y ‘° Eastern Mediterranean University Department of
iy Computer Engineering CMSE222 Lab. 6
Introduction to Computer Organization

In this experimental work, we will work on MARIE softare. MARIE ('Machine Architecture
that is Really Intuitive and Easy') is a machine architecture and assembly language from The
Essentials of Computer Organization and Architecture. First, the installation process will be
given and then usage and some examples will be explained in the following parts of the lab
sheet.

1. MARIE Installation

the publisher provides a set of simulator programs for the machine, written in Java. MARIE.js
is a JavaScript version implementation of MARIE. For that reason, we must install JDK (Java
Development Kit) and JRE (Java Runtime Environment) first. This two software are provided
by Oracle free and can be downloaded from the web addresses given below.

(JRE Download web address:
f_i) Java https://www.oracle.com/java/technologies/javase-jre8-
<—_ JRES downloads.html
(_ JDK Download web address:
(_{) ga\{a » https://www.oracle.com/java/technologies/javase-jdk14-
=_ "™ downloads.html
—

After downloading and installing JDK and JRE, we must add the file locations (where you
installed jdk and jre) of these software to the “Environment Variables”. Then;

Right Click on This PC -> Properties -> Advanced System Settings -> Advanced Tab ->
Environment Variables

On the new windows that is opened, we add new variable by clicking “NEW...” button and
paste the copied file path. This process must be done for both JRE and JDK.

Finally, we can download “MARIE and Datapath Simulator” from this link
(http://computerscience.jbpub.com/ecoa/3e/simulators.aspx). The downloaded file will be
a .zip file. Now we are able to run the MARIE.

https://www.oracle.com/java/technologies/javase-jre8-downloads.html
https://www.oracle.com/java/technologies/javase-jre8-downloads.html
https://www.oracle.com/java/technologies/javase-jdk14-downloads.html
https://www.oracle.com/java/technologies/javase-jdk14-downloads.html
http://computerscience.jbpub.com/ecoa/3e/simulators.aspx

2. Running MARIE

To run MARIE, all the files in the downloaded .zip file must be extracted in a folder
somewhere in the computer. Following image shows the content of zip file.

| £/ MarieDP1.jar 169,903

| £ MarieSim.jar 169,903
| £ MarieSource.jar 109,766
[of _Readme.tst 1132
@'Acknawledgement.mt 496
| Ex4_1.mas 1,198
| Exd_2.mas 56
| Exd_3.mas 864
| Exd dmas 697
Wz MarieGuide.doc 323,072
MarieGuide, pdf 268,731
Wiz QuickGuide.doc 96,256
QuickGuide.pdf 77,076

The following operations will be done on command prompt. To do this, we open “cmd” in the
same directory with above files.

The second step is uncompressing the MARIE Simulator. After we opened cmd, the following
commands is enterd

jar xvf MarieSim. jar

After pressing enter, a new folder named “MarieSimulator” will be created. To run the Marie
Simulator, in the same command prompt, we execute the following command;

java MarieSiml

The above command will execute the simulator which shown in following image.

M MARIE Simulator [-[O]x]

File Run Heln |

label | opcods | operand | hex

« |fac [oooo |[Hex =] OUTPUT

|) | e e =

40 | #1 | +2 | +3 | +4 | 5 | 5 | +7 | +& | +8 | A | +B | +C | +0 | +E | +F
0000, 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 @&
10| DO00 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 |G
020 0000 0000 0000 QOO0 QOOO 0000 0000 0000 0000 0000 Q000 0000 0000 Q000 0000 0000
030 | o000 0000 0000 Q000 0000 0000 0000 0000 Q000 Q000 0000 0000 0000 0000 Q00O Q000
040 | oooo 0000 0000 0000 0000 0000 0000 0000 Q000 0000 0000 0000 0000 0000 0000 0000
050| 0000 0000 0000 QOO0 QOOO 0000 0000 0000 0000 0000 Q000 0000 0000 Q000 0000 0000
0E0| 0000 0000 0000 Q000 0000 0000 0000 0000 0000 Q000 0000 0000 0000 0000 0000 0000
070 | onooo 0000 0000 0000 0000 0000 0000 0000 Q000 0000 0000 0000 0000 0000 0000 0000 L
030| 0000 0000 0000 QOO0 QOO0 0000 0000 0000 0000 0000 Q000 0000 0000 0000 0000 0000 |

Ready to load program instructions

3. Making Simulations on MARIE

To write a program from scratch, you should select the File -> Edit option shown in the
following image. The Edit option gives you a simple way to write and assemble programs in
MARIE assembly language.

M MARIE Simulator _ (O] x|
[ile| Run Stop Step Breakpoints Symbol Map Help |

Load

- lakel opcode operand hex

s F

Reload

Exit

|

|

|

O MBR [nnnn [Hex |

Although you can use any plain text editor to create your source code, the simulator's built-
in editor gives you one-button access to the assembler. The MARIE editor frame is shown in
the image below.

M MARIE Simulator _|&]

File Run Stop Step Breakpoints Symbol Map Help ‘

lakel opcade aperand hezx
_'_H ¢ [ooon wsi] E ourpur

IR 0000 |[Hex = |

M MARIE Assembler Code Editor | _ O] x]
Fle Edit Assermble Help

HD‘D|E||E|‘E||E|‘D|E||E| ==

=

MARIE assembly code source files must have an ".mas" extension, for MARIE Assembler.
Both the editor and the assembler recognize files of this type. Once you have saved a file with
an ".mas" extension, the Assemble menu option becomes enabled and you can assemble your
program by selecting the Assemble current file menu pick. If you load an existing ".mas" file,
the Assemble button is automatically enabled. Any modifications that you have made to your

assembly-language file are automatically saved by the editor prior to its invoking the
assembler.

If the assembler detects errors in your program, the editor sends you a message and the
assembly listing file appears in a popup frame as shown in image below on the left. All that
you need to do is correct your program and press the Assemble current file button once
more. If the file contains no other assembler errors, you will see the screen shown in image
below on the right. If you wish, you can display or print the assembly listing file, by using the
editor or any text-processing program.

T s 4 T M MARIE Simulator o [=1 5}
File Run sten | Breakpoints Help File Run Hel |
M Assembly Listing for Figd_5.mas [_[Olx]
label gecods _Lsnerand] hsi B [_isbel [opcode | operand [hex |
[} = Assemhly listing for: Figd 5.mas 1] I (= |l ac [oooo ([Hex =] ouTPUT |
g Assembled: Sun Apr 06 2 W M MARIE Assembler Code Editor [_[C]
[P HARIE Ascembler Code Editor 7 E Hle Edit hssemble Helo
St]
T Hle Edit Assemble ‘ ore 0100 : o / Assembly code from Table 4.5
] org 0250
= / Assembly code from Figure 4.5 100 2104 | TOADD x /il | load x //load x.
org 0100 #*#+ Instruction not recognized. = add ¥
;;:““: ¥ Mloadx. 101 3105 | 20D ¥ = store z
rore 2 102 2106 | STORE = I |
halt 103 7000 | HALT O [*r g9=c
o [e -23
x, hex 0023 104 0023 | x HEX 0023 - hex 0
|7+ hex £fe9 105 FFES | ¥ HEX FFE9 5
2, dec O 106 0000 | = DEC 0
A [] »
Print Close
CHj2sdki 4.0_01\SourcelTabled_6mas Assembly successiul
| [Euzsai £0_n1GoureFigs_5rmas 1 soround [Reay to load program instructions:

An Unsuccessful Assembly A Successful Assembly

4. Loading Your Program

After you have successfully assembled your program, you must load it into the simulator by
selecting the File | Load menu option from the simulator. This option brings up a file chooser
panel that lists all of the MARIE executable files in your current directory, and the names of
other directories that are available to you. All you need to do is highlight or type the name of
the file that you wish to run.

Note: Each time you reassemble a file, you must reload it.

M MARIE Simulator [_[o]>
File Run Breakpaoints Symhbol Map | Help ‘
| mbel | opoode | opersnd | hex |
O 250 LOAD * 1254~ (| AC | 0000 |[Hex ™ OuTPUT
= 251 ADD ¥ 3255 -
[0 252 STORE = 2256 IR 0000 | |Hex =
[0 253 HALT 7000
0 254 | x DEC 35 0023 MAR | 000 |Hex =
0 285 | v DEC -23 FFES
Of2se | = HEX i 0000 MBR | 0000 ||Hex
PC 250 ||Hex ¥
IHPUT =l | 250 || Contral -|

[en | | w2 | +3 | +4 [+5 | +6 | +7 | +5 | +8 | +a | +8 | +C | +D | +£ | +F |
100| 00on 0000 0000 0000 0000 0000 0000 0000 0000 000 0000 0000 0000 0000 0000 0000 |4
1E0| 000D 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
1F0| 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
200 0000 QOO0 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
210 000D DODO DODO OOD0 00N0 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
220 | 000D DODO DODO OOD0 000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
230 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
240 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
250 1254 3255 22G6 7000 0023 FFES 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 |~

| C:zscki 4.0 01 \Sourcs1CY3sdk1 4.0_01\Source\Tabled_S mex Ioaded

The above image shows the MARIE simulator after an executable file has been loaded. The
program monitor window shows the assembly language statements as they were written,
along with their hexadecimal equivalents. At the left-hand side of the program monitor, you
will see the addresses of the program statements. The statement that has just been executed
by the simulator is shown in green highlight, so that you can see the effect that the instruction
has had upon the state of the machine. Of course, when the program is first loaded, the green
highlight will be on the statement at the first address of your program. You will also notice
that the PC register is set at the address of the first statement in your program, indicating

that this is the next statement that will be run.

5. Example Program to Run

Load X

Add Y

Subt Z

Store Result

Output
Halt

X, Dec 10
Y, Dec 20
Zz, Dec 5

Result,

Dec O

6. Marie Instruction Set Cheat Sheet

Mnemonic Hex Description

Add X 3 Add the contents of address X to AC

AddI X B Add indirect: Use the value at X as the actual address of
the data operand to add to AC

Clear A Put all zeros in AC

Input 5 Input a value from the keyboard into AC

Halt 7 Terminate program

Jump X 9 Load the value of X into PC

Jumpl X C Use the value at X as the address to jump to

JnS X 0 Store the PC at address X and jump to X+1

Load X 1 Load contents of address X into AC

Loadl X D Load indirect: Use the value at X as the address of the
value to load.

Output 6 Output the value in AC to the display

Skipcond X 8 Skip next instruction on condition (See note below.)

Store X 2 Store the contents of AC at address X

Storel X E Store indirect: Use X the value at X as the address of
where to store the value.

Subt X 4 Subtract the contents of address X from AC

Note regarding use of SKIPCOND:

The two address bits closest to the opcode field, bits 10 and 11 specify the condition to be
tested. If the two address bits are 00, this translates to "skip if the AC is negative". If the two
address bits are 01, this translates to "skip if the AC is equal to 0". Finally, if the two
address bits are 10 (or 2), this translates to "skip if the AC is greater than 0".

Example: the instruction Skipcond 800 will skip the instruction that follows if the AC
is greater than 0.

Prepared by;

Emre Rifat Yildiz,
Ph.D. Canditate

