

Statistical multiplexing vs. circuit switching

- With statistical multiplexing, the probability that each user is active is 0.1 (10%)
- If there are 35 users, the probability that there are 11 or more simultaneously active users is approx. 0.0004 (see next slide)
- When there are 10 or fewer simultaneously active users (which happens with probability 0.9996), the aggregate arrival rate of data is less than or equal to 1 Mbps (the output rate of the link)
- When there are more than 10 active users, queue will begin to grow (until aggregate rate falls below 1 Mbps)
- The probability of having more than 10 simultaneously active users is miniscule, the performance is the same as circuit switching, and 3 times the number of users are allowed

21

Statistical multiplexing vs. circuit switching

• Let p=0.1

• Probability of having n simultaneously active users out of 35 at any given time is

$$-\binom{35}{n}p^{n}(1-p)^{35-n}$$

• Probability that there are 11 or more users transmitting simultaneously is

$$-1 - \sum_{n=0}^{10} \binom{35}{n} p^n (1-p)^{35-n} = 0.0004$$

22

а	ccording to their s	sizes	
PAN	Personal area network	Around an individual	
SAN	Storage area network	In a room	
LAN	Local area network	~ 1 km	
MAN	Metropolitan area network	~ 10 km	
WAN	Wide area network	Worldwide	

Layering

- A fundamental design and implementation concept
- When designing and analyzing complex systems, we usually abstract away the details of components and provide an interface for other components of the system
- Services provided at higher layers are implemented in terms of services provided by lower layers

27

IETF Internet architecture

- · Main features
 - Does not imply strict layering. The application is free to bypass the defined transport layers and to directly use IP or other underlying networks
 - An hour-glass shape wide at the top, narrow in the middle and wide at the bottom. IP serves as the focal point for the architecture
 - In order for a new protocol to be officially included in the architecture, there needs to be both a protocol specification and at least one (and preferably two) representative implementations of the specification

37

Sample delay x bandwidth products					
Link type	Bandwidth	Distance	RTT	Delay x BW	
Dial-up	56 Kbps	10 km	87 µs	5 bits	
Wireless LAN	54 Mbps	50 m	0.33 µs	18 bits	
Satellite	45 Mbps	35,000 km	230 ms	10 Mb	
Cross- country fiber	10 Gbps	4,000 km	40 ms	400 Mb	

