Numbering systems

Binary Numbers

- Each binary digit (called a bit) is either 1 or 0
- ✤ Bits have no inherent meaning, they can represent …
 - $\diamond~$ Unsigned and signed integers

♦ Fractions	N	lost					Least				
♦ Characters	Signif	ican \	t Bi	t			5	Sign	ificai /	nt Bit	
\diamond Images, sound, etc.		7	6	5 0	4	3 1	2	1	0		
 Bit Numbering 		27	26	2⁵	24	2 ³	2 ²	21	2º		

- ♦ Least significant bit (LSB) is rightmost (bit 0)
 - ♦ Most significant bit (MSB) is leftmost (bit 7 in an 8-bit number)

Decimal Value of Binary Numbers

- Each bit represents a power of 2
- Every binary number is a sum of powers of 2
- Decimal Value = $(d_{n-1} \times 2^{n-1}) + ... + (d_1 \times 2^1) + (d_0 \times 2^0)$
- Binary $(10011101)_2 = 2^7 + 2^4 + 2^3 + 2^2 + 1 = 157$

Some common powers of 2

	2 ⁿ	Decimal Value	2 ⁿ	Decimal Value
	2 ⁰	1	2 ⁸	256
	21	2	29	512
	2 ²	4	2 ¹⁰	1024
	2 ³	8	211	2048
	24	16	212	4096
\rangle	2 ⁵	32	213	8192
	2 ⁶	64	214	16384
	27	128	215	32768

Positional Number Systems

Different Representations of Natural Numbers

XXVII Roman numerals (not positional)

27 Radix-10 or decimal number (positional)

11011₂ Radix-2 or binary number (also positional)

Fixed-radix positional representation with n digits

Number N in radix
$$r = (d_{n-1}d_{n-2} \dots d_1d_0)_r$$

 N_r Value = $d_{n-1} \times r^{n-1} + d_{n-2} \times r^{n-2} + \dots + d_1 \times r + d_0$
Examples: $(11011)_2 = 1 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 1 \times 2 + 1 = 27$
 $(2107)_8 = 2 \times 8^3 + 1 \times 8^2 + 0 \times 8 + 7 = 1095$

Convert Decimal to Binary

- Repeatedly divide the decimal integer by 2
- Each remainder is a binary digit in the translated value
- Example: Convert 37₁₀ to Binary

	Remainder	Quotient	Division
least significant bit	1 ←	18	37 / 2
	0	9	18 / 2
$37 - (100101)_{2}$	1	4	9/2
	0	2	4/2
	0	1	2/2
most significant bit	1 🔶	0	1/2
stop when quotient is zero	s		

Decimal to Binary Conversion

- ♦ $N = (d_{n-1} \times 2^{n-1}) + ... + (d_1 \times 2^1) + (d_0 \times 2^0)$
- ✤ Dividing N by 2 we first obtain
 - ♦ Quotient₁ = $(d_{n-1} \times 2^{n-2}) + ... + (d_2 \times 2) + d_1$
 - \diamond Remainder₁ = d_0
 - ♦ Therefore, first remainder is least significant bit of binary number
- Dividing first quotient by 2 we first obtain
 - ♦ Quotient₂ = $(d_{n-1} \times 2^{n-3}) + ... + (d_3 \times 2) + d_2$
 - \diamond Remainder₂ = d_1
- Repeat dividing quotient by 2
 - \diamond Stop when new quotient is equal to zero
 - ♦ Remainders are the bits from least to most significant bit

Popular Number Systems

- Binary Number System: Radix = 2
 - $\diamond\,$ Only two digit values: 0 and 1
 - $\diamond\,$ Numbers are represented as 0s and 1s
- Octal Number System: Radix = 8
 - \diamond Eight digit values: 0, 1, 2, ..., 7
- Decimal Number System: Radix = 10
 - ♦ Ten digit values: 0, 1, 2, ..., 9
- Hexadecimal Number Systems: Radix = 16
 - ♦ Sixteen digit values: 0, 1, 2, ..., 9, A, B, ..., F
 - ♦ A = 10, B = 11, ..., F = 15
- Octal and Hexadecimal numbers can be converted easily to Binary and vice versa

Octal and Hexadecimal Numbers

- Octal = Radix 8
- Only eight digits: 0 to 7
- Digits 8 and 9 not used
- Hexadecimal = Radix 16
- 16 digits: 0 to 9, A to F
- ✤ A=10, B=11, …, F=15
- First 16 decimal values (0 to15) and their values in binary, octal and hex.
 Memorize table

Decimal Radix 10	Binary Radix 2	Octal Radix 8	Hex Radix 16
0	0000	0	0
1	0001	1	1
2	0010	2	2
3	0011	3	3
4	0100	4	4
5	0101	5	5
6	0110	6	6
7	0111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	А
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	E
15	1111	17	F

Binary, Octal, and Hexadecimal

Binary, Octal, and Hexadecimal are related:

Radix $16 = 2^4$ and Radix $8 = 2^3$

- Hexadecimal digit = 4 bits and Octal digit = 3 bits
- Starting from least-significant bit, group each 4 bits into a hex digit or each 3 bits into an octal digit
- Example: Convert 32-bit number into octal and hex

	3	Ι		5		Ι		3			0)			5			!	5			2			3	}	T		6			2			4	l	Octal
1	. 1	. 1	L	0	1	0)	1	1	0	0)	0	1	0	1	1		0	1	0	1	0	0	1	. 1		1	1	0	0	1	0	1		0	32-bit binary
]	E					в					1					6				1	A				7				9	9				4		Hexadecimal

Converting Octal & Hex to Decimal

- Octal to Decimal: $N_8 = (d_{n-1} \times 8^{n-1}) + \dots + (d_1 \times 8) + d_0$
- ♦ Hex to Decimal: $N_{16} = (d_{n-1} \times 16^{n-1}) + ... + (d_1 \times 16) + d_0$
- Examples:

$$(7204)_8 = (7 \times 8^3) + (2 \times 8^2) + (0 \times 8) + 4 = 3716$$

$$(3BA4)_{16} = (3 \times 16^3) + (11 \times 16^2) + (10 \times 16) + 4 = 15268$$

Converting Decimal to Hexadecimal

- Repeatedly divide the decimal integer by 16
- Each remainder is a hex digit in the translated value
- Example: convert 422 to hexadecimal

Division	Quotient	Remainder	
422 / 16	26	6 🔶	least significant digit
26 / 16	1	А	
1 / 16	0	1	—— most significant digit
422 = (1A6) ₁₆	stop whe	en zero

To convert decimal to octal divide by 8 instead of 16

Important Properties

✤ How many possible digits can we have in Radix r? r digits: 0 to r – 1

✤ What is the result of adding 1 to the largest digit in Radix *r*? Since digit *r* is not represented, result is $(10)_r$ in Radix *r* Examples: $1_2 + 1 = (10)_2$ $7_8 + 1 = (10)_8$

$$9_{10} + 1 = (10)_{10}$$
 $F_{16} + 1 = (10)_{16}$

Representing Fractions

* A number N_r in *radix* r can also have a fraction part:

$$N_{r} = \underbrace{d_{n-1}d_{n-2} \dots d_{1}d_{0}}_{\text{Integer Part}} \quad d_{-1} d_{-2} \dots d_{-m+1} d_{-m} \qquad 0 \le d_{i} < r$$

$$\overbrace{\text{Integer Part}}_{\text{Radix Point}} \quad \text{Fraction Part}$$

* The number N_r represents the value:

$$N_r = d_{n-1} \times r^{n-1} + \dots + d_1 \times r + d_0 + \qquad \text{(Integer Part)}$$

$$d_{-1} \times r^{-1} + d_{-2} \times r^{-2} \dots + d_{-m} \times r^{-m} \qquad \text{(Fraction Part)}$$

$$N_r = \sum_{i=0}^{i=n-1} d_i \times r^i + \sum_{j=-m}^{j=-1} d_j \times r^j$$

Examples of Numbers with Fractions

♦ (2409.87) ₁₀	$= 2 \times 10^3 + 4 \times 10^2 + 9 + 8 \times 10^{-1} + 7 \times 10^{-2}$
� (1101.1001)₂	$= 2^3 + 2^2 + 2^0 + 2^{-1} + 2^{-4} = 13.5625$
� (703.64) ₈	= 7×8 ² + 3 + 6×8 ⁻¹ + 4×8 ⁻² = 451.8125
� (A1F.8) ₁₆	= 10×16 ² + 16 + 15 + 8×16 ⁻¹ = 2591.5
∻ (423.1) ₅	$= 4 \times 5^2 + 2 \times 5 + 3 + 5^{-1} = 113.2$
� (263.5) ₆	Digit 6 is NOT allowed in radix 6

Converting Decimal Fraction to Binary

- Convert N = 0.6875 to Radix 2
- Solution: Multiply N by 2 repeatedly & collect integer bits

Multiplication	New Fraction	Bit	
0.6875 × 2 = 1.375	0.375	1 -	→ First fraction bit
0.375 × 2 = <mark>0</mark> .75	0.75	0	
0.75 × 2 = 1.5	0.5	1	
0.5 × 2 = 1 .0	0.0	1 -	→ Last fraction bit

- Stop when new fraction = 0.0, or when enough fraction bits are obtained
- ✤ Therefore, N = 0.6875 = (0.1011)₂
- Check $(0.1011)_2 = 2^{-1} + 2^{-3} + 2^{-4} = 0.6875$

More Conversion Examples

- Convert N = 139.6875 to Octal (Radix 8)
- ♦ Solution: N = 139 + 0.6875 (split integer from fraction)
- The integer and fraction parts are converted separately

Division	Quotient	Remainder	Multiplication	New Fraction	D
139 / 8	17	3	0.6875 × 8 = 5.5	0.5	
17 / 8	2	1	$0.5 \times 8 = 4.0$	0.0	
2/8	0	2			

- ✤ Therefore, 139 = (213)₈ and 0.6875 = (0.54)₈
- ♦ Now, join the integer and fraction parts with radix point $N = 139.6875 = (213.54)_8$

git

Simplified Conversions

- Converting fractions between Binary, Octal, and Hexadecimal can be simplified
- Starting at the radix pointing, the integer part is converted from right to left and the fractional part is converted from left to right
- Group 4 bits into a hex digit or 3 bits into an octal digit

🔶 i	integer: right to left — fraction: left to right —													
7	2	6	1	3		2	4	7	4	5	2	Octal		
111	010	110	001	011		010	100	111	100	101	01	Binary		
7	5	8	3	в	•	5	1	3	С	A	8	Hexadecimal		

Use binary to convert between octal and hexadecimal

Adding Bits

- ✤ 1 + 1 = 2, but 2 should be represented as $(10)_2$ in binary
- Adding two bits: the sum is S and the carry is C

Х	0	0	1	1
<u>+ Y</u>	+ 0	+ 1	+ 0	+ 1
CS	0 0	0 1	0 1	10

Adding three bits: the sum is S and the carry is C

0	0	0	0	1	1	1	1
0	0	1	1	0	0	1	1
+ 0	+ 1	+ 0	+ 1	+ 0	+ 1	+ 0	+ 1
00	01	0 1	10	01	10	10	11

Signed Integers

- Highest bit indicates the sign
- ✤ 1 = negative
- 0 = positive

- There are three formats for representing negative numbers
 - Sign-magnitude
 - 1's complement
 - 2's complement

Sign-magnitude

- Sign-magnitude uses one bit for the sign (0=+, 1=-) and the remaining bits represent the magnitude of the number as in the case of unsigned numbers
- For example, using 4-bit numbers
 - +5=0101 -5=1101
 - +3=0011 -3=1011
 - +7=0111 -7=1111
- Although this is easy to understand, it is not well suited for use in computers

1's complement representation

• In the 1's complement scheme, an *n*-bit negative number *K*, is obtained simply by complementing each bit of the number, including the sign bit.

Using 4-bit, write -5 and -3 in 1's complement representation

```
5=(0101)2 >>>>> -5=(1010)2
3=(0011)2 >>>>>> -3=(1100)2
```

2's complement representation

In the 2's complement scheme, an *n*-bit negative number *K*, is obtained simply by adding 1 to its 1's complement

Forming the Two's Complement

starting value	00100100 = +36					
step1: reverse the bits (1's complement)	11011011					
step 2: add 1 to the value from step 1	+ 1					
sum = 2's complement representation	11011100 = -36					

Sum of an integer and its 2's complement must be zero:

00100100 + 11011100 = 00000000 (8-bit sum) => Ignore Carry

Another way to obtain the 2's complement:	Binary Value
Start at the least significant 1	= 00100100 significant 1
Leave all the 0s to its right unchanged	2's Complement
Complement all the bits to its left	= 11011100

Two's Complement Representation

Positive numbers

♦ Signed value = Unsigned value

8-bit Binary value	Unsigned value	Signed value
00000000	0	0
00000001	1	+1
00000010	2	+2
01111110	126	+126
01111111	127	+127
1000000	128	-128
10000001	129	-127
11111110	254	-2
11111111	255	-1

