CMPE224 Digital Logic Systems							
Department: Computer Engineering							
Instructor Information							
Name: Prof. Dr. Muhammed Salamah							
E-mail: muhammed.salamah@emu.edu.tr							
Office: CMPE 1	14						
Office Tel: 1149							
Malek Al-Khatib (Room: 224); Nada Kollah (Room:101)							
Meeting times and places							
<u>Group1</u>	<u>Group2</u>						
Tuesday 08:30-1	11:20, Room CMPE 127	Monday 12:30-14:20, Room CMPE 036 Tuesday 14:30 16:20, Room CMPE 137 (Lab)					
Thursday 16.30-	-14.20, Room CMPE 230 (Lab)	Friday 14:30-16:20, Room CMPE 036					
Program Name	: Computer Engineering	Program Code: 25					
Course Numbe	r: Credits:	0	Year/Semester:				
CMPE224	4 Cr		2023-2024 Spring				
Required Course Elective Course (click on and check the appropriate box)							
Prerequisite(s):							
CMPE225 Digit	al Logic Design						
This course pre	sents the basic tools for the design of	synchronous sea	uential circuits and covers methods and				
procedures suita	ble for a variety of digital design applica	tions in computer	s, control systems, data communications,				
etc Concentrat	ion will be on widely-used design metho	ds for synchrono	us sequential circuits together with their				
analysis and sin	nulation in VHDL. The course continu	es with topics of	n Computer Architecture and a generic				
processor architecture with its Assembly language are presented in details.							
Course Web Page:							
http://cmpe.emu.edu.tr/courses/cmpe224							
Textbook(s): S. Brown and Z. Vranesie, "Fundamentals of Digital Logic with VHDL Design," McGrow Hill Third Edition, 2000							
Indicative Basi	c Reading List :		Str., Hie Glaw Hill, Hilla Ballion, 20051				
Richard S. Sand	ige. "Digital Design Essentials," Prentice-	Hall 2002.					
John F. Wakerly, "Digital Design: Principles and Practices" Pearson Education, 2006.							
Topics Covered and Class Schedule:							
(4 hours of lect	ures per week)						
Week 1	A review of synchronous sequential logi	ic(SSL), flip-flops	s (FFs). VHDL implementation of				
	FFs. Analysis of clocked sequential circuits, state transition tables/diagrams. Design of						
	clocked sequential circuits, design proce	edure, state reduct	ion and assignment, flip-flop				
	excitation tables. Design procedure & ca	ase studies.					
Week 2	Design of counters.						
Week 3	Registers & shift registers						
Week 4	Asyncronous ripple counters						
Week 5	Synchronous counters & timing sequences.						
Week 6	Characteristics of ASM flow chart, timing considerations, Datapath implementation.						
Week 7-8	ASM Controlpath implementation.						
Weeks 9-10							
Week 11	Introduction to computer architecture						
Week 12	Processor architecture						
Weeks 13	A generic processor architecture MARIE						

Week 14	14 Programming and interfacing the generic processor						
Laboratory Schedule:							
(2 hours of laboratory per week)							
Week 4	Architectural design of synchronous sequential circuits.						
Week 5	Behavioral design of synchronous	sequentia	al circuits.				
Week 6	Architectural and behavioral desig	n of regis	sters.				
Week 7	Architectural and behavioral design of counters.						
Week 9	Design of synchronous digital systems using ASM charts.						
Week 10	Introduction to generic RISC processor MARIE simulation environment.						
Week 11	Instruction set and programming o	of MARIE	processor.				
Course Learni	ng Outcomes:		1				
Upon successful completion of the course, students must be able to							
1. understand fundamental design procedure for synchronous sequential circuits (2 in criterion 3)							
2. understand	fundamental analysis procedure for	or synchro	onous and ri	pple sequential circuits (6 in criterion 3)			
3. perform de	esign of registers and counters:	: shift re	egisters, mu	lti-function registers, synchronous counters,			
asynchronous counters, and multi-function counters (2 in criterion 3)							
4. make struct	tured design of synchronous seque	ential circu	uits using V	eriLog HDL (2 in criterion 3)			
5. make behav	vioral design of synchronous seque	ential circ	uits using V	ceriLog HDL (2 in criterion 3)			
6. understand	algorithmic state machine (ASMs) charts (I in criterion	13)			
7. use ASM to	p perform datapath and controlpath	h designs	(2 in criteric	on 3)			
8. understand	fundamentals of processor archite	cture, reg	ister sets and	d their functions (1 in criterion 3)			
9. understand	the architecture and instruction se	et of a gen	eric RISC p	rocessor (1 in criterion 3)			
10. simulate	the behavior of the generic RISC p	processor	through pro	gramming and interfacing (6 in criterion 3)			
	Method	No		Percentage			
	$\frac{\text{Midterm Exam(s)}}{(14/92/24 - 16/95/24)}$	1		25 %			
Assessment	Quizzes (14/03/24 ; 16/05/24)	2		20 %			
	Labs	~/		15 %			
	Final Examination		0 0	40 %			
Policy on makeup: Only one makeup exam can be given for one of the missed exams according to the University							
Policy on NG a	prades: NG grade will be given in	the follow	wing cases:				
Lab attendance	< 50% or		8				
Missing both M	lidterm Exam and Final Exam.						
Contribution of Course to Criterion 5							
Credit Hours for:							
Mathematics & Basic Science : 0							
Engineering Sciences and Design : 4							
General Education : 0							
Relationship of Course to Program Outcomes							
The course has been designed to contribute to the following program outcomes:							
a) an ability to apply knowledge of mathematics, science, and engineering.							
b) an ability to design and conduct experiments, as well as to analyze and interpret data							
e) an ability to identify, formulate, and solve engineering problems.							
k) an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice							
Prepared by: Prof.Dr. Muhammed Salamah Date Prepared: February 26, 2024							