
26/12/2016 1

COCOMO Models

26/12/2016 2

Project Management and Mr.

Murphy
1. Logic is a systematic method of coming to the

wrong conclusion with confidence.

2. Technology is dominated by those who manage

what they do not understand.

3. Nothing ever gets built on schedule or within

budget.

4. If mathematically you end up with the incorrect

answer, try multiplying by the page number.

26/12/2016 3

26/12/2016 4

Motivation

The software cost estimation provides:

• The vital link between the general concepts and

techniques of economic analysis and the

particular world of software engineering.

• Software cost estimation techniques also provides

an essential part of the foundation for good

software management.

Planning Prerequisites

• The planning process requires the following

inputs:

– Required human effort (man-months)

– Project duration (months)

– Project costs ($)

• We would like our estimates to be perfectly

precise and accurate

– But this requirement is impossible until the project is

over

5

26/12/2016 6

Cost of a project
• The cost in a project is due to the requirements for

software, hardware and human resources

• The cost of software development is due to the human

resources needed

• Most cost estimates are measured in person-months

(PM)

• At any point, the accuracy of the estimate will depend

on the amount of reliable information we have about

the final product.

• The cost of the project depends on the nature and

characteristics of the project

26/12/2016 7

Software Cost Estimation

Importance of Estimates

• In the early days of computing,

– Software costs were a small part of the total system cost

• Even large errors (order of magnitude) = little

impact on the total system cost

– Today, software costs are the largest component of total

system cost

• Large errors in estimating cost equate to

– The difference between profit and loss or

– Survival and demise

8

Reasons for Inaccuracy in

Estimates

• Too many uncertainties in the variables that
determine the cost

• In the following categories

– Human

• The developers and their skills are not perfectly known

– Technical

• May need to use new or unfamiliar technology

– Environmental

• May need to run on unfamiliar computer or operating systems

– Political

• Internal company or client politics

9

Estimation Techniques

• Five main categories of techniques

– Expert judgment

– Estimation by analogy

– Pricing to win

– Parkinson pricing

– Algorithmic models

10

Expert Judgment

• Several experts in the application domain

independently prepare estimates

• Estimates are compared (together with the

rationale for the estimate)

• Differences are resolved by discussion

• It is not

– Estimation by committee

– An averaging of the independent estimates

11

Estimation by Analogy

• Cost of a new project is estimated by analogy to

similar systems previously developed

– Identify differences and estimate cost of these

differences

• How to handle no previously developed similar

systems?

• What about changes in development environment?

– How to handle employee turnover?

– How to handle new language, case tools, …

12

Pricing to Win

• The cost is what you believe the customer is

willing to spend

• What circumstances would lead you to price a

project this way?

13

Parkinson Pricing

• Parkinson’s Law

– Parkinson’s Law – The work expands to fill the time
available

• Cost is determined by available resources rather
than by objective analysis

• Example

– If the software is needed in 1 year and you have 5
developers available to work on the project, the effort is
60 man-months

14

Importance of Deviation

• It is important to identify changes from previous
projects, especially when employing

– Expert Judgment or

– Estimation by Analogy

• Failure to identify change and account for its

influence

– Distorts the estimate

• Perhaps to the point that the estimate is of little value

15

Importance of Deviation (cont)

• Examples of change affecting estimates

– Object-oriented versus structured techniques

– Client-server systems versus stand-alone applications

– COTS components versus developed components

– Reuse versus all new development

– CASE tools / code generators versus unsupported

development

16

Algorithmic Models

• A formula (or set of formulae) is evaluated to

provide an estimate

• Size or functionality metrics are the independent

variables

• Constants in the formula are based upon historic

cost data

17

Algorithmic Cost Modeling

• The most systematic approach to cost modeling

– The most precise method, but

– Don’t confuse with the most accurate

• A formula or set of formulae is used to predict cost

based on project size, and sometimes other project

factors

• Most algorithmic cost models have an exponential

component

– Realizing that cost does not scale linearly with size

18

19

Algorithmic Modeling (cont)

