
3/2/2020

1

Programming in C++

Introduction

Start Programming

C++ is a case-sensitive language

Semicolons (;) denote the end of statements

3/2/2020

2

3

Preprocessor Directives

/* Converts distances from miles to kilometers */

#include <iostream> /* cin and cout definitions */

#define KMS_PER_MILE 1.609 /* conversion constant */

using namespace std; /* allows using cin and cout functions without std:: prefix */

int main()

{

 double miles, //distance in miles

 kms; //equivalent distance in kilometers

 //Get the distance in miles

 cout<<"Enter the distance in miles> ";

 cin>>miles;

 //Convert the distance to kilometers

 kms = KMS_PER_MILE * miles;

 //Display the distance in kilometers

 cout<<"That equals " << kms << " kilometers.\n";

 return 0;

}

Preprocessor Directives

• Preprocessor directives are commands that give

instructions to the C++ preprocessor.

• Preprocessor is a system program that modifies a C++

program prior to its compilation.

• Preprocessor directives begins with a #

 Example. #include or #define

3/2/2020

3

#include

• #include is used to include other source files into

your code.

• The #include directive gives a program access to a

library.

• Libraries are useful functions and symbols that are

predefined by the C++ language (standard libraries).

 # include<iostream>

 # include<cmath>

insert their definitions to your program before compilation.

#define

• The #define directive instructs the preprocessor to

replace each occurrence of a text by a particular

constant value before compilation.

 Example:

#define KMS_PER_MILES 1.60

#define PI 3.14159

3/2/2020

4

7

Comments

/* Converts distances from miles to kilometers */

#include <iostream> /* cin and couit definitions */

#define KMS_PER_MILE 1.609 /* conversion constant */

using namespace std;

int main()

{

 double miles, //distance in miles

 kms; //equivalent distance in kilometers

 //Get the distance in miles

 cout<<"Enter the distance in miles> ";

 cin>>miles;

 //Convert the distance to kilometers

 kms = KMS_PER_MILE * miles;

 //Display the distance in kilometers

 cout<<"That equals " << kms << " kilometers.\n";

 return 0;

}

Comments

• Comments provide supplementary information making it
easier for us to understand the program, but are ignored by the
C++ compiler.

• Two forms of comments:
 /* */ - anything between them with be considered a comment, even if

they span multiple lines. [multi-line comment]

 // - anything after this and before the end of the line is considered a
comment. [single line comment]

• Comments are used to create Program Documentation
 Information that help others read and understand the program.

• The start of the program should consist of a comment that
includes programmer’s name, date of the current version, and a
brief description of what the program does.

• Always Comment your Code!

3/2/2020

5

9

The “main” Function

/* Converts distances from miles to kilometers */

#include <iostrem> /* cin and couit definitions */

#define KMS_PER_MILE 1.609 /* conversion constant */

using namespace std;

int main()

{

 double miles, //distance in miles

 kms; //equivalent distance in kilometers

 //Get the distance in miles

 cout<<"Enter the distance in miles> ";

 cin>>miles;

 //Convert the distance to kilometers

 kms = KMS_PER_MILE * miles;

 //Display the distance in kilometers

 cout<<"That equals " << kms << " kilometers.\n";

 return 0;

}

The “main” Function

• The heading int main() marks the beginning of the main
function where program execution begins.

• Every C+ program has a main function.

• Braces ({,}) mark the beginning and end of the body of
function main.

• A function body has two parts:

 declarations - tell the compiler what memory cells are
needed in the function

 executable statements - (derived from the algorithm) are
translated into machine language and later executed by the
compiler.

3/2/2020

6

11

Variables and Data Types

/* Converts distances from miles to kilometers */

#include <iostrem> /* cin and couit definitions */

#define KMS_PER_MILE 1.609 /* conversion constant */

using namespace std;

int main()

{

 double miles, //distance in miles

 kms; //equivalent distance in kilometers

 //Get the distance in miles

 cout<<"Enter the distance in miles> ";

 cin>>miles;

 //Convert the distance to kilometers

 kms = KMS_PER_MILE * miles;

 //Display the distance in kilometers

 cout<<"That equals " << kms << " kilometers.\n";

 return 0;

}

Variables Declarations

• Variable – The memory cell used for storing a
program’s data and its computational results

 Variable’s value can change.

 Example: miles, kms

• Variable declarations –Statements that communicates
to the compiler the names of variables in the program
and the kind of information they can store.
 Example: double miles

• Tells the compiler to create space for a variable of type
double in memory with the name miles.

 C++ requires you to declare every variable used in the
program.

3/2/2020

7

Data Types

• Data Types: a set of values and a set of operations that
can be performed on those values
 int: Stores integer values – whole numbers

• 65, -12345

 double: Stores real numbers – numbers that use a decimal
point.

• 3.14159 or 1.23e5 (which equals 123000.0)

 char: An individual character value.
• Each char value is enclosed in single quotes. E.g. ‘A’, ‘*’.

• Can be a letter, a digit, or a special symbol

 Arithmetic operations (+, -, *, /) and compare can be
performed in case of int and double. Compare can be
performed in char data.

14

Executable Statements

/* Converts distances from miles to kilometers */

#include <iostrem> /* cin and couit definitions */

#define KMS_PER_MILE 1.609 /* conversion constant */

using namespace std;

int main()

{

 double miles, //distance in miles

 kms; //equivalent distance in kilometers

 //Get the distance in miles

 cout<<"Enter the distance in miles> ";

 cin>>miles;

 //Convert the distance to kilometers

 kms = KMS_PER_MILE * miles;

 //Display the distance in kilometers

 cout<<"That equals " << kms << " kilometers.\n";

 return 0;

}

3/2/2020

8

Executable Statements

• Executable Statements: C++ statements used to write

or code the algorithm. C++ compiler translates the

executable statements to machine code.

 Input/Output Operations and Functions

 Assignment Statements

 return Statement

Input/Output Operations

• Input operation - data transfer from the outside
world into computer memory

• Output operation - program results can be displayed
to the program user

• Input/output functions - special program units that
do all input/output operations

• cout << used for output

• cin >> used for input function

3/2/2020

9

Output – The command “cout”

where “<<” is the output operator.

i.e.

will display on the screen:

My name is George

cout << ”My name is George”;

cout << ”……………”

Another Example

cout << ”Hello” << ”My name is George”;

Output: HelloMy name is George

Note:

If you want to leave a space between the words Hello and

My you must add it either after Hello or before My, i.e.

cout << ”Hello ” << ”My name is George”;
cout << ”Hello” << ” My name is George”;

3/2/2020

10

Is this different?

cout << ”Hello”;

Output: HelloMy name is George

Note:

It does not change the line unless we ask it to.

cout << ”My name is George”;

Changing the line
We can change the line using the special word “endl”.

cout << ”Hello” << endl;

Output: Hello
My name is George

Same output:
cout << ”Hello” << endl << ”My name is George”;

cout << ”My name is George”;

3/2/2020

11

Structure of cout

where p1, p2, … pn are parameters.

What is the output of the following statements?

cout << ” of:” << endl << endl << ”C”;

I ama student

C++

of:

!+-%45 @

cout << ”I am” << ”a student”;

cout << ”++” << endl << ”!+-%45 @”;

cout << p1 << p2 << … << pn ;

Special characters

How can we display the following output?

He said: ”Hello”

Error. Why?

Correct:
cout << ”He said: \”Hello\””;

cout << ”He said: ”Hello””;

’\n’ newline ’\t’ tab

’\b’ backspace ’\r’ return

’\0’ null ’\’’ single quote

’\”’ double quote ’\\’ backslash

3/2/2020

12

Special Characters

What is the output of the following statement?

Harry Potter
is very-very

FAMOUS

cout << ”Harry Potter\nis very-very\n\nFAMOUS”;

Numbers

What is the output of the following statements?

