CMSE222 Work Sheet 1 | Q1) Answer the following: | |--| | (a) Convert the decimal number (231.875) ₁₀ to Binary system | | (231.875) ₁₀ =() ₂ | | (b) Convert the decimal number (231.875) ₁₀ to Octal system | | (231.875) ₁₀ =() ₈ | | (c) Convert the decimal number (231.875) ₁₀ to Hexadecimal system | | (231.875) ₁₀ =() ₁₆ | | (d) What is the decimal equivalent of the following signed 2's complement number 1111 0110 | | (e) Noting that 2^2 =4, convert (11110.111) ₂ to base-4 system | | Result=() ₄ | | Q2) Using 7-bit 2's complement representations perform the following operation: | | (-13) ₁₆ +(3A) ₁₆ | | | | Result=() ₂ Overflow (Yes/No), reason: | | Q3) Using Boolean algebraic manipulation, simplify the following Boolean function: $F(A,B,C)=A^{\prime}B^{\prime}C^{\prime}+AC^{\prime}+BC^{\prime}$ | | | | F= | | Q4) Consider the following Boolean function: F(A,B,C,D)=[(A [/] B+C)+D [/]].B (a) Find the dual of F | | Fdual= | | (b) Find the complement of F using the DeMorgan theorem | | r /_ | Q5) Given the following $\mathbf{F}'(\mathbf{A},\mathbf{B},\mathbf{C},\mathbf{D})=\sum m(\mathbf{0},\mathbf{2},\mathbf{4},\mathbf{5},\mathbf{6},\mathbf{7},\mathbf{8},\mathbf{10})$, find the canonical - a) Fsop? - c) Fpos? - d) F[/]pos? Q6) Simplify the following Boolean function F together with the don't care condition in SOP form: $$F(A,B,C,D)=\sum m(1,3,5,7,9,15)$$, $d(A,B,C,D)=\sum m(4,6,12,13)$ Q7) A logic circuit implements the following Boolean function: $$F(A,B,C,D) = A^{\prime}C+AC^{\prime}D^{\prime}$$ It is found that the circuit input combination A=C=1 can never occur. It is required t find simpler expression for F using the proper don't-care conditions. a) Fill up the following truth table: | Α | В | С | D | F | |---|---|---|---|---| - **b)** Find the simplicit form of F. - c) Implement the minimized F using the minimum number of two-input gates. [complements are not available] | Q8) Given the following F(A,B,C,D)= | [M(0, 1, 4, 8, 10, 11, 12, 14, 15 | |---|-----------------------------------| |---|-----------------------------------| Find all possible forms of minimal F | | • | • | • | • | • | • | • | • | • | • | • |
 | • | |--|---|---|---|---|---|---|---|---|---|---|---|------| | - **Q9)** Assume that it is required to design a car safety alarm system with four inputs (D, K,S,B), where D is represents Door closed, K is Key in, S is Seat Pressure, and B is Seat belt closed. The alarm (A) should sound if - The key is in and the door is not closed, or - The door is closed and the key is in and the driver is in the seat and the seat belt is not Closed. A/ Fill in the given truth table, | D | K | S | В | Α | |---|---|---|---|---| | 0 | 0 | 0 | 0 | | | 0 | 0 | 0 | 1 | | | 0 | 0 | 1 | 0 | | | 0 | 0 | 1 | 1 | | | 0 | 1 | 0 | 0 | | | 0 | 1 | 0 | 1 | | | 0 | 1 | 1 | 0 | | | 0 | 1 | 1 | 1 | | | 1 | 0 | 0 | 0 | | | 1 | 0 | 0 | 1 | | | 1 | 0 | 1 | 0 | | | 1 | 0 | 1 | 1 | | | 1 | 1 | 0 | 0 | | | 1 | 1 | 0 | 1 | | | 1 | 1 | 1 | 0 | | | 1 | 1 | 1 | 1 | | D/ Find minimal F in POS form. B/ Find the minmal F in SOP form | F= | | |----|--| |----|--| **C/** Construct and AND-OR implementation of F (Complements ar available). | - 1 | | | | |-----|---|--|--| | | | | | | ı | 1 | | | | ı | 1 | | | | ı | 1 | | | | ı | | | | | ı | 1 | | | | ı | | | | | ı | 1 | | | | ı | 1 | | | | ı | 1 | | | | ı | 1 | | | | ı | | | | | ı | | | | | ı | | | | | ı | | | | | ı | | | | | ı | | | | | ı | | | | | ı | | | | | ı | | | | | | | | |