• The simplest model is a static single-variable
model

• Where

– A is a constant factor

• Factor incorporating process, product and
development characteristics

– Size code size or a function oriented value

– B A constant typically in the range of 1 to 1.5

– Effort or PM is in person-months

– 1 person-month =152 working hours
20

BSizeAPMEffort )(

Size Metrics

• Two common categories of size metrics

– Lines of code

– Function oriented metrics

• While lines of code (LOC) not the only size metric

– LOC is the most commonly used measure of size

21

26/12/2016 23

Productivity

• Productivity equation

– (DSI) / (PM)

• where PM = number of person-month (=152

working hours),

• DSI = "delivered source instructions"

26/12/2016 24

Schedule

• Schedule equation

– TDEV = C * (PM)n (months)

• where TDEV = number of months estimated for

software development.

26/12/2016 25

Average Staffing

• Average Staffing Equation

– (PM) / (TDEV) (FSP)

• where FSP means Full-time-equivalent Software

Personnel.

26/12/2016 26

Cost Estimation Process

Cost=SizeOfTheProject x Productivity

26/12/2016 27

Cost Estimation Process

Errors

Effort

Development Time

Size Table

Lines of Code

Number of Use Case

Function Point

Estimation Process

Number of Personnel

26/12/2016 28

Project Size - Metrics
1. Number of functional requirements

2. Cumulative number of functional and non-functional requirements

3. Number of Customer Test Cases

4. Number of ‘typical sized’ use cases

5. Number of inquiries

6. Number of files accessed (external, internal, master)

7. Total number of components (subsystems, modules, procedures,

routines, classes, methods)

8. Total number of interfaces

9. Number of System Integration Test Cases

10. Number of input and output parameters (summed over each interface)

11. Number of Designer Unit Test Cases

12. Number of decisions (if, case statements) summed over each routine or

method

13. Lines of Code, summed over each routine or method

26/12/2016 29

Project Size – Metrics(.)

Availability of Size Estimation Metrics:

Development Phase Available

Metrics

a Requirements Gathering 1, 2, 3

b Requirements Analysis 4, 5

d High Level Design 6, 7, 8, 9

e Detailed Design 10, 11, 12

f Implementation 12, 13

LOC Metric

• There are two different ways of implementing
LOC

– Lines of Code (LOC or KLOC)
• Count all lines

– Thousand of delivered source instructions (KDSI)
• Count of the physical source statements, includes:

– Format statements

– Data declarations

• Excludes

– Comments

– Unmodified utilities

30

Problems associated with lines

of code as a metric

1. Lack of Accountability:

2. Lack of Cohesion with Functionality:

3. Adverse Impact on Estimation:

4. Developer’s Experience:

5. Difference in Languages:

6. Advent of GUI Tools:

7. Problems with Multiple Languages:

8. Lack of Counting Standards:

9. Psychology:
31

• Lack of Accountability:

– Not useful to measure the productivity of a project using only results from the coding phase,

which usually accounts for only 30% to 35% of the overall effort

• Lack of Cohesion with Functionality:

– Effort may be highly correlated with LOC, but functionality is not so much!

– skilled developers may be able to develop the same functionality with far less code,

– developer who develops only a few lines may still be more productive than a developer

creating more lines of code

• Adverse Impact on Estimation:

– Because of point 1 estimates based on lines of code can adversely go wrong

• Developer’s Experience:

– Implementation of a specific logic differs based on the level of experience of the developer.

Hence, number of lines of code differs from person to person.

– An experienced developer may implement certain functionality in fewer lines of code than

another developer of relatively less experience does, though they use the same language.

• Difference in Languages:

– Consider two applications that provide the same functionality (screens, reports, databases).

One of the applications is written in C++ and the other application written in a language like

COBOL. The number of function points would be exactly the same, but aspects of the

application would be different. The lines of code needed to develop the application would

certainly not be the same. As a consequence, the amount of effort required to develop the

application would be different
32

• Advent of GUI Tools:

– GUI-based programming languages and tools such as Visual Basic, allow programmers to write

relatively little code and achieve high levels of functionality.

– a user with a GUI tool can drag-and-drop and other mouse operations to place components on a

workspace.

• Problems with Multiple Languages:

– software is often developed in more than one language depending on the complexity and

requirements.

