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Group A
C programming language: Operators
	Operators
	Associativity

	( )    [ ]    ->  .
	Left to right

	!     ++    --      +      -     *    &     (type)   sizeof
	Right to left  (Unary)

	*       /       %
	Left to right

	+       -
	Left to right

	<       <=      >      >=
	Left to right

	==        !=
	Left to right

	&&
	Left to right

	||
	Left to right

	?:
	Right to left

	=     +=    -=     *=       /=       %=   
	Right to left

	,
	Left to right


There is only one correct answer for each of the 16 multiple-choice questions.
1)  The following function is for printing the items at the front and at the rear of a non-empty circular queue, without changing the contents of it.


#define MAXQUEUE 10000

struct queue
{
  int items[MAXQUEUE];
  int front, rear;
};

void print_values(struct queue *pq)
{
   if(pq -> front == MAXQUEUE - 1)

            printf(“Front item: %d\n”,   pq -> items[____Missing_1_____]);

   else 

           printf(“Front item: %d\n”,   pq -> items[____ Missing_2 _____]);

   printf(“Rear item: %d\n”,   pq -> items[____ Missing_3 _____]);

}

However, parts of the code are missing (indicated by __________).
What can the missing parts be?

a) Miss_1: pq -> front=0
Miss_2: ++ pq -> front      
 Miss_3: ++pq -> rear
b) Miss_1:  0 
   
Miss_2: pq -> front + 1      
 Miss_3: pq -> rear + 1
c) Miss_1:  0 
   
Miss_2: pq -> front + 1       
 Miss_3: pq -> rear
d) Miss_1:  0 
   
Miss_2: pq -> front      
 Miss_3: pq -> rear
2) Consider the circular array implementation of the queue: 

     struct queue
{
  int items[MAX];
  int front, rear;
}q;
Which of the following is not correct?
a) If q.front ==  q.rear  the queue is empty
b) The queue can contain at most MAX – 1 items
c) q.items[q.front+1]  gives the item at the front of the queue when q.front < MAX-1
d) q.items[q.rear+1]  gives the item at the rear of the queue when q.rear < MAX-1
3) Consider the code 

int *fun(int *p)

{

  while(p[2] >= 0)  ++p;  return p;

}

void main()

{

  int *q,   v[8]={3,2,7,-2,5,6,7,9};

  q = fun(v);

  printf("%d ", ____Missing_1___);

  printf("%d ", ____Missing_2___);

 }
However, part of the code is missing (indicated by __________).  The code is supposed to give the output

 7  -2

What can the missing parts be?

a) Missing_1:  *q
          Missing_2:  q[2]
b) Missing_1:  v[4]
Missing_2:  q[2]
c) Missing_1:  *q

Missing_2:  q[1]
d) Missing_1:  *(q+1)
Missing_2:  *(q+2)
4)   Evaluate the prefix expression:  * - + 435 / + 243
   a) 8    b)   4    c)  32   d)  16
5) Choose the correct output for the following sequence of stack operations.

push(5), push(8), pop, push(2), push(5), pop, pop, pop, push(1), pop

a)  8 5 2  5  1     b)  8  5  5  2  1   c)  8 2 5 5 1   d)  5 8 2 5 1
6) Given the code 
 char (*v)[3], q[4][3]={'C','O','M','P','U','T','E','R'};  
 v=q+1;
which of the following is not correct?


a) v[1][1] is ‘R’
b) *v[1] is ‘U’
c) v[-1][2] is ‘M’
d) v[2]-q[2] is 3
7)   Consider the function
void fun(char **x) { printf("%s\n", *++x); }
which of the following is not correct for the code

 char *str[3];

 fun(&str[1]); 
      if  XYZ  is printed:
a) *str[0]  may be ‘Y’
b) *str[2]  is definitely  ‘X’
c) The string starting at str[2]+1  is definitely "YYZ"
d) *str[1]  may not be ‘X’
8)   Consider the code
char c[] = "COMPUTER";

struct uuu

{

  int value;

  char *ptr;

} q;

struct uuu *p = &q;

___________________ //line 1

 ___________________ //line 2

 printf("%d\n", ++p->value);

 printf("%c", ++(*(p->ptr)));

 printf("%c", p->ptr[-1]);

 ___________________ //line 3

 printf("%c\n", *p->ptr);

Suppose that the code outputs

8
NOU
What could the code for line1, line2 and line3 be? 

a) line 1:  p.value = 7; 

line 2: p -> ptr = c+2;
 
  line 3:   p -> ptr += 2;
b) line 1:  p -> value = 7; 

line 2: p -> ptr = c+2;
 
  line 3:   p.ptr += 2;
c) line 1:  p -> value = 7; 

line 2: p -> ptr = c;
 
  line 3:   p -> ptr += 2;
d) line 1:  p -> value = 7; 

line 2: p -> ptr = c+2;
 
  line 3:   p -> ptr += 2;
9)   The postfix form of the expression (A+B )* (C*D-E )*F/G  is
    

   (a)   AB+CD*E-FG/** 

(b)  AB+CD*E-F**G/ 
   (c)  AB+CD*E-*F*G/

(d)  AB+CDE*-*F*G/
10)   Consider the array implementation of the circular queue defined by the following code:

    #define MAXQUEUE 4

    struct queue

    {

     char items[MAXQUEUE];

     int front, rear;

      } q;
       Assume that the queue appears as follows after some insertions and deletions:
	       0
	        1
	       2
	       3

	
	
	      A
	      B


     where the item A is at the front. Which is correct following the insertion of an item and 
    then removal of an item?
a) q.font = 2,  q.rear = 0
b)  q.font = 3,  q.rear = 0
c)  q.font = 2,  q.rear = 1
d)  q.font = 0,  q.rear = 1
11)  Consider the code

struct crr

 {

   char *name;

   struct crr *next;

 };

   struct crr x[] = {{"ABCD", x+1}, {"1234", x}};

   struct crr *cp = x; 
   printf("%c\n", ____Missing_1____ );

   printf("%c  ", ____Missing_2____);

   printf("%c  ", *++cp->name);

However, part of the code is missing (indicated by __________).  The code is supposed to give the output

3
A   C
What can the missing parts be?

 a) Missing_1:  cp->next->name[2]         Missing_2:  *cp->name++
b) Missing_1:  cp->name[1]                   Missing_2:  *++cp->name
c) Missing_1:  cp->name[2]                   Missing_2:  *cp->name++
d) Missing_1:  cp->next->name[1]        Missing_2:  *cp->name
12)  Consider the postfix expression      ab–cda+**d+a-    Assume that 
            a = 4, b = 1, d = 2, and the value of the expression is 52  . What is the value
          of c ?
   a) 1    b)   2    c)  3   d)  4
13)  Suppose that  the infix-to-postfix conversion algorithm is applied to the expression
       A/(B$C$D*E+F*G)
       Which of the following cannot be the contents of the stack at some instant? 
      The rightmost symbol denotes the top of the stack. 
   a)  / ($*



b)  / ($$
        c)  /(+*



d)  /(*
14)  The following code implements basic stack operations. However, some parts of the code are 
          left incomplete (indicated by __________). What can the missing parts be?


struct stack 
{

 
    int array[100];

 
    int top;

};


int empty(struct stack *ps)

{
    if(ps -> top == -1) return 1; //empty stack 

  
   else return 0;
}

int pop(struct stack *ps)

{

  if(empty(ps))   { printf("Stack underflow");      exit(1);  }

  
 return ___ Missing_1________;

            }

            void push(struct stack *ps, int x)

            {   
               ___  Missing_2_______ = x;
            }

 a) Missing_1:  ps -> array[--ps  -> top] Missing_2:  ps -> array[ps  -> top++]
b)  Missing_1:  ps -> array[ps  -> top++] Missing_2:  ps -> array[--ps  -> top]
c)  Missing_1:  ps -> array[ps  -> top--] Missing_2:  ps -> array[ps  -> top++]
d)  Missing_1:  ps -> array[ps  -> top--] Missing_2:  ps -> array[++ps  -> top]
15)  What is the output of the following code? 

int main()

{

    struct forest

    {

        int trees;

        int animals;

    }F1,*F2;

    F1.trees=1000;

    F1.animals=20;

    F2=&F1;

    printf("%d ",F2.animals);

    return 0;

}

a) 0       b) 20       c) Compiler error      d) None of the above
16)  Consider the expression D$(A-(B+C))$E

        How many items, at most, will the stack contain when the infix-to-postfix  
      conversion algorithm is applied to the expression?

             a) 3    b)   4    c)  5   d)  6
ANSWERS:

1)  C
  2) D
3) D

  4) B
  5) A
 6) B
 7)  C
  8) D
9) C

10) A
11) A
12) C
13) A
14) D     15) C         16) C          
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