<u>CMPE471 – Tutorial 2</u>

Q1. Let $L_1 = \{w \in \{a, b\}^* | n_a(w) > n_b(w)\}$ and $L_2 = \{w \in \{a, b\}^* | n_a(w) < n_b(w)\}$. Let $L = \{a, b\}^* - (L_1 \cup L_2)^*$. Describe L and justify your answer.

Q2. Construct CFGs for the following languages:

- i) $L = \{a^j b^k a^n | k = j + n\}$
- ii) $L = \{a^k b^{2k} c^n | k, n > 0\}$
- iii) $L = \{a^j b^k c^n \mid 0 \le j + k \le n\}$

Q3. Find the languages generated by the following CFGs:

- i) $S \rightarrow aSbb \mid aSb \mid aS \mid \varepsilon$
- ii) $S \rightarrow aScc \mid aAcc$ $A \rightarrow bAc \mid bc$
- iii) $S \rightarrow aSb \mid aSbb \mid aSbbb \mid \varepsilon$
- iv) $S \rightarrow aSbS \mid bSaS \mid \varepsilon$
- v) $S \rightarrow aSbb \mid A$ $A \rightarrow cA \mid c$

Q4. Show that the grammar S \rightarrow aSb | bSa | SS | ϵ is ambiguous.

Q5. Consider the CFG with the following products. Find the derivation tree of *aababbbbb*. $S \rightarrow AB \mid \varepsilon$ $A \rightarrow aB$ $B \rightarrow Sb$