

1986

EASTERN MEDITERRANEAN UNIVERSITY
COMPUTER ENGINEERING DEPARTMENT Fall 2ØØ6-Ø7

 CMPE 325 - Computer Architecture II
EXPERIMENT 5

Single Clock DataPath for 16-bit R-type Instructions
in ALTERA MAX-PLUS-II VHDL Environment.

Objective: To familiarize with the Single-Clock VHDL implementation for a set
of 16-bit R-type instructions, and to measure the response time of several
building components in a RISC datapath.

1. Introduction
You have already worked to construct a simple 16-bit instruction set for
your project/homework. A typical simple 16-bit instruction set and a
corresponding R-type datapath is provided in this experiment. You will
be asked to take several measurements that can lead you to a
conclusion about the typical speed constraints, and possible
improvements of the similar circuits.

In this experiment, we will focus only on the R-type instructions, so
that we can observe typical properties of some of the basic building
blocks such as the Program-Counter, the Instruction-Memory, the
Register-File, and the Adder for updating the Program-Counter.

Figure 1-1 Single Cycle DataPath for R-type Instructions.

The complete set of the 16-bit instructions are summarized in the
following tables.

program counter

constant nr. (1)

adder for PC+1

instruction memory

16-bit instruction

instruction field
separator

register file 16-bit ALU

jump-register
multiplexer

CMPE325 Exp5 Fall2004 (c)M.Bodur 2

Table 1 General representation of R-type Instructions
Opcode Read1 reg Read2 reg Write reg Function code
4-bits 3-bits 3-bits 3-bits 3-bits

Table 1-1 Karnough Map Representation of the

Instruction OpCodes
OpCode .. 00 .. 01 .. 11 .. 10

00.. R-type Halt Goto Lw
01.. Call (or Jal) Lui (or LuL) X Beq
11.. Addi X X Bneq
10.. Andi Ori Xori Sw

Table 1-2 Function Codes for the R-type Instructions

FNCODE .00 .01 .11 .10
0.. And Or Xor Add
1.. Jr ShrA Slt Sub

And, our R-type instructions are further listed in the following table.

Table 1-3 Representation of R-type Instructions with opcodes
instruction Opcode Read-reg1 Read-reg2 Write-reg Fn code
And 0000 XXX XXX XXX 000
Or 0000 XXX XXX XXX 001
Add 0000 XXX XXX XXX 010
Xor 0000 XXX XXX XXX 011
Jump-Register 0000 XXX 000 XXX 100
Shift-right-Arith 0000 XXX XXX XXX 101
Subtraction 0000 XXX XXX XXX 110
Set less than 0000 XXX XXX XXX 111

Note that our instructions have no mnemonics at this stage, because an assembler
has not been written yet for this brand new processor. We use the binary codes of the
instructions to write them into the instruction memory.

Instruction Memory
You can click-on the instruction memory block to access the contents of
the instruction memory. The vhdl file contains sufficient information on
how to change the contents of the instruction memory. The instruction
memory consists of only 16 instruction words. In the VHDL file, the
addresses and corresponding memory contents are written in binary
strings. The instruction is written in 4+6+6 character groups for the
compatibility with the instruction fields. The four bits of the opcode of

CMPE325 Exp5 Fall2004 (c)M.Bodur 3

all R-type instructions are zero. It is possible to modify the contents of
the location by modifying the bit pattern. The contents of the file is
explained in the following Figure.

-- OPCODE | FNCODE
-- xx00 xx01 xx11 xx10 | x00 x01 x11 x10
-- _____|______|_____|_____|_____ | ___|______|_____|_____|_____
-- 00xx | RType halt jump lw | 0xx | and or xor add
-- 01xx | jal lui -- beq | 1xx | jr shr slt sub
-- 11xx | addi -- -- bne |
-- 10xx | andi ori xori sw |
begin
case addr is
-- here is the istructions in instr memory to be fetched

When "0000000000000000"=>instr<="0000"&"000000"&"000000"; -- 0 and $0,$0,$0 (nop)
When "0000000000000001"=>instr<="0000"&"000001"&"110111"; -- 1 slt $6,$0,$1
When "0000000000000010"=>instr<="0000"&"000110"&"001110"; -- 2 sub $1,$0,$6
When "0000000000000011"=>instr<="0000"&"100001"&"011010"; -- 3 or $3,$4,$1
When "0000000000000100"=>instr<="0000"&"011010"&"101000"; -- 4 and $5,$3,$2
When "0000000000000101"=>instr<="0000"&"000000"&"000000"; -- 5 and $0,$0,$0 (nop)
When "0000000000000110"=>instr<="0000"&"011011"&"100101"; -- 6 shr $4,$3,$3
When "0000000000000111"=>instr<="0000"&"100001"&"110110"; -- 7 sub $6,$4,$1
When "0000000000001000"=>instr<="0000"&"001110"&"111010"; -- 8 add $7,$1,$6
When "0000000000001001"=>instr<="0000"&"000000"&"000000"; -- 9 nop
When "0000000000001010"=>instr<="0000"&"000111"&"000100"; -- A jumpr $7
When "0000000000001011"=>instr<="0000"&"000000"&"000000"; -- B
When "0000000000001100"=>instr<="0000"&"000000"&"000000"; -- C
When "0000000000001101"=>instr<="0000"&"000000"&"000000"; -- D
When "0000000000001110"=>instr<="0000"&"000000"&"000000"; -- E
When "0000000000001111"=>instr<="0000"&"000000"&"000000"; -- F
when others =>instr<="1111111111111111";

Figure 1-2 The contents of the Instruction Memory.

Instruction field separator
The Instr_Fields block in the lab.gdf Schematic editor is a field-separator
block that renames the fields of the instruction (the bit-groups for
OPC[3..0], RR1[2..0], RR2[2..0], RWT[2..0], FN[2..0]), and also the immediate and
long fields with and without sign extension and 4-bit shift for immediate instruction).
The VHDL description for these units are simply a signal connection
without any interfacing circuit.

Register File
The register file block reg_filer has been particularly furnished with a
synchronous reset input that sets the contents of each register at the
positive clock-edge whenever the reset input is high. The setting of i-th
register can be modified to any initial value by setting the contents of
the tmp_rf(i) to a desired value at the then block of the Reset='1'
condition in VHDL file (you can access it by clicking on the reg_filer
block).
 if Reset='1' then
 tmp_rf(1)<= "0000000000010001"; --reg1 = 0x0011
 tmp_rf(2)<= "0000000000010010"; --reg2 = 0x0012
 tmp_rf(3)<= "0000000000010011"; --reg3 = 0x0013
 tmp_rf(4)<= "0000000000010100"; --reg4 = 0x0014
 tmp_rf(5)<= "0000000000010101"; --reg5 = 0x0015
 tmp_rf(6)<= "0000000000010110"; --reg6 = 0x0016
 tmp_rf(7)<= "0000000000010111"; --reg7 = 0x0017

Figure 1-3 Initial values of the register_file contents.

Function Codes for
R-type instructions Instruction OpCodes

Binary Instruction Address

Contents (Binary Instruction)
separated in fields

CMPE325 Exp5 Fall2004 (c)M.Bodur 4

ALU
The ALU block in the lab.gdf graphic file is written in VHDL code. The
'case' statement in the VHDL code corresponds to a multiplexer, and
the add-sub functions are optimized by the MAXPLUS2 compiler to the
most compact form.
begin
case sel is
When "000" => temp(15 downto 0)<=a and b; temp(16)<='0';-- and operation
When "001" => temp(15 downto 0)<=a or b;temp(16)<='0'; -- or operation
When "010" => temp<=a+b; -- add operation
When "011" => temp(15 downto 0)<=a xor b;temp(16)<='0'; -- xor operation
When "100" => temp<=a+b; -- add operation
When "101" => temp(14 downto 0)<=a(15 downto 1);temp(15)<=a(15); -- shra
When "110" => temp<=a+not(b)+1; -- subtract operation
When "111" => temp1<=a+not(b)+1;temp <= "0000000000000000" & temp1(15); -- slt
when others => temp<= "XXXXXXXXXXXXXXXX"; -- actually there is no such a case
end case;

Figure 1-4 VHDL code of 16-bit ALU
With these ALU operation ("sel") codes we can connect the FN[2..0]
field of the instruction directly to the sel[2..0] inputs of ALU to
determine its function. The inputs and output of ALU is furnished with
output ports ALUOP1[15..0], ALUOP2[15..0] and ALURESULT[15..0] for
monitoring purpose in the Waveform Editor.
(About Project/HW-2: In your second Project Homework-2 you have been asked
to design this unit using the graphical schematic capture. You can install your
unit into the datapath to test how it works in the datapath).

Jump Register Multiplexer
Finally, a multiplexer provides a datapath from ALURESULT to PC
data input PCin[15..0] for the implementation of the jump-to-register
instruction. A patch decodes the FN code for JR instruction code, and
connects the ALURESULT to PCIN to set the next instruction address
from the (ALUop1 + ALUop2).

Dependency analysis
In the R-type datapath the following time instances are observable:
a- Clock-cycle

(TC: from clock-edge to clock-edge)
b- iPC+1 calculated by adder

(TnPC: from nPC to stabilization of PCin),
c- iPC+1 → nPC ,

(TPC: from clock-edge to stabilized nPC),
d- Instruction memory access

(TIM: from stabilized nPC to stabilized instruction)
e- instruction separated to the fields,
 (TIF: from stable instruction to stable fields)
f- Reg[rr1] and Reg[rr2] becomes stable,

(TRR: from stable fields to stable register contents)

CMPE325 Exp5 Fall2004 (c)M.Bodur 5

g- ALU produce the result of the operation,
(TALU: from stable ALUinputs to stable ALUresult)

h- ALUresult is written to Reg[rwt],
(not observable, around 2ns)

The following two constraints must be satisfied in all conditions
(including the worst conditions) for this datapath to work properly.
 1- TC > TnPC ;
 2- TC > TPC + TIM + TIF + TRR + TALU ;

2. Experimental Practice
On this single-cycle-R-type datapath we will observe several
properties of a single clock implementation.
1-We expect that ALU give the longest delay when adding FFFF +1,
where a carry propagates through the carry. Set the first three
instructions in the instruction memory to
When "0000000000000000"=>instr<="0000"&"000000"&"000000";-- 0 and $0,$0,$0 (nop)
When "0000000000000001"=>instr<="0000"&"000001"&"110111";-- 1 slt $6,$0,$1
When "0000000000000010"=>instr<="0000"&"000110"&"001110";-- 2 sub $1,$0,$6
When "0000000000000011"=>instr<="0000"&"001110"&"001010";-- 3 add $1,$1,$6

Then save the instruction memory VHDL code, and compile the
project. Run the simulator (grid size 2ns, pc_clock multiplied with 40)
and open the SCF file (step sizeto watch the Waveforms.

Figure 2-1 Overall view of the execution of R-type instructions in SCF

When you zoom to 240ns you will see the following waveforms

Figure 2-2 Subtraction 0–1 gives 0xFFFF

CMPE325 Exp5 Fall2004 (c)M.Bodur 6

In this waveform diagram

=TPC ; =TnPC ; =TIM ; = TIF ; = TRR ; = TALU
Similarly, you will observe on the same waveform at time=400 addition
0xFFFF+1=0x0000, which also requires 32 carry propagation.

Figure 2-3 Addition 0xFFFF+1 gives 0.
2. On these two waveform charts read the delays of the following
operations into the report-sheet.

=TPC ; =TnPC ; =TIM ; = TIF ; = TRR ; = TALU

3. Zoom in to the range 1.20 µs to 1.28 µs where a jump-register
instruction is in execution. Explain each step of the execution into the
report sheet
(i.e.,
at 1211ns PC is stabilized to 0x0008,
at 1222ns nPC=iPC+1 is stabilized to 0x0009,
... etc)

Name: __________________ Student Number:_____________
Submitted to (Asst.): __________________ Date:dd/mm/yy ___/___/___

1986

EASTERN MEDITERRANEAN UNIVERSITY
COMPUTER ENGINEERING DEPARTMENT Fall Ø6-07

CMPE 325 - Computer Architecture II
EXPERIMENT 5- Reporting Sheet

Section 2.2

 at 240ns at 400ns maximum value
TC:

TnPC:
TPC:
TIM:
TIF:
TRR:
TALU:

What is the minimum possible clock period Tcmin? Tcmin=......

What is the maximum possible clock rate Fcmax? Fcmax=......

Section 2.3
Explain what happens in between the time interval from 1200ns to

1280ns:

Grading: Lab Performance:
 Asst. Observations:

	Fall 2007-2008:

