
 1

1986

EASTERN MEDITERRANEAN UNIVERSITY
COMPUTER ENGINEERING DEPARTMENT

Fall 2007-08

CMPE 325 - Computer Architecture II
EXPERIMENT 1

Introduction to PCSpim (MIPS R2000 Simulator)

1.Introduction
PCSpim is a simulator that runs programs for the MIPS R2000/R3000
RISC computers. SPIM can read and immediately execute files
containing assembly language or MIPS executable files. SPIM is a self-
contained system for running MIPS programs.
In the experiments, we will use a simulator instead of a workstation with
a MIPS processor, because a simulator provides us miscellaneous
features in understanding the instruction set as well as in debugging.
Moreover, a MIPS simulator is available for almost any computer- and
operating-system. Furthermore, the simulator can be updated to include
the new features, instructions or pseudo-instructions developed in later
versions of the processor for almost without any additional cost.
The MIPS simulator is called SPIM, and available as a freeware from
www.mkp.com/cod2e.htm. SPIM is written for most of the commonly
used workstations such as SUN, VAX, IBM-PC compatibles, and
Windows. PC-SPIM is a combined assembler-loader-processor-memory
and I/O simulation for MIPS-2000. It is a sophisticated program with
miscellaneous command line options and in-line assembler commands.
It is easy to install in Windows 32-bit operating systems.

MIPS ASSEMBLER SYNTAX
Comments in assembler files begin with a sharp sign " # ". Everything
starting from the sharp sign to the end of the line is ignored.
Identifiers are a sequence of alphanumeric characters, underbars " _ ",
and dots " . " that do not begin with a number. Instruction opcodes are
reserved words that cannot be used as identifiers. Labels are declared
by putting them at the beginning of a line followed by a colon, for
example:

 2

 .data
item: .word 1
 .text
 .globl main # must be global.
main: lw $t01,item # loads temp.reg. $t01 with item.

Numbers are base 10 by default. If they are preceded by 0x, they are
interpreted as hexadecimal. Hence, 256 and 0x100 denote the same
value.
Strings are enclosed in doublequote "...". Special characters in strings
follow the C convention: i.e., newline is \n, tab \t, and quote \"
Some important SPIM (and also MIPS) assembler directives:
.byte b1,...,bn # store n specified values to the memory.
.data <address> # set data segment address.

SPIM uses 0x10000000 as the beginning of the data segment. Set it to
0x10000000 to have correctly matching data labels to their addresses.

.globl sym # makes label globally accessible.

.space n # allocates n bytes of space in the current segment.

.text <address> # subsequent items are put in the user text segment.
 The items in text segment may be only words, or instructions.
.word n # stores the listed values of words into the memory.

The PCSpim simulator program has a pull down menu appearance as
shown below:
File Simulator Window Help
 Open Clear Registers Next Help Topics
 Save Log File Reinitialize Previous About PCSpim
 Exit Reload… Cascade
 Go Tile
 Continue Arrange Icons
 Single Step Messages
 Multiple Step Text Segment
 Breakpoints Data Segment
 Set Value Registers
 Display symbol table Console
 Settings Clear Console
 Toolbar
 Status Bar

How to Set The Simulator:
In the first part of this experiment you will use SPIM to simulate
 a bare MIPS machine,
 without allowing pseudo-codes, and
 no mapped I/O option.
 without loading any trap-features.

 3

In this mode, the assembler will not allow any pseudo-codes (i.e., li,
mul, blt, ... etc. and also any long offset fields in the lw and sw
instructions) to be used in your program.
For the convenience in reading the register contents you may prefer to
have hexadecimal readings in the display windows.
In the second part, you will use SPIM in the more elaborated mode with
the pseudo-code and trap-features loaded.
All of these settings can be set on the settings form that is accessed
starting from the drop-down menu by simulator>settings.