Binary Addition

- Start with the least significant bit (rightmost bit)
- * Add each pair of bits

Binary Subtraction

- ✤ When subtracting A B, convert B to its 2's complement
- ✤ Add A to (–B), and ignore the end carry (if any)

Carry and Overflow

Carry is important when …

- ♦ Adding or subtracting unsigned integers
- $\diamond\,$ Indicates that the unsigned sum is out of range
- ♦ Either < 0 or >maximum unsigned *n*-bit value

Overflow is important when …

- ♦ Adding or subtracting signed integers
- \diamond Indicates that the signed sum is out of range

Overflow occurs when

- \diamond Adding two positive numbers and the sum is negative
- \diamond Adding two negative numbers and the sum is positive
- Can happen because of the fixed number of sum bits

Carry and Overflow Examples

- We can have carry without overflow and vice-versa
- Four cases are possible (Examples are 8-bit numbers)

				1						1	1	1	1	1					
	0	0	0	0	1	1	1	1	15		0	0	0	0	1	1	1	1	15
-	0	0	0	0	1	0	0	0	8	-	1	1	1	1	1	0	0	0	248 (-8)
	0	0	0	1	0	1	1	1	23	-	0	0	0	0	0	1	1	1	7
	(Carr	y = () (Over	flow	= 0					Carr	y = '	1 (Over	flow	= 0		
	1									1			1	1					
	0	1	0	0	1	1	1	1	79		1	1	0	1	1	0	1	0	218 (-38)
+	0	1	0	0	0	0	0	0	64	+	1	0	0	1	1	1	0	1	157 (-99)
	1	0	0	0	1	1	1	1	143	-	0	1	1	1	0	1	1	1	119
	(Carr	y = () (Over	flow	= 1		(-113)		(Carr	y = [·]	1 (Over	flow	= 1		

Overflow Detection

overflow can be detected if carry into sign-bit does not equal carry out of sign bit.

Sign Extension

Infinite 1s can be added to the left of a negative number

Shifting the Bits to the Left

What happens if the bits are shifted to the left by 1 bit position?

Before	0	0	0	0	0	1	0	1	= 5
After	0	0	0	0	1	0	1	0	= 10

Multiplication By 2

What happens if the bits are shifted to the left by 2 bit positions?

Before	0	0	0	0	0	1	0	1	= 5
After	0	0	0	1	0	1	0	0	= 20

Multiplication By 4

• Shifting the Bits to the Left by *n* bit positions is multiplication by 2^n

As long as we have sufficient space to store the bits

Shifting the Bits to the Right

What happens if the bits are shifted to the right by 1 bit position?

Before	0	0	1	0	0	1	0	0	= 36	
After	0	0	0	1	0	0	1	0	= 18, r=0	

Division By 2

What happens if the bits are shifted to the right by 2 bit positions?

Division By 4

Shifting the Bits to the Right by *n* bit positions is division by 2^n

The remainder r is the value of the bits that are shifted out

Binary Codes

- How to represent characters, colors, etc?
- Define the set of all represented elements
- Assign a unique binary code to each element of the set
- Given *n* bits, a binary code is a mapping from the set of elements to a subset of the 2ⁿ binary numbers

Example

- Suppose we want to code 7 colors of the rainbow
- As a minimum, we need 3 bits to define 7 unique values
- 3 bits define 8 possible combinations
- Only 7 combinations are needed
- Code 111 is not used
- Other assignments are also possible

Color	3-bit code
Red	000
Orange	001
Yellow	010
Green	011
Blue	100
Indigo	101
Violet	110

Binary Coded Decimal (BCD)

- Simplest binary code for decimal digits
- Only encodes ten digits from 0 to 9
- BCD is a weighted code
- The weights are 8,4,2,1
- Same weights as a binary number
- There are six invalid code words
 1010, 1011, 1100, 1101, 1110, 1111
- Example on BCD coding:
 - 13 ⇔ (0001 0011)_{BCD}

Decimal	BCD				
0	0000				
1	0001				
2	0010				
3	0011				
4	0100				
5	0101				
6	0110				
7	0111				
8	1000				
9	1001				
	1010				
Unused	•••				
	1111				

Warning: Conversion or Coding?

- Do NOT mix up conversion of a decimal number to a binary number with coding a decimal number with a binary code
- $13_{10} = (1101)_2$ This is conversion
- ♦ 13 \Leftrightarrow (0001 0011)_{BCD} This is coding
- In general, coding requires more bits than conversion
- ♦ A number with *n* decimal digits is coded with 4*n* bits in BCD