The Limitation of Equilibrium Phase Diagrams

- Unable to indicate the time period required for the attainment of equilibrium
- Equilibrium conditions are maintained only if heating or cooling is carried out at extremely slow and unpractical rates.

Chapter 10: Phase Transformations

WHY STUDY PHASE TRANSFORMATION?

- The development of a set of desirable mechanical characteristics for a material often results from a phase transformation. That is wrought by **heat-treatment**.
- It is important to design a proper heat-treatment to get the desired room-temperature mechanical properties of an alloy.
- **Is it possible to develop other microstructural elements than pearlite for iron-carbon alloys?**

Phase Transformations

- Phase transformation may be wrought in metal alloy systems by varying temperature, composition, and the external pressure.
- Temperature changes by means of heat-treatments are most conveniently utilized to induce phase transformations.
- This corresponds to crossing a phase boundary on the composition-temperature phase diagram as an alloy of a given temperature is heated or cooled.
- One limitation of phase diagrams is their inability to indicate the time period required for the attainment of equilibrium.
- Equilibrium conditions are maintained only if heating or cooling is carried out at extremely slow and unpractical rates.

THE INFLUENCE OF TIME

- Why it is important to study the influence of time on phase transformation?
- How does the rate of transformation depend on time and temperature?

- For other than equilibrium cooling, transformations are shifted to lower temperatures than indicated by the phase diagram.
- **Supercooling:** the shift to lower temperatures for cooling
- **Superheating:** the shift to higher temperatures for heating

Transformations & Undercooling

- Eutectoid transf. (Fe-Fe₃C system):
- **•** For transf. to occur, must cool to below 727ºC (i.e., must "undercool")

Adapted from Fig. 9.24,*Callister & Rethwisch 8e.* (Fig. 9.24 adapted from *Binary Alloy Phase Diagrams*, 2nd ed., Vol. 1, T.B. Massalski (Ed.-in-Chief), ASM International, Materials Park, OH, 1990.)

The Fe-Fe3C Eutectoid Transformation

• Transformation of austenite to pearlite:

Diffusion of C during transformation

The Fe-Fe3C Eutectoid Transformation (cont.)

- For this transformation, 100 0 Percent austenite rate increases with 600ºC $[T_{\text{eutectoid}} - T]$ (i.e., ΔT). $(4T$ larger) earlite) 650ºC 50 50 **Adapted from Fig.** 675ºC **10.12,** *Callister & y* (% p $(4T)$ smaller *Rethwisch 8e.* 100 0 $10²$ $10³$ 10 1 Time (s)
- S-shaped curves of the percentage transformation versus the logarithm of time at three different temperatures.
- For each curve, data were collected after rapidly cooling a specimen composed of 100% austenite to the temperature indicated.
- That temperature was maintained constant throughout the course of the reaction.

ISOTHERMAL TRANSFORMATION DIAGRAMS

- A more convenient way of representing both the time and temperature dependence of this transformation.
- These curves were generated from a series of plots of the percentage transformations versus the logarithm of time taken over a range of temperatures (from the Sshaped curves).

Generation of Isothermal Transformation Diagrams

Consider:

- The Fe-Fe₃C system, for $C_0 = 0.76$ wt% C
- A transformation temperature of 675ºC.

Generation of Isothermal Transformation Diagrams

Consider:

- The Fe-Fe₃C system, for $C_0 = 0.76$ wt% C
- A transformation temperature of 675ºC.

Adapted from Fig. 10.13,*Callister & Rethwisch 8e.* **(Fig. 10.13 adapted from H. Boyer (Ed.)** *Atlas of Isothermal Transformation and Cooling Transformation Diagrams***,American Society for Metals, 1977, p. 369.)**

ISOTHERMAL TRANSFORMATION DIAGRAMS

- The austenite-to-pearlite transformation will occur only if an alloy is supercooled to below the eutectoid
- The time necessary for the transformation to begin and then end depends on temperature.
- The start and finish curves are nearly parallel, and they approach the eutectoid line asymptotically.
- To the left of the transformation start curve, only austenite (unstable) will be present
- To the right of the finish curve, only pearlite will exist.
- In between, the austenite is in the process of transforming to pearlite, and both microconstituents will be present.

Austenite-to-Pearlite Isothermal Transformation

- Eutectoid composition, $C_0 = 0.76$ wt% C
- Begin at *T* > 727ºC
- Rapidly cool to 625ºC
- Hold *T* (625ºC) constant (isothermal treatment)

Austenite-to-Pearlite Isothermal Transformation (cont.)

