
1

Overview of Computers &

Programming

Computers

• Computers receive, store, process, and output
information.

• Computer can deal with numbers, text, images,
graphics, and sound.

• Computers are worthless without programming.

• Programming Languages allow us to write programs
that tell the computer what to do and thus provide a
way to communicate with computers.

• Programs are then converted to machine language (0
and 1) so the computer can understand it.

2

Hardware & Software

• Hardware is the equipment used to perform the

necessary computations.

 i.e. CPU, monitor, keyboard, mouse, printer,

speakers etc.

• Software consists of the programs that enable

us to solve problems with a computer by

providing it with a list of instructions to follow

 i.e. Word, Internet Explorer, Linux, Windows etc.

Computer Hardware

• Main Memory
 RAM - Random Access Memory - Memory that can be accessed

in any order (as opposed to sequential access memory), volatile.

 ROM - Read Only Memory - Memory that cannot be written to,
no-volatile.

• Secondary Memory - Hard disks, floppy disks, zip disks, CDs
and DVDs.

• Central Processing Unit - Coordinates all computer operations
and perform arithmetic and logical operations on data.

• Input/Output Devices - Monitor, printer, keyboard, & mouse.

• Computer Networks – Computers that are linked together can
communicate with each other. WAN, LAN, MAN, Wireless-
LAN.

3

Components of a Computer

Memory

• Memory Cell (MC) – An individual storage location in
memory.

• Address of a MC- the relative position of a memory cell in the
main memory.

• Content of a MC – Information stored in the memory cell. e.g
Program instructions or data.
 Every memory cell has content, whether we know it or not.

• Bit – The name comes from binary digit. It is either a 0 or 1.

• Byte - A memory cell is actually a grouping of smaller units
called bytes. A byte is made up of 8 bits.
 This is about the amount of storage required to store a single character,

such as the letter H.

4

Computer Software

• Operating System - controls the interaction between

machine and user. Example: Windows, Unix, Dos

etc.

 Communicate with computer user.

 Manage memory.

 Collect input/Display output.

 Read/Write data.

• Application Software - developed to assist a

computer user in accomplishing specific tasks.

Example: Word, Excel, Internet Explorer.

Below Your Program

• Application software

 Written in high-level language

• System software

 Compiler: translates HLL code to

machine code

 Operating System: service code

– Handling input/output

– Managing memory and storage

– Scheduling tasks & sharing resources

• Hardware

 Processor, memory, I/O controllers

5

Computer Languages

• Machine Language – A collection of binary numbers
 Not standardized. There is a different machine language for

every processor family.

• Assembly Language - mnemonic codes that
corresponds to machine language instructions.
 Low level: Very close to the actual machine language.

• High-level Languages - Combine algebraic expressions
and symbols from English
 High Level : Very far away from the actual machine

language

 For example: Fortran, Cobol, C, Prolog, Pascal, C#, Perl,
Java.

Levels of Program Code
• High-level language

 Level of abstraction closer to
problem domain

 Provides for productivity and
portability

• Assembly language

 Textual representation of
instructions

• Hardware representation

 Binary digits (bits)

 Encoded instructions and data

6

Compiler

• Compilation is the process of translating the source code
(high-level) into executable code (machine level).

• Source file - A file containing the program code

 A Compiler turns the Source File into an Object File

• Object file - a file containing machine language instructions

 A Linker turns the Object File into an Executable

• Integrated Development Environment (IDE) - a program that
combines simple word processing with a compiler, linker,
loader, and often other development tools

 For example, Eclipse or Visual Studio

Editing,

Translating,

and Running

a High-Level

Language

Program

7

Flow of Information During Program

Execution

Software Development Method

1. Specify problem requirements

2. Analyze the problem

3. Design the algorithm to solve the problem

4. Implement the algorithm

5. Test and verify the completed program

6. Maintain and update the program

8

Steps Defined

1. Problem - Specifying the problem requirements forces you to
understand the problem more clearly.

2. Analysis - Analyzing the problem involves identifying the
problem’s inputs, outputs, and additional requirements.

3. Design - Designing the algorithm to solve the problem
requires you to develop a list of steps called an algorithm that
solves the problem and then to verify the steps.

4. Implementation - Implementing is writing the algorithm as a
program.

5. Testing - Testing requires verifying that the program actually
works as desired.

6. Maintenance - Maintaining involves finding previously
undetected errors and keep it up-to-date.

9

Converting Miles to Kilometers

1. Problem: Your boss wants you to convert a list of
miles to kilometers. Since you like programming,
so you decide to write a program to do the job.

2. Analysis
• We need to get miles as input

• We need to output kilometers

• We know 1 mile = 1.609 kilometers

3. Design
1. Get distance in miles

2. Convert to kilometers

3. Display kilometers

4. Implementation
/* Converts distances from miles to kilometers */

#include <iostream> /* cin and couit definitions */

Using namespace std;

#define KMS_PER_MILE 1.609 /* conversion constant */

int main()

{

 double miles, //distance in miles

 kms; //equivalent distance in kilometers

 //Get the distance in miles

 cout<<"Enter the distance in miles> ";

 cin>>miles;

 //Convert the distance to kilometers

 kms = KMS_PER_MILE * miles;

 //Display the distance in kilometers

 cout<<"That equals " << kms << " kilometers.\n";

 return 0;

}

10

Miles to Kilometers cont’d

5. Test

 We need to test the previous program to make

sure it works. To test we run our program and

enter different values and make sure the output is

correct.

6. Maintenance

 includes any functionality changes to meet new

requirements, as well as performance

improvements.

Testing and Debugging

• Bug

 A mistake in a program

• Debugging

 Eliminating mistakes in programs

11

Program Errors

• Syntax errors

 Violation of the grammar rules of the language

 Discovered by the compiler
– Error messages may not always show correct location of

errors

• Run-time errors

 Error conditions detected by the computer at run-time

• Logic errors

 Errors in the program’s algorithm

 Most difficult to diagnose

 Computer does not recognize an error

Pseudo code & Flowchart

• Pseudo code - A combination of English phrases and

language constructs to describe algorithm steps

• Flowchart - A diagram that shows the step-by-step

execution of a program.

• Algorithm - A list of steps for solving a problem.

12

Why use pseudo code?

• Pseudo code cannot be compiled nor executed, and there are no
real formatting or syntax rules.

• It is simply one step - an important one - in producing the final
code.

• The benefit of pseudo code is that it enables the programmer to
concentrate on the algorithms without worrying about all the
syntactic details of a particular programming language.

• In fact, you can write pseudo code without even knowing what
programming language you will use for the final implementation.

• Example:

Input Miles

Kilometers = Miles * 1.609

Output Kilometers

Another Example of Pseudo code

• Problem: Calculate your final grade for CMPE110

• Specify the problem - Get different grades and then compute
the final grade.

• Analyze the problem - We need to input grades for exams,
labs, quizzes and the percentage each part counts for. Then
we need to output the final grade.

• Design
1. Get the grades: quizzes, exams, and labs.

2. Grade = .30 * 2 regular exams & quizzes + .20 * Final exam + .50 *
labs

3. Output the Grade

• Implement – Try to put some imaginary number and calculate
the final grade after you learn how to program.

13

Exercise

• Develop a pseudo code algorithm for an interactive program to

find the surface area (A) of a cylinder given its volume (V),

and its height (h) as inputs.

Exercise

• Develop a pseudo code algorithm for computing the shaded

area with colour yellow shown in the diagram.

14

Flowchart Symbols

Flowlines Connects blocks and shows the direction of flow.

Start/Stop or Begin/End: Shows the start and the end.

Processing. Indicates a processing block such as calculations

I/O: Input to and output from the computer

Decision: Used for comparison operations

On-Page Connector Flowchart sections can be connected by these symbols

Off-Page Connector Flowchart sections on different pages can be connected by these

symbols

Flowchart for computing the area of a

circle with radius r:

Begin

Print volume

Read r

End

3volume= r
4

3


