Eastern Mediterranean University

Computer Engineering Department

CMPE-231 DATA STRUCTURES

MIDTERM EXAMINATION
5 April 24
Duration: 75 minutes

Name, Surname
. SOLUTION KEY.

Student ID #

Please, check your exam sheet and make sure that it contains 16 questins. In case of any missing pages, inform the invigilator IMMEDIATELY !

You MUST give your answers in the answer sheet provided separately. Otherwise, you will get NO MARKS.
Do NOT forget to mark your question set group (A or B) on the answer sheet.
Group A
C programming language: Operators
	Operators
	Associativity

	() [] -> .
	Left to right

	! ++ -- + - * & (type) sizeof
	Right to left (Unary)

	* / %
	Left to right

	+ -
	Left to right

	< <= > >=
	Left to right

	== !=
	Left to right

	&&
	Left to right

	||
	Left to right

	?:
	Right to left

	= += -= *= /= %=
	Right to left

	,
	Left to right

There is only one correct answer for each of the 16 multiple-choice questions.
1) The following function is for printing the items at the front and at the rear of a non-empty circular queue, without changing the contents of it.

#define MAXQUEUE 10000

struct queue
{
 int items[MAXQUEUE];
 int front, rear;
};

void print_values(struct queue *pq)
{
 if(pq -> front == MAXQUEUE - 1)

 printf(“Front item: %d\n”, pq -> items[____Missing_1_____]);

 else

 printf(“Front item: %d\n”, pq -> items[____ Missing_2 _____]);

 printf(“Rear item: %d\n”, pq -> items[____ Missing_3 _____]);

}

However, parts of the code are missing (indicated by __________).
What can the missing parts be?

a) Miss_1: pq -> front=0
Miss_2: ++ pq -> front
 Miss_3: ++pq -> rear
b) Miss_1: 0

Miss_2: pq -> front + 1
 Miss_3: pq -> rear + 1
c) Miss_1: 0

Miss_2: pq -> front + 1
 Miss_3: pq -> rear
d) Miss_1: 0

Miss_2: pq -> front
 Miss_3: pq -> rear
2) Consider the circular array implementation of the queue:

 struct queue
{
 int items[MAX];
 int front, rear;
}q;
Which of the following is not correct?
a) If q.front == q.rear the queue is empty
b) The queue can contain at most MAX – 1 items
c) q.items[q.front+1] gives the item at the front of the queue when q.front < MAX-1
d) q.items[q.rear+1] gives the item at the rear of the queue when q.rear < MAX-1
3) Consider the code

int *fun(int *p)

{

 while(p[2] >= 0) ++p; return p;

}

void main()

{

 int *q, v[8]={3,2,7,-2,5,6,7,9};

 q = fun(v);

 printf("%d ", ____Missing_1___);

 printf("%d ", ____Missing_2___);

 }
However, part of the code is missing (indicated by __________). The code is supposed to give the output

 7 -2

What can the missing parts be?

a) Missing_1: *q
 Missing_2: q[2]
b) Missing_1: v[4]
Missing_2: q[2]
c) Missing_1: *q

Missing_2: q[1]
d) Missing_1: *(q+1)
Missing_2: *(q+2)
4) Evaluate the prefix expression: * - + 435 / + 243
 a) 8 b) 4 c) 32 d) 16
5) Choose the correct output for the following sequence of stack operations.

push(5), push(8), pop, push(2), push(5), pop, pop, pop, push(1), pop

a) 8 5 2 5 1 b) 8 5 5 2 1 c) 8 2 5 5 1 d) 5 8 2 5 1
6) Given the code
 char (*v)[3], q[4][3]={'C','O','M','P','U','T','E','R'};
 v=q+1;
which of the following is not correct?

a) v[1][1] is ‘R’
b) *v[1] is ‘U’
c) v[-1][2] is ‘M’
d) v[2]-q[2] is 3
7) Consider the function
void fun(char **x) { printf("%s\n", *++x); }
which of the following is not correct for the code

 char *str[3];

 fun(&str[1]);
 if XYZ is printed:
a) *str[0] may be ‘Y’
b) *str[2] is definitely ‘X’
c) The string starting at str[2]+1 is definitely "YYZ"
d) *str[1] may not be ‘X’
8) Consider the code
char c[] = "COMPUTER";

struct uuu

{

 int value;

 char *ptr;

} q;

struct uuu *p = &q;

___________________ //line 1

 ___________________ //line 2

 printf("%d\n", ++p->value);

 printf("%c", ++(*(p->ptr)));

 printf("%c", p->ptr[-1]);

 ___________________ //line 3

 printf("%c\n", *p->ptr);

Suppose that the code outputs

8
NOU
What could the code for line1, line2 and line3 be?

a) line 1: p.value = 7;

line 2: p -> ptr = c+2;

 line 3: p -> ptr += 2;
b) line 1: p -> value = 7;

line 2: p -> ptr = c+2;

 line 3: p.ptr += 2;
c) line 1: p -> value = 7;

line 2: p -> ptr = c;

 line 3: p -> ptr += 2;
d) line 1: p -> value = 7;

line 2: p -> ptr = c+2;

 line 3: p -> ptr += 2;
9) The postfix form of the expression (A+B)* (C*D-E)*F/G is

 (a) AB+CD*E-FG/**

(b) AB+CD*E-F**G/
 (c) AB+CD*E-*F*G/

(d) AB+CDE*-*F*G/
10) Consider the array implementation of the circular queue defined by the following code:

 #define MAXQUEUE 4

 struct queue

 {

 char items[MAXQUEUE];

 int front, rear;

 } q;
 Assume that the queue appears as follows after some insertions and deletions:
	 0
	 1
	 2
	 3

	
	
	 A
	 B

 where the item A is at the front. Which is correct following the insertion of an item and
 then removal of an item?
a) q.font = 2, q.rear = 0
b) q.font = 3, q.rear = 0
c) q.font = 2, q.rear = 1
d) q.font = 0, q.rear = 1
11) Consider the code

struct crr

 {

 char *name;

 struct crr *next;

 };

 struct crr x[] = {{"ABCD", x+1}, {"1234", x}};

 struct crr *cp = x;
 printf("%c\n", ____Missing_1____);

 printf("%c ", ____Missing_2____);

 printf("%c ", *++cp->name);

However, part of the code is missing (indicated by __________). The code is supposed to give the output

3
A C
What can the missing parts be?

 a) Missing_1: cp->next->name[2] Missing_2: *cp->name++
b) Missing_1: cp->name[1] Missing_2: *++cp->name
c) Missing_1: cp->name[2] Missing_2: *cp->name++
d) Missing_1: cp->next->name[1] Missing_2: *cp->name
12) Consider the postfix expression ab–cda+**d+a- Assume that
 a = 4, b = 1, d = 2, and the value of the expression is 52 . What is the value
 of c ?
 a) 1 b) 2 c) 3 d) 4
13) Suppose that the infix-to-postfix conversion algorithm is applied to the expression
 A/(BCD*E+F*G)
 Which of the following cannot be the contents of the stack at some instant?
 The rightmost symbol denotes the top of the stack.
 a) / ($*

b) / ($$
 c) /(+*

d) /(*
14) The following code implements basic stack operations. However, some parts of the code are
 left incomplete (indicated by __________). What can the missing parts be?

struct stack
{

 int array[100];

 int top;

};

int empty(struct stack *ps)

{
 if(ps -> top == -1) return 1; //empty stack

 else return 0;
}

int pop(struct stack *ps)

{

 if(empty(ps)) { printf("Stack underflow"); exit(1); }

 return ___ Missing_1________;

 }

 void push(struct stack *ps, int x)

 {
 ___ Missing_2_______ = x;
 }

 a) Missing_1: ps -> array[--ps -> top] Missing_2: ps -> array[ps -> top++]
b) Missing_1: ps -> array[ps -> top++] Missing_2: ps -> array[--ps -> top]
c) Missing_1: ps -> array[ps -> top--] Missing_2: ps -> array[ps -> top++]
d) Missing_1: ps -> array[ps -> top--] Missing_2: ps -> array[++ps -> top]
15) What is the output of the following code?

int main()

{

 struct forest

 {

 int trees;

 int animals;

 }F1,*F2;

 F1.trees=1000;

 F1.animals=20;

 F2=&F1;

 printf("%d ",F2.animals);

 return 0;

}

a) 0 b) 20 c) Compiler error d) None of the above
16) Consider the expression D$(A-(B+C))$E

 How many items, at most, will the stack contain when the infix-to-postfix
 conversion algorithm is applied to the expression?

 a) 3 b) 4 c) 5 d) 6
ANSWERS:

1) C
 2) D
3) D

 4) B
 5) A
 6) B
 7) C
 8) D
9) C

10) A
11) A
12) C
13) A
14) D 15) C 16) C

2