- This plot is only valid for an iron-carbon alloy of eutectoid composition (different curves for other alloys).
- Such a plot is called **isothermal transformation diagram** or **timetemperature-transformation (T-T-T).**
- Shorter the time \rightarrow higher is the rate of transformation
- For instance, at temperatures just below the eutectoid, very long times are required for the 50% transformation (i.e., the action rate is very slow).
- Coarse pearlite \rightarrow formed at higher temperatures relatively soft
- Fine pearlite \rightarrow formed at lower temperatures relatively hard

The complete TTT diagram for an ironcarbon alloy of eutectoid composition. A: austenite B: bainite M: martensite P: pearlite

TTT Diagram for a Eutectoid Fe-C Alloy

Time-Temperature-Transformation (T-T-T) Diagrams

Pearlite

- **The thickness of the ferrite/cementite layers in pearlite depends on the temperature. With decreasing temperature, the layers become progressively thinner.**
	- At temperatures <u>just below</u> eutectoid \rightarrow **relatively thick layers coarse pearlite**
	- In the vicinity of $\underline{540}$ $\mathbb{C} \rightarrow \underline{\text{relative}}$ thin layers $→$ **fine pearlite**

- Smaller ⊿T: **colonies are larger**

- Larger \varDelta **T: colonies are smaller**

Photomicrographs of (a) coarse pearlite and (b) fine pearlite. 3000X.

The complete isothermal transformation diagram for an ironcarbon alloy of eutectoid composition. A: austenite B: bainite M: martensite P: pearlite

Bainite: Another Fe-Fe₃C Transformation Product
• Bainite:

- Bainite:
	- $-$ elongated Fe₃C particles in α -ferrite matrix
	- -- diffusion controlled
- Isothermal Transf. Diagram,

Adapted from Fig. 10.17, *Callister& Rethwisch 8e.* (Fig. 10.17 from *Metals Handbook*, 8th ed., Vol. 8, *Metallography, Structures, and Phase Diagrams*,American Society for Metals, Materials Park, OH, 1973.)

Spheroidite: Another Microstructure for the Fe-

 $Fe₃C$ System

• Spheroidite:

- -- Fe₃C particles within an α -ferrite matrix
- -- formation requires diffusion
- -- heat bainite or pearlite at temperature just below eutectoid for long times
- -- driving force reduction

of α -ferrite/Fe₃C interfacial area

60 μ m Adapted from Fig. 10.19, *Callister& Rethwisch 8e.* (Fig. 10.19 copyright United States Steel Corporation, 1971.)

Martensite: A Nonequilibrium Transformation

Product

- Martensite:
	- -- γ (FCC) to Martensite (BCT)

C atom sites

Adapted from Fig. 10.20, *Callister & Rethwisch 8e.*

• Isothermal Transf. Diagram

Martensite needles Austenite

Adapted from Fig. 10.21, *Callister& Rethwisch 8e.* (Fig. 10.21 courtesy United States Steel Corporation.)

- γ to martensite (M) transformation..
	- -- is rapid! (diffusionless)
	- -- % transf. depends only on *T* to which rapidly cooled

Martensite Formation

Martensite (M) – single phase – has body centered tetragonal (BCT) crystal structure

Diffusionless transformation $BCT \rightarrow$ few slip planes \rightarrow hard, brittle BCT if $C_0 > 0.15$ wt% C

Martensite

- **Martensite is formed when austenitized Fe-C alloys are rapidly cooled (or quenched) to a relatively low temperature (in the vicinity of the ambient).**
	- **Non-equilibrium single phase**
	- **A transformation product that is competitive with pearlite**
	- **Transformation of FCC to BCT (body-centered tetragonal)**
	- **Occurs instantaneously time-independent**
	- **The martensite grains nucleate and grow at a very rapid rate — the velocity of sound within the austenite matrix.**

The body-centered tetragonal unit cell for martensitic steel showing iron atoms (circles) and sites that may be occupied by carbon atoms (crosses). For this tetragonal unit cell, c >a.

Lenticular or plate martensitic microstructure

Photomicrograph showing the lenticular or plate martensitic microstructure. The needle-shaped grains are the martensite phase, and the white regions are austenite that failed to transform duringthe rapid quench. 1220X.

The complete isothermal transformation diagram for an ironcarbon alloy of eutectoid composition. A: austenite B: bainite M: martensite P: pearlite

The Martensitic Transformation

Since the martensitic transformation is instantaneous, it is not depicted in this diagram like the pearlitic reaction.

- **The beginning of this transformation is represented by a horizontal line designated M(start).**
- **Two other horizontal and dashed lines, labeled M(50%) and M(90%), indicate percentages of the austenite-to-martensite transformation.**
- **The temperatures at which these lines are located vary with alloy composition; the temperatures must be relatively low.**
- **The horizontal and linear character of these lines indicates that the martensitic transformation is independent of time; it is a function only of the temperature to which the alloy is quenched.**

Effects of alloying elements

The presence of alloying elements other than carbon (e.g., Cr, Ni, Mo, and W) may cause significant changes in the positions/shapes of the curves in the isothermal transformation diagrams.

TTT diagram for an alloy steel (type 4340):

- **A, austenite;**
- **B, bainite;**
- **P,pearlite;**
- **M, martensite;**
- **F, proeuctectoid ferrite.**

The complete isothermal transformation diagram for an ironcarbon alloy of eutectoid composition. A: austenite B: bainite M: martensite P: pearlite

Using the isothermal transformation diagram for an iron-carbon alloy of eutectoid composition, specify the nature of the final microstructure of a small specimen that has been subjected to the following timetemperature treatments.

The specimen begins at 760°**C and that it has been held at this temperature long enough to have achieved a complete and homogeneous austenitic structure.**

(a)Rapidly cool to 250°**C, hold for 100s, and quench to room temperature**

(b)Rapidly cool to 600°**C, hold for 104 s, and quench to room temperature**

(a)Rapidly cool to 250°**C, hold for 100s, and quench to room temperature**

(b)Rapidly cool to 600°**C, hold for 10⁴ s, and quench to room temperature**

The time-temperature-transformation diagram for an ironcarbon alloy of eutectoid composition and the isothermal heat treatments

- **(a) Rapidly cool to 250**°**C, hold for 100s, and quench to room temperature**
- At 760° C: in the
austenite region (
 $\frac{1}{2}$ 100% austenite austenite region (y) — 100% austenite
- Rapidly cool from 760° C to 250°C: 100% austenite
- Hold for 100 seconds at 250°C: 100% austenite
- Quench to room temp.: 100% martensite

- **(b) Rapidly cool to 600**°**C, hold for 104 s, and cool to room temperature**
- At 760° C: in the austenite region (y) — 100% austenite
- Rapidly cool from 760° C to 600°C: 100% austenite
- Hold for $10⁴$ s at $250[°]$ C: 100% pearlite
- Quench to room temp.: 100% pearlite

Continuous Cooling Transformation Diagrams

Conversion of isothermal transformation diagram to continuous cooling transformation diagram

Adapted from Fig. 10.25, *Callister & Rethwisch 8e.*

• Increase C content: *TS* and *YS* increase, %*EL* decreases

Mechanical Props: Fine Pearlite vs. Coarse Pearlite vs. Spheroidite

- Hardness: fine > coarse > spheroidite
- %RA: fine < coarse < spheroidite

Adapted from Fig. 10.30, *Callister & Rethwisch 8e.* (Fig. 10.30 based on data from *Metals Handbook: Heat Treating*, Vol. 4, 9th ed., V. Masseria (Managing Ed.), American Society for Metals, 1981, pp. 9 and 17.)

Mechanical Props: Fine Pearlite vs. Martensite

Adapted from Fig. 10.32, *Callister & Rethwisch 8e.* (Fig. 10.32 adapted from Edgar C. Bain, *Functions of the Alloying Elements in Steel*, American Society for Metals, 1939, p. 36; and R.A. Grange, C.R. Hribal, and L.F. Porter, *Metall. Trans. A*, Vol. 8A, p. 1776.)

• Hardness: fine pearlite << martensite.

Tempered Martensite Heat treat martensite to form tempered martensite

- tempered martensite less brittle than martensite
- *TS*(MPa) • tempering reduces internal stresses caused by quenching

Adapted from Fig. 10.33, *Callister & Rethwisch 8e.*(Fig. 10.33 copyright by United States Steel Corporation, 1971.)

- **•** tempering produces extremely small $Fe₃C$ particles surrounded by α .
- **•** tempering decreases *TS*, *YS* but increases %RA

⁴³

Table 10.2 Summary of Microstructures and Mechanical Properties for Iron-Carbon Alloys

Hardenability

- We have seen the advantage of getting martensite, M. We can temper it, getting TM with the best combination of ductility and strength.
- But the problem is this: getting M in depth, instead of just on the surface. We want a steel where Pearlite formation is relatively sluggish so we can get it to the cooler regions where M forms.
- The ability to get M (martensite) in depth for low cooling rates is called hardenability.
- Plain carbon steels have poor hardenability.

Factors Which Improve Hardenability

- 1. Austenitic Grain size. The Pearlite will have an easier time forming if there is a lot of g.b. area. Hence, having a large austenitic grain size improves hardenability.
- 2. Adding alloys of various kinds. This impedes the $\gamma \rightarrow P$ reaction.

Jominy Test for Hardenability

• Hardenability not the same as hardness!

The Result is Presented in aCurve

Rank steels in order of hardenability.
hardenability!

Note:

- 1. Distance from quenched end corresponds to a cooling rate, and a bar diameter
- 2. Notice that some steels drop off more than others at low cooling rates. Less

Alloying and Hardenability

Carbon and Hardenability

