CMSE222 Work Sheet 1

Q1) Answer the following:
(a) Convert the decimal number $(231.875)_{10}$ to Binary system

$$
\left.(231.875)_{10=(. ~}^{2}\right)_{2}
$$

(b) Convert the decimal number $(231.875)_{10}$ to Octal system
\qquad
(c) Convert the decimal number $(231.875)_{10}$ to Hexadecimal system

$$
(231.875)_{10}=(. .)_{16}
$$

(d) What is the decimal equivalent of the following signed 2 's complement number 11110110
(e) Noting that $2^{2}=4$, convert $(11110.111)_{2}$ to base- 4 system

Q2) Using 7-bit 2's complement representations perform the following operation: $(-13)_{16}+(3 A)_{16}$

Result=(\qquad .) 2 Overflow (Yes/No), reason:

Q3) Using Boolean algebraic manipulation, simplify the following Boolean function:
$F(A, B, C)=A^{\prime} B^{\prime} C^{\prime}+A C^{\prime}+B C^{\prime}$

$$
\mathrm{F}=.
$$

\qquad

Q4) Consider the following Boolean function: $F(A, B, C, D)=\left[\left(A^{\prime} B+C\right)+D^{\prime}\right] . B$
(a) Find the dual of F
Fdual=
(b) Find the complement of F using the DeMorgan theorem

$$
F^{\prime}=.
$$

Q5) Given the following $\mathbf{F}^{\prime}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D})=\sum \mathrm{m}(\mathbf{0}, \mathbf{2}, \mathbf{4}, \mathbf{5}, \mathbf{6}, \mathbf{7}, \mathbf{8}, \mathbf{1 0})$, find the canonical
a) Fsop? \qquad
c) Fpos?
d) $F^{\prime} \operatorname{pos}$? \qquad

Q6) Simplify the following Boolean function F together with the don't care condition in SOP form: $F(A, B, C, D)=\sum m(1,3,5,7,9,15), d(A, B, C, D)=\sum m(4,6,12,13)$

$$
F(A, B, C, D)=
$$

\qquad

Q7) A logic circuit implements the following Boolean function:

$$
F(A, B, C, D)=A^{\prime} C+A C^{\prime} D^{\prime}
$$

It is found that the circuit input combination $A=C=1$ can never occur. It is required t find simpler expression for F using the proper don't-care conditions.
a) Fill up the following truth table:

b) Find the simplicit form of F.
c) Implement the minimized F using the minimum number of two-input gates.
[complements are not available]

Q8) Given the following $F(A, B, C, D)=\prod M(0,1,4,8,10,11,12,14,15)$
Find all possible forms of minimal F

Q9) Assume that it is required to design a car safety alarm system with four inputs (D, K, S, B), where D is represents Door closed, K is Key in, S is Seat Pressure, and B is Seat belt closed. The alarm (A) should sound if

- The key is in and the door is not closed, or
- The door is closed and the key is in and the driver is in the seat and the seat belt is not Closed.

A/ Fill in the given truth table,

D	K	S	B	A
0	0	0	0	
0	0	0	1	
0	0	1	0	
0	0	1	1	
0	1	0	0	
0	1	0	1	
0	1	1	0	
0	1	1	1	
1	0	0	0	
1	0	0	1	
1	0	1	0	
1	0	1	1	
1	1	0	0	
1	1	0	1	
1	1	1	0	
1	1	1	1	

B/ Find the minmal F in SOP form
$F=$
C/ Constrcut and AND-OR implementation of F (Complements ar available).

D/ Find minimal F in POS form.

