CMSE222 Work Sheet 1

Q1) Answer the following:
(a) Convert the decimal number (231.875) ₁₀ to Binary system
(231.875) ₁₀ =() ₂
(b) Convert the decimal number (231.875) ₁₀ to Octal system
(231.875) ₁₀ =() ₈
(c) Convert the decimal number (231.875) ₁₀ to Hexadecimal system
(231.875) ₁₀ =() ₁₆
(d) What is the decimal equivalent of the following signed 2's complement number 1111 0110
(e) Noting that 2^2 =4, convert (11110.111) ₂ to base-4 system
Result=() ₄
Q2) Using 7-bit 2's complement representations perform the following operation:
(-13) ₁₆ +(3A) ₁₆
Result=() ₂ Overflow (Yes/No), reason:
Q3) Using Boolean algebraic manipulation, simplify the following Boolean function: $F(A,B,C)=A^{\prime}B^{\prime}C^{\prime}+AC^{\prime}+BC^{\prime}$
F=
Q4) Consider the following Boolean function: F(A,B,C,D)=[(A [/] B+C)+D [/]].B (a) Find the dual of F
Fdual=
(b) Find the complement of F using the DeMorgan theorem
r /_

Q5) Given the following $\mathbf{F}'(\mathbf{A},\mathbf{B},\mathbf{C},\mathbf{D})=\sum m(\mathbf{0},\mathbf{2},\mathbf{4},\mathbf{5},\mathbf{6},\mathbf{7},\mathbf{8},\mathbf{10})$, find the canonical

- a) Fsop?
- c) Fpos?
- d) F[/]pos?

Q6) Simplify the following Boolean function F together with the don't care condition in SOP

form:
$$F(A,B,C,D)=\sum m(1,3,5,7,9,15)$$
, $d(A,B,C,D)=\sum m(4,6,12,13)$

Q7) A logic circuit implements the following Boolean function:

$$F(A,B,C,D) = A^{\prime}C+AC^{\prime}D^{\prime}$$

It is found that the circuit input combination A=C=1 can never occur. It is required t find simpler expression for F using the proper don't-care conditions.

a) Fill up the following truth table:

Α	В	С	D	F

- **b)** Find the simplicit form of F.
- c) Implement the minimized F using the minimum number of two-input gates. [complements are not available]

Q8) Given the following F(A,B,C,D)=	[M(0, 1, 4, 8, 10, 11, 12, 14, 15
---	-----------------------------------

Find all possible forms of minimal F

	•	•	•	•	•	•	•	•	•	•	•	 	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

- **Q9)** Assume that it is required to design a car safety alarm system with four inputs (D, K,S,B), where D is represents Door closed, K is Key in, S is Seat Pressure, and B is Seat belt closed. The alarm (A) should sound if
- The key is in and the door is not closed, or
- The door is closed and the key is in and the driver is in the seat and the seat belt is not Closed.

A/ Fill in the given truth table,

D	K	S	В	Α
0	0	0	0	
0	0	0	1	
0	0	1	0	
0	0	1	1	
0	1	0	0	
0	1	0	1	
0	1	1	0	
0	1	1	1	
1	0	0	0	
1	0	0	1	
1	0	1	0	
1	0	1	1	
1	1	0	0	
1	1	0	1	
1	1	1	0	
1	1	1	1	

D/ Find minimal F in POS form.

B/ Find the minmal F in SOP form

F=	
----	--

C/ Construct and AND-OR implementation of F (Complements ar available).

- 1			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı	1		
ı	1		
ı	1		
ı			
ı	1		
ı			
ı	1		
ı	1		
ı	1		
ı	1		
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			