Output

5

Statement

5

5

+ 6

11

5 + 6 = 11

cout << 5 << ” + ” << 6 << ” = ” << 5 + 6;

cout << 5 + 6;

cout << 5;

cout << ”5 + 6”;

cout << ”5”;

3/2/2020

13

Input and Output
Library: iostream

Input Output

Input – The command “cin”

where “>>” is the input operator.

i.e.

will read a value for variable x,

and a value for variable y.

cin >> x >> y;

cin >> var1 >> var2 >> … >> varn

3/2/2020

14

Input Example

int x,y;

cout << x << ” + ” << y << ” = ” << x + y;

5
5

12
Input values in RED.

Program holds.
+ 12 = 17

cin >> x >> y;

A Better Program

int

cin

x,y;

>> x >> y;

Enter two numbers: 5 12
5 + 12 = 17

When we want input from the user we should display some output
explaining what the input should be.

cout << ”Enter two Numbers: ”;

cout << x << ” + ” << y << ” = ” << x + y;

3/2/2020

15

Assignment Statements

• Assignment statement - Stores a value or a

computational result in a variable

 kms = KMS_PER_MILE * miles;

• The assignment statement above assigns a value to
the variable kms. The value assigned is the result of

the multiplication of the constant KMS_PER_MILE

by the variable miles.

More on Assignments

• In C++ the symbol = is the assignment operator

 Read it as ”becomes”, ”gets”, or ”takes the value of” rather than
”equals” because it is not equivalent to the equal sign of mathematics.

In C++, = = tests equality.

• In C++ you can write assignment statements of the form:
sum = sum + item;

 where the variable sum appears on both sides of the
assignment operator.

 This is obviously not an algebraic equation, but it illustrates a
common programming practice. This statement instructs the
computer to add the current value of sum to the value of
item; the result is then stored back into sum.

3/2/2020

16

return Statement

 return (0);

• Transfers control from your program to the operating system.

• return (0) returns a 0 to the Operating System and
indicates that the program executed without error.

• It does not mean the program did what it was supposed to do.
It only means there were no syntax errors. There still may have
been logical errors.

• Once you start writing your own functions, you’ll use the
return statement to return information to the caller of the
function.

32

Reserved Words

/* Converts distances from miles to kilometers */

#include <iostream> /* cin and couit definitions */

#define KMS_PER_MILE 1.609 /* conversion constant */

using namespace std;

int main()

{

 double miles, //distance in miles

 kms; //equivalent distance in kilometers

 //Get the distance in miles

 cout<<"Enter the distance in miles> ";

 cin>>miles;

 //Convert the distance to kilometers

 kms = KMS_PER_MILE * miles;

 //Display the distance in kilometers

 cout<<"That equals " << kms << " kilometers.\n";

 return 0;

}

3/2/2020

17

Reserved words

• A word that has special meaning to C++ and can not

be used for other purposes.

• These are words that C++ reserves for its own uses

(declaring variables, control flow, etc.)

 For example, you couldn’t have a variable named
return

• Always lower case

• Other examples: double, int, if , else, ...

34

Identifiers

/* Converts distances from miles to kilometers */

#include <stdio.h> /* printf, scanf definitions */

#define KMS_PER_MILE 1.609 /* conversion constant */

int main(void)

{

 double miles, //distance in miles

 kms; //equivalent distance in kilometers

 //Get the distance in miles

 printf("Enter the distance in miles> ");

 scanf("%lf", &miles);

 //Convert the distance to kilometers

 kms = KMS_PER_MILE * miles;

 //Display the distance in kilometers

 printf("That equals %f kilometers.\n", kms);

 return (0);

}

/* Converts distances from miles to kilometers */

#include <iostrem> /* cin and couit definitions */

#define KMS_PER_MILE 1.609 /* conversion constant */

using namespace std;

int main()

{

 double miles, //distance in miles

 kms; //equivalent distance in kilometers

 //Get the distance in miles

 cout<<"Enter the distance in miles> ";

 cin>>miles;

 //Convert the distance to kilometers

 kms = KMS_PER_MILE * miles;

 //Display the distance in kilometers

 cout<<"That equals " << kms << " kilometers.\n";

 return 0;

}

3/2/2020

18

User Defined Identifiers

• We choose our own identifiers to name memory cells that will
hold data and program results and to name operations that we
define.

• Rules for Naming Identifiers:

 An identifier must consist only of letters, digits, and
underscores.

 An identifier cannot begin with a digit.

 A C++ reserved word cannot be used as an identifier.

• Valid identifiers: letter1, inches, KM_PER_MILE

• Invalid identifiers: 1letter, Happy*trout, return

Few Guidelines for Naming Identifiers

• Some compliers will only see the first 31 characters of the
identifier name, so avoid longer identifiers

• Uppercase and lowercase are different
 LETTER != Letter != letter

 Avoid names that only differ by case; they can lead to problems to find
bugs

• Choose meaningful identifiers that are easy to understand.
Example: distance = rate * time means a lot more
than d=r*t

• All uppercase is usually used for constant macros (#define)

 KMS_PER_MILE is a defined constant

 As a variable, we would probably name it KmsPerMile or
Kms_Per_Mile

3/2/2020

19

37

Punctuation and Special Symbols

/* Converts distances from miles to kilometers */

#include <iostream> /* cin and couit definitions */

#define KMS_PER_MILE 1.609 /* conversion constant */

using namespace std;

int main()

{

 double miles, //distance in miles

 kms; //equivalent distance in kilometers

 //Get the distance in miles

 cout<<"Enter the distance in miles> ";

 cin>>miles;

 //Convert the distance to kilometers

 kms = KMS_PER_MILE * miles;

 //Display the distance in kilometers

 cout<<"That equals " << kms << " kilometers.\n";

 return 0;

}

Punctuation and Special Symbols

• Semicolons (;) – Mark the end of a statement

• Curly Braces ({,}) – Mark the beginning and

end of the main function

• Mathematical Symbols (*,=) – Are used to

assign and compute values

3/2/2020

20

Arithmetic Expressions

• To solve most programming problems, you will need
to write arithmetic expressions that manipulate type
int and double data.

• The next slide shows all arithmetic operators. Each
operator manipulates two operands, which may be
constants, variables, or other arithmetic expressions.

• Example

 5 + 2

 sum + (incr* 2)

 (b/c) + (a + 0.5)

C++ Operators

Arithmetic Operator Meaning Examples

+ (int,double) Addition
5 + 2 is 7

5.0 + 2.0 is 7.0

- (int,double) Subtraction
5 - 2 is 3

5.0 - 2.0 is 3.0

* (int,double) Multiplication
5 * 2 is 10

5.0 * 2.0 is 10.0

/ (int,double) Division
5 / 2 is 2

5.0 / 2.0 is 2.5

% (int) Remainder 5 % 2 is 1

3/2/2020

21

Operator / & %

• Division: When applied to two positive integers, the
division operator (/) computes the integral part of the
result by dividing its first operand by its second.

 For example 7.0 / 2.0 is 3.5 but the but 7 / 2 is only 3

 The reason for this is that C makes the answer be of the
same type as the operands.

• Remainder: The remainder operator (%) returns the
integer remainder of the result of dividing its first
operand by its second.

 Examples: 7 % 2 = 1, 6 % 3 = 0

 The value of m%n must always be less than the divisor n.

 / is undefined when the divisor (second operator) is 0.

Data Type of an Expression

• The data type of each variable must be specified in its
declaration, but how does C++ determine the data
type of an expression?
 Example: What is the type of expression x+y when both x

and y are of type int?

• The data type of an expression depends on the type(s)
of its operands.
 If both are of type int, then the expression is of type int.

 If either one or both is of type double, then the
expression is of type double.

3/2/2020

22

Mixed-Type Assignment Statement

• The expression being evaluated and the variable to
which it is assigned have different data types.
 Example what is the type of the assignment y = 5/2

when y is of type double?

• When an assignment statement is executed, the
expression is first evaluated; then the result is
assigned to the variable to the left side of assignment
operator.

• Warning: assignment of a type double expression
to a type int variable causes the fractional part of
the expression to be lost.
 What is the type of the assignment y = 5.0 / 2.0

when y is of type int?

Type Conversion Through Casts

• C++ allows the programmer to convert the type of an
expression.

• This is done by placing the desired type in
parentheses before the expression.

• This operation called a type cast.
 (double)5 / (double)2 is the double value 2.5,

and not 2 as seen earlier.

 (int)3.0 / (int)2.0 is the int value 1

• When casting from double to int, the decimal
portion is just truncated – not rounded.

3/2/2020

23

Example

/* Computes a test average */

#include <iostream>

using namespace std;

int main()

{

 int total_score, num_students;

 double average;

 cout<<"Enter sum of students' scores> ";

 cin>> total_score;

 cout<<"Enter number of students> ";

 cin>>num_students;

 average = (double) total_score / (double) num_students;

 cout<<"Average score is " << average;

 return 0;

}

Expressions with Multiple Operators

• Operators can be split into two types: unary and

binary.

• Unary operators take only one operand

 - (negates the value it is applied to)

• Binary operators take two operands.

 +,-,*,/

• A single expression could have multiple operators

 -5 + 4 * 3 - 2

3/2/2020

24

Rules for Evaluating Expressions

• Rule (a): Parentheses rule - All expressions in parentheses
must be evaluated separately.
 Nested parenthesized expressions must be evaluated from the

inside out, with the innermost expression evaluated first.

• Rule (b): Operator precedence rule – Multiple operators in
the same expression are evaluated in the following order:
 First: unary –

 Second: *, /, %

 Third: binary +,-

• Rule (c): Associativity rule
 Unary operators in the same subexpression and at the same

precedence level are evaluated right to left

 Binary operators in the same subexpression and at the same
precedence level are evaluated left to right.

Rules for Evaluating Expressions

Example:

3/2/2020

25

Evaluation Tree and Evaluation for

 z - (a + b / 2) + w * -y

with type int variables only

Writing Mathematical Formulas in C++

• You may encounter two problems in writing a mathematical

formula in C++.

• First, multiplication often can be implied in a formula by

writing two letters to be multiplied next to each other. In C,

you must state the * operator

 For example, 2a should be written as 2 * a.

• Second, when dealing with division we often have:

 This should be coded as (a + b) / (c + d).

dc

ba





3/2/2020

26

Library Functions

• So far, we have learnt how to use operators, +, -, *, /
and % to form simple arithmetic expressions.

• However, we are not yet able to write many other
mathematical expressions we are used to.

• For example, we cannot yet represent any of the
following expression in C++:

• C++ does not have operators for “square root” etc.

• Instead, C++ provides program units called functions
to carry out these and other mathematical operations.

x

Library Functions …

• A function can be thought of as a black box that takes one or
more input arguments and produces a single output value.

• For example, the following shows how to use the sqrt function
that is available in the standard math library:

 y = sqrt (x);

• If x is 16, the function computes the square root of 16. The
result, 4, is then assigned to the variable y.

• The expression part of the assignment statement is called
function call.

• Another example is: z = 5.7 + sqrt (w);

 If w = 9, z is assigned 5.7 + 3, which is 8.7.

3/2/2020

27

Some Mathematical Library Functions
Function Header File Purpose Arguments Result

sin(x),cos(x),

tan(x)

<cmath> Returns the sine, cosine,

or tangent of angle x.
double

(in radians)

double

pow(x, y) <cmath> Returns xy double, double double

sqrt(x) <cmath> double (must be >= 0) double
x

Example

• We can use C functions pow and sqrt to compute the roots of a
quadratic equation in x of the form:

• If the discriminant (b2 – 4ac) is greater than zero, the two roots
are defined as:

• In C, these two roots are computed as:

 /* compute two roots, root_1 and root_2, for disc > 0.0 */

 disc = pow(b, 2) - 4 * a * c;

 root_1 = (-b + sqrt(disc)) / (2 * a);

 root_2 = (-b - sqrt(disc)) / (2 * a);

3/2/2020

28

Example: Find the roots of the quadratic equation

 ax2+bx+c = 0 (where a, b and c are coefficients).

#include <iostream>

#include <cmath>

using namespace std;

int main()

{

 double a, b, c, x1, x2, discriminant;

 cout << "Enter coefficients a, b and c: ";

 cin >> a >> b >> c;

 discriminant = b*b - 4*a*c;

 x1 = (-b + sqrt(discriminant)) / (2*a);

 x2 = (-b - sqrt(discriminant)) / (2*a);

 cout << "Roots are:" << endl;

 cout << "x1 = " << x1 << endl;

 cout << "x2 = " << x2 << endl;

 return 0;

}

Exercise:
The area of a triangle with sides A, B, and C is calculated as

Where S=P/2 and P is the triangle perimeter computed as

P=A+B+C

Write a code to read the coordinates of three points that form the triangle

vertices P1(x1,y1), P2(x2,y2), and P3(x3,y3) and computes and prints on the

monitor the area of the triangle. Note the distance between two points, P1 and

P2 for example, is computed as

Let all variables be of type double.

A sample run of the code can be as

Enter the coordinates of point 1: 2 5

Enter the coordinates of point 2: 2 8

Enter the coordinates of point 3: 6 8

The area of the triangle is 6.0