– Tracking and reporting of productivity and defect rates poses a serious problem in this case since

defects cannot be attributed to a particular language subsequent to integration of the system.

• Lack of Counting Standards:

– There is no standard definition of what a line of code is. Do comments count? Are data

declarations included? What happens if a statement extends over several lines?

– Organizations like SEI and IEEE have published some guidelines in an attempt to standardize

counting, it is difficult to put these into practice since new languages being introduced every

year.

• Psychology:

– A programmer whose productivity is being measured in lines of code will have an incentive to

write unnecessarily verbose code.

– This is undesirable since increased complexity can lead to increased cost of maintenance and

increased effort required for bug fixing.

33

FFP

• Proposed by van der Poel and Schach

– Medium Size Projects (1- 10 man years)

– Identify and score 3 basic structural elements

• Files, Flows, and Processes

34

Structural elements
– Files

• Permanent files only

– Do not count temporary or transaction files

– Flows
• Interfaces between the product and the environment

– Input / Output Screens

– Reports

– Processes
• Functionally coherent manipulations of data

– Sorting

– Validating

– Transforming

35

FFP (cont)

• Size

– The size is the sum of the Files, Flows
and Processes

• Cost

– The product of Size and a constant d
• Constant varies from organization to organization

• Based on historic cost and size data

36

ProcessesFlowsFilesSize 

SizedCost 

FFP (cont)

• Note:

– This metric is based upon the functionality of the

application

• High level property of the system

• Can be more accurate earlier in the life-cycle than LOC metrics

37

Class Exercise

• An application maintains 8 files: a sorted master

data file, 3 index files, 1 transaction file and 3

temporary files. It has 3 data input screens, 3

display screens, generates 4 printed reports, and 6

error message boxes. The processing includes

sorting the master file, updating transactions,

calculating report data from master file data.

Assume a value of 800 for d .

Determine the Size and Cost using FFP.

38

FFP Summary

• Advantages

– A simple algorithmic model

• Based on easy-to-count characteristics of a high level design

• Disadvantages

– All items are equally weighted

– Requires historic data based upon a particular

organization

– Has not been extended to correctly count databases

– Something unsettling about adding unlike quantities

39

Function Points

• A similar approach taken by Albrecht

• Based on 5 functionality characteristics

– Input items, output items, inquiries, master files,

and interfaces

• First calculate the number of unadjusted

function points

40

InfCMafCInqCOutCInpCUFP  54321

26/12/2016 41

Function Points

Measure size in terms of the amount of functionality in a system.

Function points are computed by first calculating an unadjusted function

point count (UFC). Counts are made for the following categories

 External inputs – those items provided by the user that describe

distinct application-oriented data (such as file names and menu

selections)

 External outputs – those items provided to the user that generate

distinct application-oriented data (such as reports and messages, rather

than the individual components of these)

 External inquiries – interactive inputs requiring a response

 External files – machine-readable interfaces to other systems

 Internal files – logical master files in the system

Function Points (cont)

• The constants are determined from the

following table

42

5...1C

5...1C

Characteristic

Weight

(Simple, Average, Complex)

Input items 3 4 6

Output items 4 5 7

User Queries 3 4 6

Files 7 10 15

External interface 5 7 10

Function Points (cont)

• The next step is to calculate a technical

complexity factor

• Each of 14 technical factors is assigned a value

from 0 to 5

– 0 - Not present or no influence

– 5 - Strong influence throughout

• The degree of influence DI obtained by summing

the above values

43

Function Points (cont)

• The 14 technical

factors are:

44

1 Data communication

2 Distributed data processing

3 Performance criteria

4 Heavily utilized hardware

5 Online data entry

6 End-user efficiency

7 Transaction Rate

8 Online updating

9 Complex computations

10 Reusability

11 Ease of installation

12 Ease of operation

13 Maintainability

14 Multiple Sites

Function Points (cont)

