 now contains "abcdef" */

strcpy(str1, "abc");
strcpy(str2, "def");
strcat(str1, str2);
/* str1 now contains "abcdef" */

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

53

Chapter 13: Strings

The strcat (String Concatenation) Function
• As with strcpy, the value returned by strcat

is normally discarded.
• The following example shows how the return

value might be used:
strcpy(str1, "abc");
strcpy(str2, "def");
strcat(str1, strcat(str2, "ghi"));

/* str1 now contains "abcdefghi";
str2 contains "defghi" */

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

54

Chapter 13: Strings

The strcat (String Concatenation) Function
• strcat(str1, str2) causes undefined

behavior if the str1 array isn’t long enough to
accommodate the characters from str2.

• Example:
char str1[6] = "abc";

strcat(str1, "def"); /*** WRONG ***/

• str1 is limited to six characters, causing
strcat to write past the end of the array.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

55

Chapter 13: Strings

The strcat (String Concatenation) Function
• The strncat function is a safer but slower

version of strcat.
• Like strncpy, it has a third argument that limits

the number of characters it will copy.
• A call of strncat:

strncat(str1, str2, sizeof(str1) - strlen(str1) - 1);

• strncat will terminate str1 with a null
character, which isn’t included in the third
argument.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

56

Chapter 13: Strings

The strcmp (String Comparison) Function
• Prototype for the strcmp function:

int strcmp(const char *s1, const char *s2);

• strcmp compares the strings s1 and s2,
returning a value less than, equal to, or greater
than 0, depending on whether s1 is less than,
equal to, or greater than s2.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

57

Chapter 13: Strings

The strcmp (String Comparison) Function
• Testing whether str1 is less than str2:

if (strcmp(str1, str2) < 0) /* is str1 < str2? */
…

• Testing whether str1 is less than or equal to
str2:
if (strcmp(str1, str2) <= 0) /* is str1 <= str2? */
…

• By choosing the proper operator (<, <=, >, >=,
==, !=), we can test any possible relationship
between str1 and str2.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

58

Chapter 13: Strings

The strcmp (String Comparison) Function
• strcmp considers s1 to be less than s2 if either

one of the following conditions is satisfied:
– The first i characters of s1 and s2 match, but the

(i+1)st character of s1 is less than the (i+1)st character
of s2.

– All characters of s1 match s2, but s1 is shorter than
s2.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

59

Chapter 13: Strings

The strcmp (String Comparison) Function
• As it compares two strings, strcmp looks at the

numerical codes for the characters in the strings.
• Some knowledge of the underlying character set is

helpful to predict what strcmp will do.
• Important properties of ASCII:

– A–Z, a–z, and 0–9 have consecutive codes.
– All upper-case letters are less than all lower-case

letters.
– Digits are less than letters.
– Spaces are less than all printing characters.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

60

Chapter 13: Strings

Arrays of Strings
• There is more than one way to store an array of

strings.
• One option is to use a two-dimensional array of

characters, with one string per row:
char planets[][8] = {"Mercury", "Venus", "Earth",

"Mars", "Jupiter", "Saturn",
"Uranus", "Neptune", "Pluto"};

• The number of rows in the array can be omitted,
but we must specify the number of columns.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

61

Chapter 13: Strings

Arrays of Strings
• Unfortunately, the planets array contains a fair

bit of wasted space (extra null characters):

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

62

Chapter 13: Strings

Arrays of Strings
• Most collections of strings will have a mixture of

long strings and short strings.
• What we need is a ragged array, whose rows can

have different lengths.
• We can simulate a ragged array in C by creating

an array whose elements are pointers to strings:
char *planets[] = {"Mercury", "Venus", "Earth",

"Mars", "Jupiter", "Saturn",
"Uranus", "Neptune", "Pluto"};

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

63

Chapter 13: Strings

Arrays of Strings
• This small change has a dramatic effect on how
planets is stored:

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

64

Chapter 13: Strings

Arrays of Strings
• To access one of the planet names, all we need do

is subscript the planets array.
• Accessing a character in a planet name is done in

the same way as accessing an element of a two-
dimensional array.

• A loop that searches the planets array for
strings beginning with the letter M:
for (i = 0; i < 9; i++)
if (planets[i][0] == 'M')
printf("%s begins with M\n", planets[i]);

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

65

Chapter 13: Strings

Appendix
• Study the following string idioms by yourselves!

Chapter 13: Strings

String Idioms
• Functions that manipulate strings are a rich source

of idioms.
• We’ll explore some of the most famous idioms by

using them to write the strlen and strcat
functions.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

67

Chapter 13: Strings

Searching for the End of a String
• A version of strlen that searches for the end of

a string, using a variable to keep track of the
string’s length:
size_t strlen(const char *s)
{

size_t n;

for (n = 0; *s != '\0'; s++)
n++;

return n;
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

68

Chapter 13: Strings

Searching for the End of a String
• To condense the function, we can move the

initialization of n to its declaration:
size_t strlen(const char *s)
{

size_t n = 0;

for (; *s != '\0'; s++)
n++;

return n;
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

69

Chapter 13: Strings

Searching for the End of a String
• The condition *s != '\0' is the same as *s != 0,

which in turn is the same as *s.
• A version of strlen that uses these observations:
size_t strlen(const char *s)
{

size_t n = 0;

for (; *s; s++)
n++;

return n;
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

70

Chapter 13: Strings

Searching for the End of a String
• The next version increments s and tests *s in the

