

03/11/2019

- Internet architecture
- IP service model
- IP forwarding
- Address translation (ARP)
- Automatic host configuration (DHCP) and error reporting (ICMP)
- Virtual Private Networks (VPNs)
- Subnetting
- Supernetting: Classless routing (CIDR)
- IPv6

- Main idea in the Internet service model:
 - Make it undemanding enough that IP can be run over anything
- This model is the major reason for the success of IP technology
- Service model consists of 2 parts:
 - Data delivery model
 - Global addressing scheme

IP datagram format

Format aligned at 32 bit words

- simplifies packet processing in software

Header fields

- Version: version 4 (IPv4) or version 6 (IPv6)
- HLen: header length, in 32-bit words (min 5)
- TOS: type of service, used to give
- priorities to packets (QoS issue)
- Length: data+header length, in bytes
 2nd word for fragmentation/reassembly (next slide)
- TTL: time to live, no of times packet allowed to be forwarded (no of hops), default 64,
- detects packets caught in routing loop
- Protocol: identifies upper layer protocols,
- TCP (6), UDP (17)
- Checksum: erroneous packets discarded
- Addresses: global Internet addresses
- Options: rarely used

Fragmentation/reassembly

- Each network has an MTU (Maximum Transmission Unit) – e.g., Ethernet 1500 bytes, PPP 532 bytes
- Strategy
 - Fragment when necessary (MTU < datagram length)
 - In general, try to avoid fragmentation: Hosts are encouraged to perform "path MTU discovery"
- · Fragments are self-contained datagrams
 - each fragment contains a common identifier in Ident field
 - Flags (M-bit) and Offset used to guide fragmentation process
 - Offset measured in 8 byte units
 - Fragmented packet can be again re-fragmented
 - Reassembly is performed only at destination host
- · Reassembly does not try to recover lost fragments

ARP details

- ARP (Address Resolution Protocol)
 - utilizes LAN's broadcast capabilities
 - each node maintains table of IP to physical LAN address bindings
 - broadcast request if address not in table
 - target machine responds with its physical LAN address
- ARP request contains also source addresses (physical and IP)
 all "interested" parties can learn the source address
- Node (host/router) actions:
 - table entries timeout in about 10 minutes
 - if node already has an entry for source, refresh timer
 - if node is the target, reply and update table with source info

- if node not target and does not have entry for the source, ignore source info

Forwarding algorithm with subnetting

D = destination IP address for each entry <SubnetNum, SubnetMask, NextHop> D1 = SubnetMask & D if D1 = SubnetNum if NextHop is an interface deliver datagram directly to destination else deliver datagram to NextHop (a router)

Q: Apply the algorithm when H1 is sending to H2 and H3. Notes

- Would use a default router if nothing matches
- Not necessary for all ones in subnet mask to be contiguous
- Can put multiple subnets on one physical network
- · Subnets not visible from the rest of the Internet

Subnetting Example								
Where does the router forward packets addressed to:								
– 1	28.96.39.10	-> If0						
– 1	28.96.40.12	-> R2						
– 1	28.96.40.151	-> R4						
– 1	92.4.153.17	-> R3						
– 1	92.4.153.90	-> R4						
	Subnet Number	Subnet Mask	Next Hop					
	128.96.39.0	255.255.255.128	Interface 0					
	128.96.39.128	255.255.255.128	Interface 1					
	128.96.40.0	255.255.255.128	R2					
	192.4.153.0	255.255.255.192	R3					
	<default></default>		R4					
				34				

CIDR Example							
 Suppose the router does the longest-prefix match. Where does the router forward packets addressed (in hex) to: 							
- C4.5E.13.87		-> B					
- C4.5E.22.09		-> A					
– C3.41.80.02		-> E					
- 5E.43.91.12		-> F					
– C4.6D.31.2E		-> C					
– C4.6B.31.2E –> D							
	Net / Mask Length		Next Hop				
	C4.50.0.0 / 12		A				
	C4.5E.10.0 / 20		В				
	C4.60.0.0 / 12		С				
	C4.68.0.0 / 14		D				
	80.0.0.0 / 1		E				
	40.0.0.0 / 2		F				
	00.0.0.0 / 2		G	42			

IPv6 (1)

Major Features

- 128-bit addresses
- Multicast
- Real-time service
- Authentication and security
- Autoconfiguration
- End-to-end fragmentation
- Protocol extensions