Organization of a MIPS assembly program
The MIPS assembly programs are text files with the extension ".s" or
".asm". SPIM has no built-in editor-program for writing the assembly
source. You have to use your favorite, or an available text editor such as
the NOTEPAD.EXE. The Notepad program of Windows 95/98 or NT is
located in:
 Start Programs Accessories Notepad
Type your MIPS assembly program (you have to leave an empty line at the
end of the program) and save it by specifying a filename for your program.
Note that the extension of the filename must be “.s” or ".asm".
You should first click on the PCSpim for Windows icon to start the PCSpim
main window. Then load your program by using the PCSpim’s menu File
> Open. Use the opened browser to choose the path and the assembly
source file that you want to open.
If there is any syntax or structure error in your file, SPIM will give you a
message indicating the line number and the reason of the rejected line.
You have to clean your program from the syntax bugs and load it to
SPIM.
After loading your assembly source, you are ready to run or trace it. Use
Simulator > Go (F5-key) or Simulator > single step (F10-key) of the main
menu. The starting address is automatically defined by the compiler
according to the options you set-up on the settings window.
You can watch the contents of the registers using window > Registers of
the main menu. For an easy to observe page organization try the window
> tile option.

 4

2. Experimental Work
Part-1
Following program multiplies two unsigned integers in the registers R8
by R9 and writes the 32-bit product to register R10. In order to
understand the operation of your simulator program, type to a file named
"exp1a.asm" and execute the following MIPS assembly program in non-
pseudo-instruction mode.
 .data 0x10000000
 .text 0x00400000
 .globl main
main:
 addi $8,$0,6
 addi $9,$0,12
multiplication of $8 * $9 -> $10
 add $2,$0,$8
 add $10,$0,$0
mulloop:
 beq $2,$0,mulexit # if zero exit
 addi $2,$2,-1
 add $10,$10,$9
 j mulloop
mulexit:
multiplication loop is over,
is the result in $10 correct?
 sll $0,$0,0
 syscall

 You can put comments to the end of a line after a sharp sign (#).
 You can start the single step execution applying the following items.

 - First set the PC (prog.counter) to the starting address of the program
 If SPIM is set correctly the starting address is 0x00400000.
 To set the value use the key-sequence alt-s,v (or menu simulator>set value) to

open the register-value assignment dialog box. Enter PC and the starting
address in hexadecimal format.

- Next, use the fn10 key to execute one instruction at each key-press.
You can also use the fn5 key to execute the complete progam at once. Correct
the starting address to 0x00400000 before clicking the OK button.

 After syscall stops the execution save the log file with the filename
"exp1a.log". Open the log file by dragging it into the textpad and
inspect the text segment. Fill in the following machine code table
according to hexadecimal machine codes assigned by SPIM.

 5

Part-2
In this part, you will use the SPIM in pseudo-code allowing mode.

 Clear the bare machine setting, and check only the allow pseudo-code
option in the settings dialog-box (key-sequence alt-s,s).
 Write the following text to a file named "exp1b.asm".

 .data
 .text
 .globl main
main:
 li $8,0x3210
 li $9,0x76543210
 sge $11,$8,$9
 mul $12,$11,$10
infloop:
 bge $11,$0,infloop
 syscall

 Load the file to SPIM, and watch the corresponding machine codes of
each line. Use the log file to fill in the following binary-machine-code
table to understand the fields of each instruction in a better manner.

Note that the given text is not a program, it is not traceable. It contains a
sample of some commonly used MIPS pseudo-instructions.

Reporting
Before the Lab-time is over, fill in the following report page as soon as
you complete the laboratory work, and submit it to your assistant. Your
report is important for your grading.

 6

Name: __________________ Student Number:_____________
Submitted to (Asst.): __________________ Date:dd/mm/yy ___/___/___

1986

EASTERN MEDITERRANEAN UNIVERSITY
COMPUTER ENGINEERING DEPARTMENT

Fall 2007-08

CMPE 325 - Computer Architecture II
EXPERIMENT 1 - Reporting Sheet

Part One: The observed binary machine codes of the instructions are:
Instruction opc rs rt rd sa fn
addi $8,$0,6
addi $9,$0,12
add $2,$0,$8
add $10,$0,$0
beq $2,$0,mulexit
addi $2,$2,-1
add $10,$10,$9
j mulloop
sll $0,$0,0

Part 2: The observed binary machine codes of the instructions are:
Instruction opc rs rt rd sa fn
li $8,0x3210

li $9,0x76543210

sge $11,$8,$9

mul $12,$11,$10

bge $11,$0,infloop

Grading: Lab Performance :
 Asst. Observations :

