=, EASTERN MEDITERRANEAN UNIVERSITY
COMPUTER ENGINEERING DEPARTMENT

CMPE 325 - Computer Architecture Il

EXPERIMENT 5

Single Clock DataPath for 16-bit R-type Instructions
in ALTERA MAX-PLUS-II VHDL Environment.

8

Objective: To familiarize with the Single-Clock VHDL implementation for a set
of 16-bit R-type instructions, and to measure the response time of several
building components in a RISC datapath.

1. Introduction

You have already worked to construct a simple 16-bit instruction set for
your project/homework. A typical simple 16-bit instruction set and a
corresponding R-type datapath is provided in this experiment. You will
be asked to take several measurements that can lead you to a
conclusion about the typical speed constraints, and possible
improvements of the similar circuits.

In this experiment, we will focus only on the R-type instructions, so
that we can observe typical properties of some of the basic building
blocks such as the Program-Counter, the Instruction-Memory, the
Register-File, and the Adder for updating the Program-Counter.

Lttt ||t o R ;jump-register !
AN |- 3 3 'multiplexer

.......................

™" Single Cycle 16-bit RISC R-type datapath
P EMU Computer Engineering Dept.
[D WLBodur | Sirri Ball

) o 700 A
oF 3.05p 12-03-7004 |‘“‘" [

.......................

1

Figure 1-1 Single Cycle DataPath for R-type Instructions.

The complete set of the 16-bit instructions are summarized in the
following tables.

CMPE325 Exp5 Fall2004 (c)M.Bodur 2
Table 1 General representation of R-type Instructions

Opcode | Readl reg | Read? reg | Write reg | Function code
4-bits 3-bits 3-hits 3-hits 3-bits

Table 1-1 Karnough Map Representation of the
Instruction OpCodes

OpCode .. 00 . 01 .11 . 10
00.. R-type Halt Goto Lw
01.. Call (or Jal) | Lui (or LuL) X Beq
11.. Addi X X Bneq
10.. Andi Ori Xori Sw

Table 1-2 Function Codes for the R-type Instructions
FNCODE | .00 | .01 | .11 | .10

0.. And Or Xor | Add
1.. Jr ShrA | Slt | Sub

And, our R-type instructions are further listed in the following table.

Table 1-3 Representation of R-type Instructions with opcodes

instruction Opcode | Read-regl | Read-reg2 | Write-reg | Fn code
And 0000 XXX XXX XXX 000
Or 0000 XXX XXX XXX 001
Add 0000 XXX XXX XXX 010
Xor 0000 XXX XXX XXX 011
Jump-Register | 0000 XXX 000 XXX 100
Shift-right-Arith | 0000 XXX XXX XXX 101
Subtraction 0000 XXX XXX XXX 110
Set less than 0000 XXX XXX XXX 111

Note that our instructions have no mnemonics at this stage, because an assembler
has not been written yet for this brand new processor. We use the binary codes of the
instructions to write them into the instruction memory.

Instruction Memory

You can click-on the instruction memory block to access the contents of
the instruction memory. The vhdl file contains sufficient information on
how to change the contents of the instruction memory. The instruction
memory consists of only 16 instruction words. In the VHDL file, the
addresses and corresponding memory contents are written in binary
strings. The instruction is written in 4+6+6 character groups for the
compatibility with the instruction fields. The four bits of the opcode of

CMPE325 Exp5 Fall2004 (c)M.Bodur 3
all R-type instructions are zero. It is possible to modify the contents of
the location by modifying the bit pattern. The contents of the file is
explained in the foIIowmg Flgure.

OPCODE
xx00 xx01 xx11 xx10

FNCODE
x00 x01 x11 x10

|
|
|
1w |
beq | . .
1lxx | addi -- zm.elL -Bmarylnstructlon Address
sw

00xx | RType halt jump Oxx | and or xor add

0lxx | jal lui 1xx | jr shr slt sub [--------------ooooo--oooooo-oooo

10xx | andi ori,”xori _________________________________
begin T e e
case addr is TR EREE iContents (Binary Instruction) !
-- here is the iﬁtructlons in instr memory to\/be fetched Separated in fields 1

