

1986

EASTERN MEDITERRANEAN UNIVERSITY
COMPUTER ENGINEERING DEPARTMENT

Spring
2ØØ7-Ø8

CMPE 325 - Computer Architecture II

EXPERIMENT 3:

Modular Programming in MIPS Using Jump-and-Link
(jal) and Jump-Return (jr) Instructions

1.Introduction :

We have discussed in the class that programmers use procedures or
subroutines while writing programs. A modular program is easier to
understand than a so called spagetthy or flat programs. Furthermore,
modular programming provides more compact coding because re-using
the modules is possible. To support the modular programming, an
instruction set must provide a technique to call a procedure and then
return from the procedure to the address right next to the call instruction.
MIPS instruction set has two instructions for modular programming:
Jump-and-link (jal) and Jump-register (jr).
 ...
 jal ProcedureAddress
 add $2,$5,$9 # next-instruction after the call
 ...
ProcedureAddress:
 ...
 jr $31
AnotherProcedure:
 ...
The jal instruction changes the sequence of execution to the specified
procedure address and simultaneously saves the address of the
following instruction in register $31. The word "link" in the instruction
name implies that a link is formed to calling address to resume the
execution of the next instruction after the call. This link is called the
return address and it is stored in register $31.

The jr $addr instruction is called jump-return or jump-to-register. It
changes the sequence of execution of the instructions to the address
that was stored in the $addr register, resulting in a jump to that address.
jr $31 terminates the execution of the procedure by jumping to the
address that was stored by the jal instruction into $31.

 1

In MIPS, the address of the next instruction to execute is kept in the
Program Counter (PC). In sequential execution, PC is incremented
automatically by 4, so that it points the next instruction in the memory as
the next instruction to execute. A jump is accomplished by copying a new
address into PC. Jump (j) and Jump-and-link (jal) are implemented by
copying the specified address into PC, which directs the sequence of the
execution to that address. Jump-register copies the contents of the
specified register into PC register. jr $31 accomplishes return from
subroutine by copying the contents of $31 into PC, that yields a jump to
the return address.

If a procedure calls another procedure, then the old value of register $31
must be saved into a last-in-first-out (LIFO) stack.

MIPS provides two conventions governing how to pass parameters and
how to support the nesting of procedure calls. The registers are grouped
for specific purposes.
 $0 contains 0, $1 is reserved for assembler-pseudocodes

 $2 and $3 are used in returning the value or the pointer of the
return value of the procedure from the callee to the caller.

 $4, $5, $6 and $7 are used in transfering the arguments from the
caller to the callee.

 $8 ... $15 are the callee saved registers, for local work in the callee.
 $16 ... $23 are the caller saved registers, for long range work
across the callees.

 $28 is the global data pointer that points the static-data-segment.
 $29 is the stack-pointer that points the top-of-stack address.

A compiler usually implements the calls in both callee and caller save
convention, and selects the best one to have fast and compact coding.

In this experiment, we will use only the callee-save convention and the
assembler with the pseudo-codes allowed option to implement.

 2. Experimental Work:

1. Nested Calls:
In order to see how jal and jr instructions are employed in a structured
program, study the following C-program, that is converted to MIPS
assembly. The program finds the sum of an array from a specified start-
index to an end-index by recursive calls of addition. Type and execute
the corresponding MIPS assembly program that writes the sum to the
data segment.

 2

// Function computes sum of the array elements which starts from first
element (0) and ends when reaches to (size-1)th index

int sum (int arr[], int size)
{
 If (size==0)
 return 0;
 else
 return sum(arr, size-1) + arr[size-1];
}

The following code is the corresponding MIPS assembly source.
 .data 0x10000000
 A: .word 3,5,6,2,0,4
 .text 0x00400000
 .globl main
main:
 la $a0, A
 li $a1, 6
 jal fun
 move $s0, $v0
 syscall

fun: addi $sp, $sp, -8 # Adjust sp
 addi $s0, $a1, -1 # Compute size - 1
 sw $s0, 0($sp) # Save size - 1 to stack
 sw $ra, 4($sp) # Save return address
 bne $a1, $zero, L1 # branch ! (size == 0)
 li $v0, 0 # Set return value to 0
 addi $sp, $sp, 8 # Adjust sp
 jr $ra # Return

L1: move $a1, $s0 # update second arg
 jal fun
 lw $s0, 0($sp) # Restore size - 1 from stack
 li $t7, 4 # t7 = 4
 mult $s0, $t7 # Multiple size - 1 by 4
 mflo $t1 # Put result in t1
 add $t1, $t1, $a0 # Compute & arr[size - 1]
 lw $t2, 0($t1) # t2 = arr[size - 1]
 add $v0, $v0, $t2 # retval = $v0 + arr[size - 1]
 lw $ra, 4($sp) # restore return address from stack
 addi $sp, $sp, 8 # Adjust sp
 jr $ra # Return

 3

Load and trace the code step-by-step using f1Ø-key after initializing PC to
ØxØØ4ØØØØØ (it is a good idea to prepare the file before the lab hour to
save time in the Lab). Write the contents of the stack-list to your report,
indicating from which register the value is originated when the jr $31
instruction is executed the first time. You have to note down the register
number each time when a register is pushed to stack so that you will be
able to fill in from which register the values are originated.

Part. 2 Programming Exercise

In this part, your assistant will give you a C-program source containing a
function or procedure in it. You have to write the corresponding code,
and verify that your program works correctly.

 4

Name: __________________ Student Number:_____________
Submitted to (Asst.): __________________ Date:dd/mm/yy ___/___/___

1986

EASTERN MEDITERRANEAN UNIVERSITY
COMPUTER ENGINEERING DEPARTMENT

Spring
2ØØ7-Ø8

CMPE 325 - Computer Architecture II
EXPERIMENT 1 - Reporting Sheet
Part1:
The contents of the stack at the first execution of the jr $31 instruction.
Address wordØ word1 word2` word3
addr.
register
addr.
register
addr.
register
addr.
register
addr.
register

What is the depth of the nested calls?
What is the number of words occupying the stack?

Part 2: Programming Exercise

1- C-program to translate into MIPS code is
2- Fill in here the contents of the calculated array-elements (in hexadec.):

 , , ,
 , , ,
 , , ,
 , , ,
 , , ,

Grading: Quiz Performance:
 Lab Performance:
 Asst. Observations:

 5

	EASTERN MEDITERRANEAN UNIVERSITY
	COMPUTER ENGINEERING DEPARTMENT

	Spring
	2ØØ7-Ø8
	CMPE 325 - Computer Architecture II
	EXPERIMENT 3:
	Modular Programming in MIPS Using Jump-and-Link (jal) and Ju

	EASTERN MEDITERRANEAN UNIVERSITY
	COMPUTER ENGINEERING DEPARTMENT

	Spring
	2ØØ7-Ø8
	CMPE 325 - Computer Architecture II

	EXPERIMENT 1 - Reporting Sheet