• Calculate the technical complexity
factor TCF

– TCF values are in the range of 0.65 to
1.35

• Finally the number of function points
FP is calculated from

45

DITCF *01.065.0 

TCFUFPFP 

Function Point Calculations

• You may find the following template useful

 Item Complexity
Characteristic Low Medium High Total

Input Items ____ * 3 = ____ ____ * 4 = ____ ____ * 6 = ____

Output Items ____ * 4 = ____ ____ * 5 = ____ ____ * 7 = ____

User Queries ____ * 3 = ____ ____ * 4 = ____ ____ * 6 = ____

Master Files ____ * 7 = ____ ____ * 10 = ____ ____ * 15 = ____

Ext. Interfaces ____ * 5 = ____ ____ * 7 = ____ ____ * 10 = ____

Unadjusted Function Points

Technical Complexity Factor 0.65 + 0.01*____

Adjusted Function Points

46

Class Exercise

• An application has 5 simple inputs, 4 complex

inputs, 30 average outputs, 5 simple queries, 10

average master files and 8 complex interfaces. The

degree of influence is 50. Calculate the number of

unadjusted function points and the number of

function points.

47

26/12/2016 48

Class Exercise

26/12/2016 49

Solution

26/12/2016 50

Solution

• Technical Complexity Factors:
– 1. Data Communication 3

– 2. Distributed Data Processing 0

– 3. Performance Criteria 4

– 4. Heavily Utilized Hardware 0

– 5. High Transaction Rates 3

– 6. Online Data Entry 3

– 7. Online Updating 3

– 8. End-user Efficiency 3

– 9. Complex Computations 0

– 10. Reusability 3

– 11. Ease of Installation 3

– 12. Ease of Operation 5

– 13. Portability 3

– 14. Maintainability 3

» DI =30(Degree of Influence)

26/12/2016 51

Solution

• Function Points

– FP=UFP*(0.65+0.01*DI)= 55*(0.65+0.01*30)=52.25

– That means FP=52.25

26/12/2016 52

Relation between LOC and FP

• Relationship:

– LOC = Language Factor * FP

– where

• LOC (Lines of Code)

• FP (Function Points)

26/12/2016 53

Relation between LOC and

FP(.)
Assuming LOC’s per FP for:

Java = 53,

C++ = 64

KLOC = FP * LOC_per_FP / 1000

It means for the SpellChekcer Example: (Java)

LOC=52.25*53=2769.25 LOC or 2.76 KLOC

Simple Object-Oriented Estimation

• Simple 4 step model developed by Lorenz

and Kidd

• The number of estimated classes served as

the size parameter

54

The Four Steps
1. Determine the number of problem domain classes

in the application

2. Determine the interface and the associated weight

3. Calculate the number of total classes by
multiplying the number of problem domain classes
by the interface weight and add it to the number of
problem domain classes

4. Calculate the number of man-days by multiplying
the total number of classes by a productivity
constant in the range of 15 - 20

55

Interface Weights

Interface Type Weight

No user interface 2.0

Simple text-based interface 2.25

Graphical user interface 2.5

Complex graphical user interface 3.0

56

Class Exercise

• An object-oriented application has an estimated

50 problem domain cases and a graphical user

interface. Assuming a productivity constant of 18,

calculate the number of man-days that will needed

to develop the application.

57

COCOMO

• COCOMO is a static single variable model

• COCOMO is an acronym for Constructive Cost
Model that was developed by Barry Boehm

• The COCOMO models are defined for three
classes of software projects.

(1) organic mode

(2) semi-detached mode

(3) embedded mode

58

26/12/2016 59

Introduction to COCOMO

models
• The COstructive COst Model (COCOMO) is the

most widely used software estimation model.

• The COCOMO model predicts the effort and

duration of a project based on inputs relating to

the size of the resulting systems and a number of

"cost drives" that affect productivity.

COCOMO
• COCOMO is actually a hierarchy of models of the

following form

– Basic COCOMO – estimates software development effort
and cost as a function of program size in lines of code

– Intermediate COCOMO - estimates software development
and cost as a function of program size in lines of code and a
set of “cost drivers”

– Advanced COCOMO – incorporates the characteristics of
intermediate COCOMO with an assessment of the cost
driver impact on each phase of the software development
cycle

• The more complex models account for more factors that
influence software projects, and make more accurate
estimates.

