é; EASTERN MEDITERRANEAN UNIVERSITY Fall 2004-05
- COMPUTER ENGINEERING DEPARTMENT

CMPE 325 - Computer Architecture Il

EXPERIMENT 6

Complete Single Clock DataPath for 16-bit Instructions
in ALTERA MAX-PLUS-II VHDL Environment.

Objective: To familiarize with the Single-Clock VHDL implementation for a set
of 16-bit R-type instructions, and to measure the response time of several
building components in a RISC datapath.

1. Introduction

In this experiment you will work on a single clock cycle 16-bit datapath
that can perform R-type, I-type, and L-type instructions.

Figure 1 Single Cycle DataPath for all Instructions.

| F’ Single Clock Cycle 16-hit RISC datapath

f""‘" EMU Computer Enginesring Dept.
™= "Dr M.Bodur f Sirri Ball

The complete set of the 16-bit instructions are summarized in the

following tables.

Table 1 General representation of R-type Instructions

Opcode
4-bits

ReadReg1

ReadReg?2

WriteReg

FunctionCode

3-bits

3-bits

3-bits

3-bits

CMPE325 Exp6- MB041208

Table 2 Karnough Map Representation of the
Instruction OpCodes

OpCode .. 00 .. 01 .11 .. 10
00.. R-type Halt Goto Lw
01.. Call (or Jal) | Lui (or LuL) X Beq
11.. Addi X X Bneq
10.. Andi Ori XOri Sw

Table 3 Function Codes for the R-type Instructions
FNCODE | .00 01 | A1 | 10
0.. And Or | Xor | Add
1.. Jr | ShrA | SIt | Sub

The R-type instructions And, Or, and Xor operates bitwise. Add and
Sub works on signed integers. ShrA is one bit shift, and shifts A-input
of the ALU one bit right by keeping the sign-bit. Sit sets the destination
register to one if the first source is less than the second source. Jr is
the jump return instruction, it is detected by jump-return-gates in the
ALU control, and connects the ALU-result to the PC-in, so that with the
clock-edge PC-value changes to sourcel+source2.

The I-type instructions Addi, Andi, Ori, Xori, Lw, Sw, Beq, and Bneq
have a 6-bit immediate operand, which is sign extended in the field-
separator block to a 16-bit immediate value.

The L-type instruction Goto has 12-bit Long-immediate field for the
address. Call and Lui are also L-type, and they use register-7 for
destination (implied addressing).

Halt instruction stops the execution of the program until an external
signal "continue" goes high.

Instruction Memory

You can click-on the instruction memory block to access the contents of
the instruction memory. The instruction is written in 4+6+6 character
groups for the compatibility with the instruction fields. The four bits of
the opcode of all R-type instructions are zero. It is possible to modify
the contents of the location by modifying the bit pattern. The contents
of the file is explained in Figure 2.

CMPE325 Exp6- MB041208 3

 Instruction OpCodes | iFunction Codes for
e P ‘R-type instructions
.- Y :(__________/__ _________ ~
OPCODE | FNCODE

xx00 xx01 xx11 xx10 | x00 x01 x11 x10

| | | | | — [U

00xx | RType halt junmp Iw | Oxx | and or xor add
0lxx | jal lui -- beqg | Ixx | jr shr slt sub 1-------------ooo e I

1xx | addi -- sz D@ e . :Binary Instruction Address

10xx | andi ori .-"xori sw | e
begi n e PSPPI PR
Sase addr is e :Contents (Binary Instruction) :
-- here is the ygructions ininstr nenory to\’/be f et ched :Lseparated in fields :
/—% ________________________________

-- here is the istructins in instr menory to be fetched
Wien "0000000000000000" =>j nst r <="1100" &' 000001" &"111111"; --
Wien "0000000000000001" =>j nst r <="0000" &' 011011"&"'011011"; --

addi $1, $0, -1
xor $3, $3, $3

When "0000000000000010" =>i nst r<="1100"&"001010" &' 000001"; -- addi $2,$1,1
When "0000000000000011" =>i nst r<="0000"&"011001" &"011010"; -- Back: add $3, $3, $1
When "0000000000000100" =>i nst r <="0100" &' 000000" &' 001001"; -- jal Save

When "0000000000000101" =>i nst r<="1100"&"001001" &' 000001"; -- addi $1,$1,1
When "0000000000000110" =>i nstr<="0110"&"001010" &' 000001"; -- beq $1, $2, Exi t
When "0000000000000111" =>i nstr<="0011"&"000000" &' 000011"; -- junp back
When "0000000000001000" =>i nst r <="0001" &" 000000" &' 000000"; -- Exit: halt

When "0000000000001001" =>i nst r<="1010"&"001011" & 000000"; -- Save: sw $3, 0($1)
When "0000000000001010" =>i nst r<="0000" &"111000" &' 000100"; -- junpr $7

When "0000000000001011" =>i nst r <="0000" &' 000000" &' 000000"; --
When "0000000000001100" =>i nst r <="0000" &' 000000" &' 000000"; --
When "0000000000001101" =>i nst r <="0000" &' 000000" &' 000000"; --
When "0000000000001110" =>i nst r <="0000" &' 000000" &' 000000"; --
When "0000000000001111" =>i nst r <="0000" &" 000000" &' 000000"; --
when others =>instr<="1111111111111111";

TMOOW>OONOUAWNRE O

Figure 2 The contents of the Instruction Memory.
Instruction field separator

The Instr_Fields block in the lab.gdf Schematic editor is a field-separator
block that renames the fields of the instruction (the bit-groups for
OPC[3..0], RR1[2..0], RR2[2..0], RWT[2..0], FN[2..0]), and also the immediate and
long fields with and without sign extension and 4-bit shift for immediate instruction).
The VHDL description for these units are simply a signal connection
without any interfacing circuit.

Register File

The register file block contains total 7 registers and a constant zero at
address 0. It has two read-register-file (RR1, RR2), one write-register-
file (WReg) and a 16-bit write-data input. RR1, RR2 and WReg specify
the address of the register to access. Writing a data occurs at the
positive clock-edge, while reading a register is combinatory (does not
require a clock-edge).

ALU

The ALU block in the lab.gdf graphic file is written in VHDL code. The

‘case’ statement in the VHDL code corresponds to a multiplexer, and

the add-sub functions are optimized by the MAXPLUS2 compiler to the

most compact form. The ALU-operation select codes "sel" are given in
Table 4 Select codes of 16-bit ALU functions

Sel. code | 000 | 001 | 010 | 011 | 100 | 101 | 110 | 111

Function | and | or | add | xor | add | sra | sub | sit

CMPE325 Exp6- MB041208 4

With these ALU function ("sel") codes the ALU-control unit can transfer
the FN[2. . 0] field of the instruction directly to the sel [2.. 0] inputs of
ALU. The inputs and output of ALU is furnished with output ports
ALUOP1[15..0], ALUOP2[15..0] and ALURESULT[15..0] for monitoring
purpose in the Waveform Editor.

Dependency analysis
In the execution of the load-word instruction (the longest of all) the
following time instances are observable:

| Marne: _Walue l EBD.IDnS) QDD.IDns 92ID.IDnS Qdﬂ.lﬂns QED.IDns QBD.IDns

= nc_clock T 17 <Tpe -> : P :]

S PC value[15..0] H 0002 009 WS- T mmommmmee- > Treo 000A)

S OPC[3.0] HA N VB XEN 1 | 2 !

5 RRI[0] H1 : 1 THER 2 ;

= RR2(2..0] H3] E] R 3 |

S WREG(2..0] H3 : HEE T 3 |

S ALUOPZ[15..0] H o002 i @002)@(m 0001 |

= ALUOP1[15.0] HFFFF ' FFFF m 0000 |

5% ALURESULT[15.0] |H 0001 : i oodl i m|||m|” 0001 |

o JEROF o 5 5 S TALU, 5o

S WDATATS.0] [HO000 : nbo)E}(DDDD m&mﬂmﬂ.-mm

= WWT 1 : : |

R B 11 s xm WIWIHIIIHHIIIIM

L® MRD) E :

S ImmDSE[15..0] H o002 E oon2]]ﬁ[}ﬂ]m(: { o , :

S ImmLExt[15..0] Hoz2c2 L JEE 4 04C1 : |
<--Tiwm ------------- S > ' I

Figure 3 Important Time Intervals for time dependency analysis

a- Clock-cycle

(Tc: from clock-edge to clock-edge)
c- iIPC+1 ® nPC , state change propagation time

(Tec: from clock-edge to stabilized nPC),
d- Instruction memory access

(Twm: from stabilized nPC to stabilized instruction)
d- Immediate field stabilization interval

(Tm: from stabilized nPC to stabilized immediate field)
f- Reg[rrl] and Reg[rr2] becomes stable,

(Trr: from stable fields to stable register contents)
g- ALU produce the result of the operation,

(Tacu: from stable ALUinputs to stable ALUresult)
h- ALUresult is written to Reg[rwt],

(TmwT: not observable, around 2ns)
The following two constraints must be satisfied in the execution of the
LW instructions for this datapath to work properly.

1- Tc > Tapc ;
2- Tc > Tpc+ Max(Tivm, Tiv+Trr) * Tacu * Tuwr ;

You can derive the timing constraints of other instructions (beq, sw,
call, etc.) similarly by analyzing their waveforms.

CMPE325 Exp6- MB041208 5

2. Experimental Practice

Part-1 LW instruction
In the first part, we will observe the time dependency of the load-word
instruction on this single-cycle-16-bit-datapath.
1-We will use 2ns grid-step, and ~ 40 multiplication factor for the
pc_clock generation, so that the clock period will be 160ns. The
program to be used in this observation will be

addi $1, $0, -1

xor $3,$3,$3 (O addi $3, $0, 0)

addi $2,$1,1
Back: add $3, $3, $1

jal Save

addi $1,$1,1

beq $1, $2, Exi t

junp back
Exit: Halt
Save: sw $3, 2($1)

lw $3, 1($2)

B junpr $7
Check the instruction memory VHDL code, correct it if necessary, and
compile the project. Run the simulator (grid size 2ns, pc_clock
multiplied with 40) and open the SCF file to watch the Waveforms.
2- The opcode of the LW instruction is 2. Find opcode 2 in the overall

diagram, and zoom in the execution of the instruction.

Marme alue 200.0ns 400.0ns 600.0ns 500,0ns 1.0us 1 2Iu5 T4us 1.8us 1.8us)

>OoO~NOO~WNEO

5~ pe_clock T - 1® opcode of !
= PC_value(15. 0] HOOD3|0000Y 001 Y 0002 Y 0003 Y o004 Y 0008 i /RNOA) 0oe f ooos){ ools 0008 LW instructioni
S 0PC[3.0] Ha [c (o Y c ¥ o s § ~ §2"7 o0 §c ¥e ¥ [e
= RR12.0] H1 [0 [O D T B) i I A [
S RR2[2.0] H3 I[)?? 3 2z ¥ o W os 3“%‘? X @ zoom Into
S5 WREG(2.0] H3 | 1 3 2 3 7 3 3 0 1 2 0 th|s range

S ALUOP2[15.0] Hoooz | FFFF) oooo Y oodt FFFF_§ oooo K ooo2) oot df oooo) ooot f oodo 0000 b

Figure 4 Zoom into execution of the LW instruction

When you zoom to 870-980ns range (key sequence alt-V,T and enter the
time values) you will see the waveforms given in Figure 3. Take all
necessary measurements to calculate the minimum possible T¢ period
for this particular case of lw instruction according to the constraints

1- Tc > Tapc ;

2- Tc > Tpc+ Max(Timm, Tim+Trr) * Taru + Tuwr -
Fill in your time interval readings, and calculated minimum TC to the
reporting sheet.

Part-2 Branch Instruction

The branch instruction in the program is beq, and has opcode 6. Find
the time interval with opcode 6, and zoom into that region (from 1350
to 1500 ns).

CMPE325 Exp6- MB041208 6

| Marme: \»’alue:J_ 1.3(|3us 1.3?’us 1.3|8us 1.37%5 1.f{us 1.4|1us 1.fil2us 1.4|3us 1.4f1us 1.4§us 1.4l|3us 1.4?’us 1.4|Eus 1;47%5 1
= pc_clock T 1 T <-5-- e ;

= PC_value[15.0] H 0005 ooy > 000G

=% oPC(a.0] He R | SRR B

S RRI1[2.0] H 1 K B 1

S RR2[2.0] H1 2 IR, Vol 2

|5 WREG[2.0] H [/ 1 2

S ALUOPZ[15.0] Hooot| /| g’ulnm T 0000 :

S ALUOP1[15..0] HFFFF FREE L RO oooo T OIRACK 0000 |

= ALURESULTI.0] [Homg] | oo I R o
e 7EROF 1/ [T:7 0 IS auie sl snhinniciniNun st N nuiinNi s | .
S WtDATA[15..0] H prﬁuu /10000 i) |18 0no7

- MWT /0 Lk P

55 MRData[15..0] I'i—l 0000 ! T aoo0

Lew MRD /o TR Sriieniet 4

S ImmDSE[15..0] H 0001 0o K m@(ﬂ 0001

> ImmLExt15.0],/ |[H 0241 T o4 R &)1 0281

Tec (<{Twm < Ty | < ~ iTALU-ZERO |

Figure 5 Timing parameters in BEQ instruction.

The time constraint in deciding on the PC-in value is

Tpc + TimtTrr + TaLu-zero < Tc
A parallel constraint raises up in the target-address calculation path as

Tpc + Timmt Teranch-adder < Tc .
Note that we don't observe the branch target adder output, since we
assume that this adder has almost the same delay with the ALU-adder.
In your calculation, you can simply assume Tgranch-adder =TALU -

Read and fill in to the reporting sheet the intervals, and calculate the
minimum clock time for this particular branch instruction.

Part-3 Conclusion:

If we complete the dependency analysis for all instructions, we can
find a minimum clock time constraint for the worst case of each
instruction. Since we don't know which instruction will be executed
before the cycle starts, the overall clock time must be long enough for
the execution of all instructions. Therefore, we must use the maximum
of the minimum-clock-cycles for each instruction. For example, if LW
instruction requires minimum 120ns, and BEQ requires minimum
105ns, max(120ns,105ns)= 120 ns will be sufficient both for the
execution of the LW and BEQ instruction.

Name: Student Number:

Submitted to (Asst.): Date:dammuyy |

= EASTERN MEDITERRANEAN UNIVERSITY
COMPUTER ENGINEERING DEPARTMENT

CMPE 325 - Computer Architecture Il

EXPERIMENT 6- Reporting Sheet
Section 2. Part-1 LW instruction:
start-time | end-time | interval

Fall 2004

1986

Tc
Tpc
Tim+Trr:
Timm

TALU
What is the minimum possible clock period Tcmin? Tcmin=......

What is the maximum possible clock rate Fcmax? Fcmax=......

Section 2. Part-2 Branch Instruction
start-time | end-time | interval

Tc
Tpc
Tim+Trr:
Timm
TaLu-zERO

TBranch-Adder
What is the minimum possible clock period Tcmin? Tcmin=......

Part-3 Conclusion:

If we consider only the LW and BEQ instructions, and assuming that
we measured the worst case intervals in part-1 and -2, what is the
maximum clock frequency for this datapath.

Grading: Quiz Performance:
Lab Performance:
Asst. Observations:

