

1986

EASTERN MEDITERRANEAN UNIVERSITY
COMPUTER ENGINEERING DEPARTMENT

Fall 2ØØ4-Ø5

 CMPE 325 - Computer Architecture II
EXPERIMENT 6

Complete Single Clock DataPath for 16-bit Instructions
in ALTERA MAX-PLUS-II VHDL Environment.

Objective: To familiarize with the Single-Clock VHDL implementation for a set
of 16-bit R-type instructions, and to measure the response time of several
building components in a RISC datapath.

1. Introduction
In this experiment you will work on a single clock cycle 16-bit datapath
that can perform R-type, I-type, and L-type instructions.

Figure 1 Single Cycle DataPath for all Instructions.

The complete set of the 16-bit instructions are summarized in the
following tables.

Table 1 General representation of R-type Instructions
Opcode ReadReg1 ReadReg2 WriteReg FunctionCode
4-bits 3-bits 3-bits 3-bits 3-bits

program counter

constant nr. (=1)

adder for PC+1

instruction memory

16-bit instruction
instr-field separator

register file
16-bit ALU

Jump-Register Mux
Branch Target Adder

Control Unit

Branch on zero gates
Data Memory

ALU Control

CMPE325 Exp6- MB041208 2

Table 2 Karnough Map Representation of the
Instruction OpCodes

OpCode .. 00 .. 01 .. 11 .. 10
00.. R-type Halt Goto Lw
01.. Call (or Jal) Lui (or LuL) X Beq
11.. Addi X X Bneq
10.. Andi Ori Xori Sw

Table 3 Function Codes for the R-type Instructions

FNCODE .00 .01 .11 .10
0.. And Or Xor Add
1.. Jr ShrA Slt Sub

The R-type instructions And, Or, and Xor operates bitwise. Add and
Sub works on signed integers. ShrA is one bit shift, and shifts A-input
of the ALU one bit right by keeping the sign-bit. Slt sets the destination
register to one if the first source is less than the second source. Jr is
the jump return instruction, it is detected by jump-return-gates in the
ALU control, and connects the ALU-result to the PC-in, so that with the
clock-edge PC-value changes to source1+source2.

The I-type instructions Addi, Andi, Ori, Xori, Lw, Sw, Beq, and Bneq
have a 6-bit immediate operand, which is sign extended in the field-
separator block to a 16-bit immediate value.

The L-type instruction Goto has 12-bit Long-immediate field for the
address. Call and Lui are also L-type, and they use register-7 for
destination (implied addressing).

Halt instruction stops the execution of the program until an external
signal "continue" goes high.

Instruction Memory

You can click-on the instruction memory block to access the contents of
the instruction memory. The instruction is written in 4+6+6 character
groups for the compatibility with the instruction fields. The four bits of
the opcode of all R-type instructions are zero. It is possible to modify
the contents of the location by modifying the bit pattern. The contents
of the file is explained in Figure 2.

CMPE325 Exp6- MB041208 3

-- OPCODE | FNCODE
-- xx00 xx01 xx11 xx10 | x00 x01 x11 x10
-- _____|______|_____|_____|_____ | ___|______|_____|_____|_____
-- 00xx | RType halt jump lw | 0xx | and or xor add
-- 01xx | jal lui -- beq | 1xx | jr shr slt sub
-- 11xx | addi -- -- bne |
-- 10xx | andi ori xori sw |
begin
case addr is
-- here is the istructions in instr memory to be fetched

-- here is the istructins in instr memory to be fetched
When "0000000000000000"=>instr<="1100"&"000001"&"111111"; -- 0 addi $1,$0,-1
When "0000000000000001"=>instr<="0000"&"011011"&"011011"; -- 1 xor $3,$3,$3
When "0000000000000010"=>instr<="1100"&"001010"&"000001"; -- 2 addi $2,$1,1
When "0000000000000011"=>instr<="0000"&"011001"&"011010"; -- 3 Back: add $3,$3,$1
When "0000000000000100"=>instr<="0100"&"000000"&"001001"; -- 4 jal Save
When "0000000000000101"=>instr<="1100"&"001001"&"000001"; -- 5 addi $1,$1,1
When "0000000000000110"=>instr<="0110"&"001010"&"000001"; -- 6 beq $1,$2,Exit
When "0000000000000111"=>instr<="0011"&"000000"&"000011"; -- 7 jump back
When "0000000000001000"=>instr<="0001"&"000000"&"000000"; -- 8 Exit: halt
When "0000000000001001"=>instr<="1010"&"001011"&"000000"; -- 9 Save: sw $3,0($1)
When "0000000000001010"=>instr<="0000"&"111000"&"000100"; -- A jumpr $7
When "0000000000001011"=>instr<="0000"&"000000"&"000000"; -- B
When "0000000000001100"=>instr<="0000"&"000000"&"000000"; -- C
When "0000000000001101"=>instr<="0000"&"000000"&"000000"; -- D
When "0000000000001110"=>instr<="0000"&"000000"&"000000"; -- E
When "0000000000001111"=>instr<="0000"&"000000"&"000000"; -- F
when others =>instr<="1111111111111111";

Figure 2 The contents of the Instruction Memory.

Instruction field separator

The Instr_Fields block in the lab.gdf Schematic editor is a field-separator
block that renames the fields of the instruction (the bit-groups for
OPC[3..0], RR1[2..0], RR2[2..0], RWT[2..0], FN[2..0]), and also the immediate and
long fields with and without sign extension and 4-bit shift for immediate instruction).
The VHDL description for these units are simply a signal connection
without any interfacing circuit.

Register File

The register file block contains total 7 registers and a constant zero at
address 0. It has two read-register-file (RR1, RR2), one write-register-
file (WReg) and a 16-bit write-data input. RR1, RR2 and WReg specify
the address of the register to access. Writing a data occurs at the
positive clock-edge, while reading a register is combinatory (does not
require a clock-edge).

ALU

The ALU block in the lab.gdf graphic file is written in VHDL code. The
'case' statement in the VHDL code corresponds to a multiplexer, and
the add-sub functions are optimized by the MAXPLUS2 compiler to the
most compact form. The ALU-operation select codes "sel" are given in

Table 4 Select codes of 16-bit ALU functions
Sel. code 000 001 010 011 100 101 110 111
Function and or add xor add sra sub slt

Function Codes for
R-type instructions

Instruction OpCodes

Binary Instruction Address

Contents (Binary Instruction)
separated in fields

CMPE325 Exp6- MB041208 4

With these ALU function ("sel") codes the ALU-control unit can transfer
the FN[2..0] field of the instruction directly to the sel[2..0] inputs of
ALU. The inputs and output of ALU is furnished with output ports
ALUOP1[15..0], ALUOP2[15..0] and ALURESULT[15..0] for monitoring
purpose in the Waveform Editor.

Dependency analysis
In the execution of the load-word instruction (the longest of all) the
following time instances are observable:

Figure 3 Important Time Intervals for time dependency analysis
a- Clock-cycle

(TC: from clock-edge to clock-edge)
c- iPC+1 → nPC , state change propagation time

(TPC: from clock-edge to stabilized nPC),
d- Instruction memory access

(TIM: from stabilized nPC to stabilized instruction)
d- Immediate field stabilization interval

(TIMM: from stabilized nPC to stabilized immediate field)
f- Reg[rr1] and Reg[rr2] becomes stable,

(TRR: from stable fields to stable register contents)
g- ALU produce the result of the operation,

(TALU: from stable ALUinputs to stable ALUresult)
h- ALUresult is written to Reg[rwt],

(TMWT: not observable, around 2ns)
The following two constraints must be satisfied in the execution of the
LW instructions for this datapath to work properly.
 1- TC > TnPC ;
 2- TC > TPC + Max(TIMM , TIM+TRR) + TALU + TMWT ;
You can derive the timing constraints of other instructions (beq, sw,
call, etc.) similarly by analyzing their waveforms.

TPC
T IM TRR

TALU

T IMM

CMPE325 Exp6- MB041208 5

2. Experimental Practice
Part-1 LW instruction
In the first part, we will observe the time dependency of the load-word
instruction on this single-cycle-16-bit-datapath.
1-We will use 2ns grid-step, and ×40 multiplication factor for the
pc_clock generation, so that the clock period will be 160ns. The
program to be used in this observation will be

0 addi $1,$0,-1
1 xor $3,$3,$3 (Or addi $3,$0,0)
2 addi $2,$1,1
3 Back: add $3,$3,$1
4 jal Save
5 addi $1,$1,1
6 beq $1,$2,Exit
7 jump back
8 Exit: Halt
9 Save: sw $3,2($1)
A lw $3,1($2)
B jumpr $7

Check the instruction memory VHDL code, correct it if necessary, and
compile the project. Run the simulator (grid size 2ns, pc_clock
multiplied with 40) and open the SCF file to watch the Waveforms.
2- The opcode of the LW instruction is 2. Find opcode 2 in the overall
diagram, and zoom in the execution of the instruction.

Figure 4 Zoom into execution of the LW instruction

When you zoom to 870-980ns range (key sequence alt-V,T and enter the
time values) you will see the waveforms given in Figure 3. Take all
necessary measurements to calculate the minimum possible TC period
for this particular case of lw instruction according to the constraints
 1- TC > TnPC ;
 2- TC > TPC + Max(TIMM , TIM+TRR) + TALU + TMWT .
Fill in your time interval readings, and calculated minimum TC to the
reporting sheet.

Part-2 Branch Instruction
The branch instruction in the program is beq, and has opcode 6. Find
the time interval with opcode 6, and zoom into that region (from 1350
to 1500 ns).

� opcode of
LW instruction

� zoom into
this range

CMPE325 Exp6- MB041208 6

Figure 5 Timing parameters in BEQ instruction.
The time constraint in deciding on the PC-in value is
 TPC + TIM+TRR + TALU-ZERO < TC
A parallel constraint raises up in the target-address calculation path as
 TPC + TIMM+TBranch-Adder < TC .
Note that we don't observe the branch target adder output, since we
assume that this adder has almost the same delay with the ALU-adder.
In your calculation, you can simply assume TBranch-Adder =TALU .

Read and fill in to the reporting sheet the intervals, and calculate the
minimum clock time for this particular branch instruction.

Part-3 Conclusion:
If we complete the dependency analysis for all instructions, we can
find a minimum clock time constraint for the worst case of each
instruction. Since we don't know which instruction will be executed
before the cycle starts, the overall clock time must be long enough for
the execution of all instructions. Therefore, we must use the maximum
of the minimum-clock-cycles for each instruction. For example, if LW
instruction requires minimum 120ns, and BEQ requires minimum
105ns, max(120ns,105ns)= 120 ns will be sufficient both for the
execution of the LW and BEQ instruction.

TPC TIM TIMM TALU-ZERO

Name: __________________ Student Number:_____________
Submitted to (Asst.): __________________ Date:dd/mm/yy ___/___/___

1986

EASTERN MEDITERRANEAN UNIVERSITY
COMPUTER ENGINEERING DEPARTMENT

Fall 2ØØ4

CMPE 325 - Computer Architecture II
EXPERIMENT 6- Reporting Sheet

Section 2. Part-1 LW instruction:
 start-time end-time interval

TC
TPC

TIM+TRR:
TIMM
TALU

What is the minimum possible clock period Tcmin? Tcmin=......

What is the maximum possible clock rate Fcmax? Fcmax=......

Section 2. Part-2 Branch Instruction

 start-time end-time interval
TC
TPC

TIM+TRR:
TIMM

TALU-ZERO
TBranch-Adder

What is the minimum possible clock period Tcmin? Tcmin=......

Part-3 Conclusion:

If we consider only the LW and BEQ instructions, and assuming that
we measured the worst case intervals in part-1 and -2, what is the
maximum clock frequency for this datapath.

 FC-Max =

Grading: Quiz Performance:
 Lab Performance:
 Asst. Observations:

