CMSE 423 Embedded Systems Design (Hi-End)					
Department: Computer Engineering					
Instructor Information Name: Assoc. Prof. Dr. Mehmet E-mail: mehmet.bodur(at)emu.ed Office: CMPE 216 Office Tel: 0392 630 2841					
Lab Coordinator Assistant Information Name: Melek Gök E-mail: melek.gok(at)emu.edu.tr					
Meeting times and places: 4 hrs Lecture, 2 hrs Lab (for 14 weeks)					
Program Name: Software Engir	neering	Program Code: 29			
Course Code CMSE 423	Credits 4		Year/Semester 2023-2024 Fall		
☐ Required Course ☐ Ele	Required Course				
Prerequisite(s): CMPE/CMSE 223					
models of computation and mode Embedded Systems (HES) hardw digital inputs and outputs, sampling requirements, RTOS, virtual mach	ling methods such a are, ASICs, processing, and actuators, so hines, real time data n, energy and power	as automata, and state characters, memories, communications, memories, communication hardware. Embeddibases. IoT projects and ir models, simulation, ra	implementation. Evaluation and apid prototyping, emulation. Test, test		
Course Web Page https://staff.emu.edu.tr/mehme	tbodur/en/teachin	g/cmse423			
Textbook(s) E.A. Lee and S.A. Seshia, Introduction to Embedded Systems, A Cyber-Physical Systems Approach, 2Ed, MIT Press, 2017.					
M. Bodur, Application Notes for			y, Girne, 2023 nd Simulation, Çatalköy, Girne, 2023		

Topics Covered and Class Schedule (4 hours of lectures per week)

- Week 1 Trends in Embedded Systems Industry, application areas. Common challenges in (High End) Embedded Systems design and applications [Survey and Ch0]
- Week 2 Importance of modeling the real world, and cyber world, for given requirement specifications[Ch1]
- Week 3 Modeling the continuous physical world: physical laws and constraints, kinematics, and dynamics. Signal flow diagrams [Ch2].
- Week 4 Discrete Systems Modeling, Discrete and Hybrid systems, automata, and statecharts [Ch3, Ch4].
- Week 5 Commons of HEES Projects, Simulation, Emulation, and Rapid Prototyping, Sensors and Actuators, sampling [Ch7] (quiz-1)
- Week 6 HES hardware, Input-Output Ports, analog, digital, and serial input-outputs and communication, [Ch10].
- Week 7 Processors and Memory systems, RTOS, virtual machines, real time databases [Ch8, Ch9]
- Week 8 (Midterm Exam)
- **Week 9** IoT projects and implementation: NodeRED on Raspberry and on PC. Team project discussions [project introduction].
- Week 10 Incremental Design, test, test pattern generation, evaluation of test patterns, design for testability, [project implementation and verification]
- Week 11 Evaluation and validation: performance evaluation, energy and power models [project evaluation]
- Week 12 Security of Embedded Systems, Cryptographics, Symmetric and Public Key encryption, Kerckhoff's principle, Confidentiality, Integrity, Authenticity. Software Security, Attacker and Threat models, Security in Embedded Industry [Ch 17]
- Week 13 Student Prototype Project Discussions, (project reporting)
- Week 14 (Final Exam, Final revision of project reports)

Laboratory Schedule:

(2 hours of laboratory per week)

- Week 4 Modeling and control of continuous systems by Signal Flow Diagrams.
- Week 5 Modeling and control of hybrid systems by Signal Flow Diagrams.
- Week 6 ESD application on Arduino, using digital inputs, LCD display, PWM outputs, etc
- Week 7 ESD application on Arduino, analog input interfacing (reading temperature by using a thermistor).
- Week 10 Raspberry (Raspi) LED, button and Serial port interfacing by NodeRED,
- Week 11 Raspi: building a web based dashboard for high-end applications
- Week 12 Discussions on Team Projects -2,

Course Learning Outcomes

Upon successful completion of the course, students are expected to have the following competencies

- (1) Perform kinematic and dynamics modelling of simple physical systems for HES design (1).
- (2) Know typical structure of a HES, and use simple digital i/o ports in C (1).
- (3) Know analogue, digital and hybrid approaches, and use a typical AD converter of a HES (1).
- (4) Know typical control, and monitoring approaches for High End Embedded Systems (HES) (1).
- (5) Know common cyber modelling tools and methods, and apply FSM techniques on HES (1).
- (6) Know common principles of IoT systems, and apply them on an IoT platform (1).
- (7) Analyse technical requirements and design a HES using indicators, displays, sensors and actors (1).
- (8) Analyse and comment on ethical social and environmental responsibilities of an embedded system design (4).
- (9) Practice an embedded system preliminary design starting from technical requirements (2).
- (10) Practice an embedded system design in teams including its tests (5).

(11) Prepare a team design report to document hardware/software development of a HEES, including its tests (6).

	Method	Percentage
	Labs	10%
A	Quiz, and Homework	15%
Assessment	Midterm Exam	20%
	Design Project	25%
	Final Examination	30%

Quiz and HW grading: Unscheduled 10-min Pop Quizzes at the end of the lecture hours. Two home works before midterm and before final. Reading home-works, and small project-home works related to details of the calculations for HLES design.

Lab grading: Lab attendance (3p), reports of labs (6p), and implementation (about 1p). Missing more than 2 labs resets lab grade.

Policy on makeups: For eligibility to take a makeup exam, the student should bring a valid excuse (medical report) within 3 working days of the missed exam. No make-up exam for quizzes. Final and midterm make-up exams are conducted after final exam. Students may get NG if they miss both midterm and final exam.

Policy on cheating and plagiarism: Any student caught cheating at the exams or assignments will automatically fail the course and may be sent to the disciplinary committee at the discretion of the instructor.

Updated by: Assoc. Prof. Dr. Mehmet Bodur Update Date: 19.04.2019

Contribution of Course to ABET Criterion 5

Credit Hours for:

Mathematics & Basic Science : 0 Engineering Sciences and Design : 4

General Education: 0

Relationship of the course to Program Outcomes

- 1. an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics
- 2. an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors
- 4. an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts
- 5. an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives
- 6. an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions

Prepared by: Assoc. Prof. Dr. Mehmet Bodur	Date Prepared: 19 April 2019 Last modification: 10 October 2023
	East modification. To october 2023