• The most important factors contributing to a project's duration
and cost is the Development Mode

60

Project Types/Levels of COCOMO
The level of difficulty was broken into three modes

• Organic Mode
– Constraints on development are mild

– Many similar projects previously developed by the organization

– Relatively small, simple software projects in which small teams with good
application experience work to a set of less than rigid requirements (e.g., a thermal
analysis program developed for a heat transfer group)

• Semi-detached Mode
– More constraints on development, but some flexibility remains

– Few similar projects previously developed by the organization

– An intermediate (in size and complexity) software project in which teams with
mixed experience levels must meet a mix of rigid and less than rigid requirements
(e.g., a transaction processing system with fixed requirements for terminal
hardware and data base software)

• Embedded Mode
– Very tight constraints

– No similar projects previously developed

– A software project that must be developed within a set of tight hardware, software
and operational constraints (e.g., flight control software for aircraft).

61

26/12/2016 62

Modes
Feature Organic Semidetached Embedded

Organizational

understanding of

product and

objectives

Thorough Considerable General

Experience in

working with related

software systems

Extensive Considerable Moderate

Need for software

conformance with

pre-established

requirements

Basic Considerable Full

Need for software

conformance with

external interface

specifications

Basic Considerable Full

26/12/2016 63

Modes (.)
Feature Organic Semidetached Embedded

Concurrent

development of

associated new

hardware and

operational

procedures

Some Moderate Extensive

Need for innovative

data processing

architectures,

algorithms

Minimal Some Considerable

Premium on early

completion

Low Medium High

Product size range <50 KDSI <300KDSI All

26/12/2016 64

Effort Computation

• The Basic COCOMO model computes effort as a

function of program size. The Basic COCOMO equation

is:

– Effort = aKLOC^b

• Effort for three modes of Basic COCOMO.

Mode a b

Organic 2.4 1.05

Semi-

detached

3.0 1.12

Embedded 3.6 1.20

26/12/2016 65

Example

Example

66

COCOMO (cont)

• The intermediate model calibrated on

– 40 software development projects

• Further work revealed certain difficulty factors

that dramatically influenced the effort estimates

and schedule

67

Intermediate COCOMO

Calculations

• Intermediate COCOMO calculations proceed by

– First, determine the mode (organic, semi-detached,

embedded)

– This determines the constants A - D

68

Parameter Organic Semi-

detached

Embedded

A 3.2 3.0 2.8

B 1.05 1.12 1.20

C 2.5 2.5 2.5

D 0.38 0.35 0.32

Intermediate COCOMO (cont)
– Second, using the appropriate constants

from the previous table, calculate the

nominal effort and schedule from

– Third, calculate a difficulty multiplier that
depends upon the cost drivers (include subjective
assessments of attributes in the general areas of)

• Product

• Hardware

• Personnel

• Project

Effort) (Nominal)(* B

nominal KDSIAE 

69

Intermediate COCOMO (cont)

– Fourth, the adjusted effort E is the

nominal effort Enominal multiplied by the

difficulty multiplier

– Fifth, the project duration is calculated

from

70

Months)in(Duration)(* DECSchedule 

Effort Computation

• The intermediate COCOMO model computes effort as a

function of program size and a set of cost drivers. The

Intermediate COCOMO equation is:

– E = aKLOC^b*EAF

• Effort for three modes of intermediate COCOMO.