——

When "0000000000000000"=>instr<="0000"&"000000"&"000000"; --
When "0000000000000001"=>instr<="0000"&"000001"&"110111"; --
When "0000000000000010"=>instr<="0000"&"000110"&"001110"; --
When "0000000000000011"=>instr<="0000"&"100001"&"011010"; --
When "0000000000000100"=>instr<="0000"&"011010"&"101000"; --
When "0000000000000101"=>instr<="0000"&"000000"&"000000"; --
When "0000000000000110"=>instr<="0000"&"011011"&"100101"; --
When "0000000000000111"=>instr<="0000"&"100001"&"110110"; --
When "0000000000001000"=>instr<="0000"&"001110"&"111010"; -
When "0000000000001001"=>instr<="0000"&"000000"&"000000"; --
When "0000000000001010"=>instr<="0000"&"000111"&"000100"; --
When "0000000000001011"=>instr<="0000"&"000000"&"000000"; --
When "0000000000001100"=>instr<="0000"&"000000"&"000000"; --
When "0000000000001101"=>instr<="0000"&"000000"&"000000"; --
When "0000000000001110"=>instr<="0000"&"000000"&"000000"; --
When "0000000000001111"=>instr<="0000"&"000000"&"000000"; --
when others =>instr<="1111111111111111";

and $0,$0,50 (nop)
slt $6,$0,$1

sub $1,$0,5$6

or $3,%4,851

and $5,$3,%2

and $0,%$0,%0 (nop)
shr $4,$3,$3

sub $6,%4,51

add $7,$1,$6

nop

jumpr $7

'
MTEHUOQWM» wWoJaUuAWNKHEO

Figure 1-2 The contents of the Instruction Memory.

Instruction field separator

The Instr_Fields block in the lab.gdf Schematic editor is a field-separator
block that renames the fields of the instruction (the bit-groups for
OPCJ3..0], RR1[2..0], RR2[2..0], RWT[2..0], FN[2..0]), and also the immediate and
long fields with and without sign extension and 4-bit shift for immediate instruction).
The VHDL description for these units are simply a signal connection
without any interfacing circuit.

Register File

The register file block reg_filer has been particularly furnished with a
synchronous reset input that sets the contents of each register at the
positive clock-edge whenever the reset input is high. The setting of i-th
register can be modified to any initial value by setting the contents of
the tmp r£(i) to a desired value at the then block of the reset='1:
condition in VHDL file (you can access it by clicking on the reg_filer
block).

if Reset='1l' then

tmp rf(l)<= "0000000000010001"; --regl = 0x0011
tmp rf(2)<= "0000000000010010"; --reg2 = 0x0012
tmp rf(3)<= "0000000000010011"; --reg3 = 0x0013
tmp rf(4)<= "0000000000010100"; --reg4 = 0x0014
tmp rf(5)<= "0000000000010101"; --reg5 = 0x0015
tmp rf(6)<= "0000000000010110"; --reg6 = 0x0016
tmp rf(7)<= "0000000000010111"; --reg7 = 0x0017

Figure 1-3 Initial values of the register_file contents.

CMPE325 Exp5 Fall2004 (c)M.Bodur 4

ALU

The ALU block in the lab.gdf graphic file is written in VHDL code. The
‘case' statement in the VHDL code corresponds to a multiplexer, and
the add-sub functions are optimized by the MAXPLUS2 compiler to the
most compact form.

begin

case sel is

When "000" => temp(l5 downto 0)<=a and b; temp(l6)<='0';-- and operation
When "001l" => temp(l5 downto 0)<=a or b;temp(1l6)<='0'; -- or operation

When "010" => temp<=a+b; -- add operation

When "011l" => temp(l5 downto 0)<=a xor b;temp(l6)<='0'; -- xor operation
When "100" => temp<=a+b; -- add operation

When "101" => temp(l4 downto 0)<=a(l5 downto 1);temp(l5)<=a(l5); -- shra

When "110" => temp<=a+not(b)+l; -- subtract operation

When "111" => templ<=a+not(b)+l;temp <= "0000000000000000" & templ(1l5); -- slt
when others => temp<= "XXXXXXXXXXXXXXXX"; -- actually there is no such a case
end case;

Figure 1-4 VHDL code of 16-bit ALU
With these ALU operation ("sel") codes we can connect the FN[2..0]
field of the instruction directly to the seil[2..01 inputs of ALU to
determine its function. The inputs and output of ALU is furnished with
output ports ALUOP1[15..0], ALUOPZ2[15..0] and ALURESULT[15..0] for
monitoring purpose in the Waveform Editor.
(About Project/HW-2: In your second Project Homework-2 you have been asked
to design this unit using the graphical schematic capture. You can install your
unit into the datapath to test how it works in the datapath).