same expression:
size_t strlen(const char *s)
{

size_t n = 0;

for (; *s++;)
n++;

return n;
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

71

Chapter 13: Strings

Searching for the End of a String
• Replacing the for statement with a while

statement gives the following version of strlen:
size_t strlen(const char *s)
{

size_t n = 0;

while (*s++)
n++;

return n;
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

72

Chapter 13: Strings

Searching for the End of a String
• Although we’ve condensed strlen quite a bit,

it’s likely that we haven’t increased its speed.
• A version that does run faster, at least with some

compilers:
size_t strlen(const char *s)
{

const char *p = s;

while (*s)
s++;

return s - p;
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

73

Chapter 13: Strings

Searching for the End of a String
• Idioms for “search for the null character at the end

of a string”:
while (*s) while (*s++)

s++; ;

• The first version leaves s pointing to the null
character.

• The second version is more concise, but leaves s
pointing just past the null character.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

74

Chapter 13: Strings

Copying a String
• Copying a string is another common operation.
• To introduce C’s “string copy” idiom, we’ll

develop two versions of the strcat function.
• The first version of strcat (next slide) uses a

two-step algorithm:
– Locate the null character at the end of the string s1 and

make p point to it.
– Copy characters one by one from s2 to where p is

pointing.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

75

Chapter 13: Strings

Copying a String
char *strcat(char *s1, const char *s2)
{

char *p = s1;

while (*p != '\0')
p++;

while (*s2 != '\0') {
*p = *s2;
p++;
s2++;

}
*p = '\0';
return s1;

}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

76

Chapter 13: Strings

Copying a String
• p initially points to the first character in the s1

string:

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

77

Chapter 13: Strings

Copying a String
• The first while statement locates the null

character at the end of s1 and makes p point to it:

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

78

Chapter 13: Strings

Copying a String
• The second while statement repeatedly copies

one character from where s2 points to where p
points, then increments both p and s2.

• Assume that s2 originally points to the string
"def".

• The strings after the first loop iteration:

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

79

Chapter 13: Strings

Copying a String
• The loop terminates when s2 points to the null

character:

• After putting a null character where p is pointing,
strcat returns.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

80

Chapter 13: Strings

Copying a String
• Condensed version of strcat:
char *strcat(char *s1, const char *s2)
{

char *p = s1;

while (*p)
p++;

while (*p++ = *s2++)
;

return s1;
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

81

Chapter 13: Strings

Copying a String
• The heart of the streamlined strcat function is

the “string copy” idiom:
while (*p++ = *s2++)

;

• Ignoring the two ++ operators, the expression
inside the parentheses is an assignment:
*p = *s2

• After the assignment, p and s2 are incremented.
• Repeatedly evaluating this expression copies

characters from where s2 points to where p points.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

82

Chapter 13: Strings

Copying a String
• But what causes the loop to terminate?
• The while statement tests the character that was

copied by the assignment *p = *s2.
• All characters except the null character test true.
• The loop terminates after the assignment, so the

null character will be copied.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

83

	Chapter 13
	Introduction
	String Literals
	Continuing a String Literal
	Continuing a String Literal
	How String Literals Are Stored
	How String Literals Are Stored
	How String Literals Are Stored
	Operations on String Literals
	Operations on String Literals
	Operations on String Literals
	String Literals versus Character Constants
	String Variables
	String Variables
	String Variables
	Initializing a String Variable
	Initializing a String Variable
	Initializing a String Variable
	Initializing a String Variable
	Character Arrays versus Character Pointers
	Character Arrays versus Character Pointers
	Character Arrays versus Character Pointers
	Character Arrays versus Character Pointers
	Reading and Writing Strings
	Writing Strings Using printf and puts
	Writing Strings Using printf and puts
	Writing Strings Using printf and puts
	Writing Strings Using printf and puts
	Reading Strings Using scanf and gets
	Reading Strings Using scanf and gets
	Reading Strings Using scanf and gets
	Reading Strings Using scanf and gets
	Reading Strings Using scanf and gets
	Reading Strings Character by Character
	Reading Strings Character by Character
	Reading Strings Character by Character
	Reading Strings Character by Character
	Accessing the Characters in a String
	Accessing the Characters in a String
	Accessing the Characters in a String
	Accessing the Characters in a String
	Using the C String Library
	Using the C String Library
	Using the C String Library
	Using the C String Library
	The strcpy (String Copy) Function
	The strcpy (String Copy) Function
	The strcpy (String Copy) Function
	The strcpy (String Copy) Function
	The strcpy (String Copy) Function
	The strlen (String Length) Function
	The strlen (String Length) Function
	The strcat (String Concatenation) Function
	The strcat (String Concatenation) Function
	The strcat (String Concatenation) Function
	The strcat (String Concatenation) Function
	The strcmp (String Comparison) Function
	The strcmp (String Comparison) Function
	The strcmp (String Comparison) Function
	The strcmp (String Comparison) Function
	Arrays of Strings
	Arrays of Strings
	Arrays of Strings
	Arrays of Strings
	Arrays of Strings
	Appendix
	String Idioms
	Searching for the End of a String
	Searching for the End of a String
	Searching for the End of a String
	Searching for the End of a String
	Searching for the End of a String
	Searching for the End of a String
	Searching for the End of a String
	Copying a String
	Copying a String
	Copying a String
	Copying a String
	Copying a String
	Copying a String
	Copying a String
	Copying a String
	Copying a String