71

Mode a b

Organic 3.2 1.05

Semi-

detached

3.0 1.12

Embedded 2.8 1.20

Effort computation(.)
• Effort Adjustment Factor

72

Cost Driver Very

Low

Low Nominal High Very

High

Extra

High

Required Reliability .75 .88 1.00 1.15 1.40 1.40

Database Size .94 .94 1.00 1.08 1.16 1.16

Product Complexity .70 .85 1.00 1.15 1.30 1.65

Execution Time Constraint 1.00 1.00 1.00 1.11 1.30 1.66

Main Storage Constraint 1.00 1.00 1.00 1.06 1.21 1.56

Virtual Machine Volatility .87 .87 1.00 1.15 1.30 1.30

Comp Turn Around Time .87 .87 1.00 1.07 1.15 1.15

Analyst Capability 1.46 1.19 1.00 .86 .71 .71

Application Experience 1.29 1.13 1.00 .91 .82 .82

Programmers Capability 1.42 1.17 1.00 .86 .70 .70

Virtual machine Experience 1.21 1.10 1.00 .90 .90 .90

Language Experience 1.14 1.07 1.00 .95 .95 .95

Modern Prog Practices 1.24 1.10 1.00 .91 .82 .82

SW Tools 1.24 1.10 1.00 .91 .83 .83

Required Dev Schedule 1.23 1.08 1.00 1.04 1.10 1,10

Each of the 15 attributes receives a rating on a six-point scale that ranges from

"very low" to "extra high" (in importance or value).

The product of all effort multipliers results in an effort adjustment factor (EAF).

Effort Computation (..)

Total EAF = Product of the selected factors

Calculating Adjusted value of Effort or Adjusted

Person Months:

E= (Total EAF) * ENominal

73

Example

74

Software Development Time
• Development Time Equation Parameter Table:

Development Time, TDEV = C * E D

Number of Personnel, NP = E/ TDEV

where E is the Adjusted Effort 75

Parameter Organic Semi-

detached

Embedded

C 2.5 2.5 2.5

D 0.38 0.35 0.32

COCOMO II

• COCOMO II was developed to address several

issues that did not exist when the original

COCOMO was developed

– The waterfall model was the software lifecycle

development model

– Most software ran on mainframes

– Client-server and object oriented technologies were

unknown, or at least were not widely used

– Simple reuse in effect – no inheritance, etc

76

COCOMO II (cont)

• Major differences

– COCOMO was based upon lines of codes estimate

• COCOMO II allows the use of other metrics, i.e. function
points

– COCOMO had a constant exponent, depending upon
which of three modes is selected

• COCOMO II allows the exponent to continuously vary
between 1.01 and 1.26

– COCOMO assumes that savings due to reuse are
directly proportional to the amount of reuse

• COCOMO II uses a non linear model – even a small amount of
reuse may incur a huge effort in understanding the code

77

COCOMO II (cont)

– COCOMO II modified the difficulty factors

– COCOMO II was calibrated with 83 projects

78

26/12/2016 79

Distribution of Effort

• A development process typically consists of

the following stages:

– Requirements Analysis

– Design (High Level + Detailed)

– Implementation & Coding

– Testing (Unit + Integration)

26/12/2016 80

Distribution of Effort (.)

The following table gives the recommended percentage

distribution of Effort (APM) and TDEV for these stages:

Percentage Distribution of Effort and Time Table:

Req

Analysis

Design,

HLD + DD

Implementation Testing

Effort 23% 29% 22% 21% 100%

TDEV 39% 25% 15% 21% 100%

26/12/2016 81

Error Estimation

• Calculate the estimated number of errors in your design, i.e.total errors found in

requirements, specifications, code, user manuals, and bad fixes:

– Adjust the Function Point calculated in step1

AFP = FP ** 1.25

– Use the following table for calculating error estimates

Error Type Error / AFP

Requirements 1

Design 1.25

Implementation 1.75

Documentation 0.6

Due to Bug Fixes 0.4

26/12/2016 82

All Together Design

Unadjusted Function Point (UFP table)

Modify
FP=UFP*TCF

Classes*(2Function Points)

TCF

KLOC=Max[aKLOC, bKLOC]

LOC=13.20*Num of Method
LOC=18.25*Num of Method

AFP=FP*1.25

Compute Errors = AFP*Y

Compute Effort: Person Month, PM=A*(KLOC**B)

bKLOC=∑ (LOCs for all Classes)/1000

Adjusted PM: APM=(total EAF)*PM

Development Time: TDEV=C*(APM**D)Factor:1-15

Number of personnel: NP=APM/TDEV

DI=∑ratings of selected factors

14

TCF=0.65+0.01*∑(DI)j
1

Min[TCF]=0.65; Max[TCF]=1.35

aKLOC=FP*LOC_per_FP/1000

Java=53; C++=64

EAF=Product of selected factor NP Effort time

Req APM TDEV

Result