Jump Register Multiplexer

Finally, a multiplexer provides a datapath from ALURESULT to PC
data input PCin[15..0] for the implementation of the jump-to-register
instruction. A patch decodes the FN code for JR instruction code, and
connects the ALURESULT to PCIN to set the next instruction address
from the (ALUopl + ALUop2).

Dependency analysis
In the R-type datapath the following time instances are observable:
a- Clock-cycle
(Tc: from clock-edge to clock-edge)
b- iPC+1 calculated by adder
(Tnpc: from nPC to stabilization of PCin),
c- iPC+1 — nPC,
(Tec: from clock-edge to stabilized nPC),
d- Instruction memory access
(Tim: from stabilized nPC to stabilized instruction)
e- instruction separated to the fields,
(Tr: from stable instruction to stable fields)
f- Reg[rrl] and Reg][rr2] becomes stable,
(Trr: from stable fields to stable register contents)

CMPE325 Exp5 Fall2004 (c)M.Bodur 5

g- ALU produce the result of the operation,
(Tacu: from stable ALUinputs to stable ALUresult)
h- ALUresult is written to Reg[rwt],
(not observable, around 2ns)
The following two constraints must be satisfied in all conditions
(including the worst conditions) for this datapath to work properly.
1- Tc > Tapc;
2- Tc>Tect Timt Tigt Trrt TaLu ;

2. Experimental Practice

On this single-cycle-R-type datapath we will observe several
properties of a single clock implementation.

1-We expect that ALU give the longest delay when adding FFFF +1,
where a carry propagates through the carry. Set the first three

instructions in the instruction memory to

When "0000000000000000"=>instr<="0000"&"000000"&"000000";-- 0 and $0,%0,%0 (nop)
When "0000000000000001"=>instr<="0000"&"000001"&"110111";-- 1 slt $6,%0,51

When "0000000000000010"=>instr<="0000"&"000110"&"001110";-- 2 sub $1,%0,%6

When "0000000000000011"=>instr<="0000"&"001110"&"001010";-- 3 add $1,%1,%6

Then save the instruction memory VHDL code, and compile the
project. Run the simulator (grid size 2ns, pc_clock multiplied with 40)
and open the SCF file (step sizeto watch the Waveforms.

Marne: “alue: QDD.IDns fiDD.IDns EDD.IDns BDD.IDns W.Dlus 1.2lus W.fllus W.E:us W.BIUS 2C
i L

ook 70 J L] 11 L J LT LT L J 1§ L J 1T 1T [J1_
S PCin[15..0] Hooot ooo1y om0z § ooos Y ooos § ooos Y oode) ooor Y ¥ ooce § ooos Y oooa oo ¥ ooos Jfoocs
S PC_value[15..0] Hoomo| - o001 ¥ o002 ¥ 0003 Y 0004y 0005 Y OO0B 4 0007 Y 0008 ¢ 0009 ¥ o0o0A ¥ omos ¥ oooa
= INsTRUCTION(15..0] |H o000 (o000 o077 oieE ¥ oaea § oeas X oooo § oeEs § oere f o3ee § oooo § oice f oooo R oics
S 0PC[3.0) Ho [0 X o X o ¥ 0 F o Yo ¥ o ¥o ¥o
S RR12.0] Hoo o F o X o ¥ o1 F 3 ¥ o ¥o3 X 4 ¥ 1 W oo ¥ o §o §o
S ALUOPI[15.0] Hoom (o000 § ooo0 ¥ ooco § FFFF i oa1s ¥ oooo ¥ o013 Y ooos i oooo f ooon W 0000 3 oooo
S RR2[2.0] Ho [o 1 ¥ B ¥ 2 Yo }F 3 ¥ ¥ s Yo ¥ ¥ ¥
S ALUOPZ[15.0] Hoooo [oooo oot 0001 Y o2 Y oooo § oors foooo f ooos ¥ oooo ¥ ooos ¥ oooo Y ooos
S WHREG[2.0] Ho [0 ¥ &5 ¥ 1 Vs Yo s ¥ s W7 o Vo F o b
S aLUREsULT15.0) |Hoooo o000 Y Yoo Y- @iooood ootz ¥ oooo § ooos {iooos Y ooos ¥ oooo) ooos § uooo ffooos
= poreset 1 _|

—® REGFWRITF 1

Figure 2-1 Overall view of the execution of R-type instructions in SCF

When you zoom to 240ns you will see the following waveforms

Marne: “alue J_ 24D_|Dns ' 2'BD.IDHS 2BD.IDn$ SDD.IDnS SQD.IDns 34D.|Dns ' 360
) ™ T i i T

m=pc_clock 1 ! i ' ' |
.] 1 T T I
S PCin[15.0] H 0002 mz F % N 0003 }
S PC_value[15..0] H 0001 poot W : ' ' 0002 }
S INSTRUCTION[15..0] |H 0077 AR §)4 018E }
' ' ' ' |
S 0PC[3.0] HO o i 4 S 0 ;
T * i i |
= RR1[2.0] HO R Yay | 0 }
T T " |
S ALUOPI[15..0] H 0000 . oo -4 0000 }
R T \
S RR2[2 0] H1 HIEEEEED | R B |
' . H |
S ALUOPZ(15.0] H o011 10011 ; i O ood }
' i ' ' I
S WHREG(2..0] HE IR v 1 |
S ALURESULT[15.0] |H 0001 | oGt S &)

W
© 3 O @ ®
Figure 2-2 Subtraction 0-1 gives OXFFFF

CMPE325 Exp5 Fall2004 (c)M.Bodur 6

In this waveform diagram

@=Tpc; @=Tppc; @=Tim ; @=Tig ; ®=Tgr; ®=Taru

Similarly, you will observe on the same waveform at time=400 addition
OxFFFF+1=0x0000, which also requires 32 carry propagation.

Marne: '__\,fa|ue;’LADDTDns , 4200ns 440,0ns 460.0ns 480.0ns 500.0ns 520
= po_clock T 1 “J E : : | |
S PCin[15..0] Hoooa| | oooa ;- ¥ 5 5 0004
S5 PC_value[15..0] Hoom | oooz ; ' 0003
S5 INSTRUCTION[15.0] [HD18E[| OlGE | i : 036A
S5 0PC[3.0] HO DT 0
=2 RRI2.0] Ho [| R E i
S ALUOPI[15.0] Hoooa [| 10000 ; : it FFFF
S RR2[2.0] HE R E : B
S ALUDPZ[15.0] Hooot | | TR : : aoo1
S WHREG(2.0] H 1 DL : : 1
S5 ALURESULTIIS.0] |HFFFF[| 5 FFFF : i :

Sm— — —— ———
O3 O @
Figure 2-3 Addition OXFFFF+1 gives 0.
2. On these two waveform charts read the delays of the following

operations into the report-sheet.
O=Tpc ; @=Tppc; @=Tim ; @=Tir ; = Trr; ®= Tawu

3. Zoom in to the range 1.20 us to 1.28 us where a jump-register
instruction is in execution. Explain each step of the execution into the
report sheet

(i.e.,

at 1211ns PC is stabilized to 0x0008,

at 1222ns nPC=iPC+1 is stabilized to 0x0009,

... etc)

Name: Student Number:

Submitted to (Asst.): Date:dda/mmiyy /

= EASTERN MEDITERRANEAN UNIVERSITY
COMPUTER ENGINEERING DEPARTMENT

5

CMPE 325 - Computer Architecture Il

EXPERIMENT 5- Reporting Sheet
Section 2.2

at 240ns at 400ns maximum value

Tc:
Thec:
Tprc:
Tim:
Ti:
Trr:
TaLu:

What is the minimum possible clock period Tcmin? Tcmin=

What is the maximum possible clock rate Fcmax? Fcmax=

Section 2.3

Explain what happens in between the time interval from 1200ns to
1280ns:

Grading: Lab Performance:
Asst. Observations:

	Fall 2007-2008:

