

CMPE324 Final, 2018-2019 – Fall Date: 14/01/2019 - Duration: 100min.

Number: ……………………… Name : …………………..............

Q1) [20pts] Consider the following MIPS code segment. Note: values of a0 and a1 are

passed from the calling function and the result is returned in v0.

f1 :
lw $t0, 0($a0)
addi $t1, $0, 1

loop:
bge $t1, $a1, exit

mul $t2, $t1, 4

add $t2, $t2, $a0

lw $t2, 0($t2)

ble $t2, $t0, next

add $t0, $t2, $0

next:
addi $t1, $t1, 1
j loop

exit:
add $v0, $t0, $0
jr $ra

a) Translate the function f1 into a C code [use variable names as register names].

……………………………………………………

……………………………………………………

……………………………………………………

……………………………………………………

……………………………………………………

……………………………………………………

……………………………………………………

……………………………………………………

……………………………………………………

b) Describe briefly what the function f1 perform?

 ……………………………………………………

Q1 Q2 Q3 Q4 Q5 Q6 Total

Q2) [6pts] For multi-Cycle CPU, decide which of the following is true or false:

a) …………. Faster instructions are not held back by slower ones.

b) …………. We don’t have to duplicate any hardware units.

c) …………. The cycle time is limited by the slowest functional unit.

Q3) [4pts] For a multi-cycle processor, consider the following code segment:

lw $t2, 0($t3)
 lw $t3, 4($t3)
 beq $t2, $t3, Label
 add $t5, $t2, $t3
 sw $t5, 8($t3)
Label: ...
a) What is going on during the 8th cycle of execution? ………….

b) In what cycle is the branch target address is calculated? ………….

Q4) [20pts] Assume that the following MIPS program is run on a 500MHz processor,

with a clock cycle time of 2ns. The number of clocks per instruction is shown in the

table. Let $a1=5, calculate the total CPU time required for executing this function.

func:lw $t0,0($a0)

addi $t1,$0,1

loop:bge $t1,$a1,exit

mul $t2,$t1,4

add $t2,$t2,$a0

lw $t2,0($t2)

add $t0,$t2,$0

addi $t1,$t1,1

j loop

exit:add $v0,$t0,$0

jr $ra

The total number of cycles is ……………………………………………….

The total CPU time is …………………………………………………………

Instruction
type

Clock per
instruction

add/addi 4
Mul 10
Load 5
branch, jump 3

Q5) [25pts] Consider the single-cycle data-path shown below. Assume that we wish to add

the following new instruction jm (jump memory) to this data-path.

jm offset($rs)

The jm instruction loads a word from effective address ($rs + offset), this is similar to

lw except the loaded word is put in the PC instead of register $rt.

a) [10pts] Add any necessary data-path(s) and justify the need for the modification(s).

b) [10pts] High-light the data-path for executing this instruction.

4

Shift

left 2

PC
Add

Add

0

M
u
x

1

PCSrc

Read

address

Write

address

Write

data

Data

memory

Read

data

MemWrite

MemRead

1

M
u
x

0

MemToReg
Read

address

Instruction

memory

Instruction

[31-0]

I [15 - 0]

I [25 - 21]

I [20 - 16]

I [15 - 11]

0

M
u
x

1

RegDst

Read

register 1

Read

register 2

Write

register

Write

data

Read

data 2

Read

data 1

Registers

RegWrite

Sign

extend

0

M
u
x

1

ALUSrc

Result

Zero

ALU

ALUOp

c) [5pts] In the given table below, provide the corresponding control signals to support

the jm instruction.

RegDst RegWrite ALUSrc ALUOp MemWrite MemRead MemToReg PCSrc

Q6) [25pts] Assume that it is required to add the following instruction

MemIndAdd rt,offset(rs)

to the multicycle data-path shown below. This instruction employs the following operations:

tmp=memory[offset+rs]

tmp=memory[tmp]

rt=rt+tmp

a) [10pts] Add clearly any necessary data-paths and justify the need for the
modifications, if any.

b) [10pts] Provide the finite state diagram for executing this instruction. Specify the

required control lines values starting from the 3rd step.
Step1: fetch Step2: Decode Step3: ……………..

c) [5pts] how many cycles required for executing this instruction. ……………

