Numbering systems

Binary Numbers

* Each binary digit (called a bit) is either 1 or 0
* Bits have no inherent meaning, they can represent ...
\diamond Unsigned and signed integers
\& Fractions

Most
Significant Bit

* Bit Numbering
\diamond Least significant bit (LSB) is rightmost (bit 0)
\triangleleft Most significant bit (MSB) is leftmost (bit 7 in an 8 -bit number)

Decimal Value of Binary Numbers

* Each bit represents a power of 2
* Every binary number is a sum of powers of 2
* Decimal Value $=\left(d_{n-1} \times 2^{n-1}\right)+\ldots+\left(d_{1} \times 2^{1}\right)+\left(d_{0} \times 2^{0}\right)$
$*$ Binary $(10011101)_{2}=2^{7}+2^{4}+2^{3}+2^{2}+1=157$

Positional Number Systems

Different Representations of Natural Numbers
XXVII Roman numerals (not positional)
27 Radix-10 or decimal number (positional)
11011_{2} Radix-2 or binary number (also positional)
Fixed-radix positional representation with \boldsymbol{n} digits
Number N in radix $r=\left(d_{n-1} d_{n-2} \ldots d_{1} d_{0}\right)_{r}$
N_{r} Value $=\mathrm{d}_{n-1} \times r^{n-1}+\mathrm{d}_{n-2} \times r^{n-2}+\ldots+\mathrm{d}_{1} \times r+\mathrm{d}_{0}$
Examples: $(11011)_{2}=1 \times 2^{4}+1 \times 2^{3}+0 \times 2^{2}+1 \times 2+1=27$
$(2107)_{8}=2 \times 8^{3}+1 \times 8^{2}+0 \times 8+7=1095$

Convert Decimal to Binary

* Repeatedly divide the decimal integer by 2
* Each remainder is a binary digit in the translated value
* Example: Convert 37_{10} to Binary

Division	Quotient	Remainder	
37/2	18		least significant bit
18/2	9	0	$37=(100101)_{2}$
9/2	4	1	
4/2	2	0	
2/2	1	0	
1/2	0	1	most significant bit

Decimal to Binary Conversion

* $N=\left(d_{n-1} \times 2^{n-1}\right)+\ldots+\left(d_{1} \times 2^{1}\right)+\left(d_{0} \times 2^{0}\right)$
* Dividing N by 2 we first obtain
\diamond Quotient $_{1}=\left(d_{n-1} \times 2^{n-2}\right)+\ldots+\left(d_{2} \times 2\right)+d_{1}$
\diamond Remainder $_{1}=d_{0}$
\triangleleft Therefore, first remainder is least significant bit of binary number
* Dividing first quotient by 2 we first obtain
\diamond Quotient $_{2}=\left(d_{n-1} \times 2^{n-3}\right)+\ldots+\left(d_{3} \times 2\right)+d_{2}$
\diamond Remainder $_{2}=d_{1}$
* Repeat dividing quotient by 2
\triangleleft Stop when new quotient is equal to zero
\diamond Remainders are the bits from least to most significant bit

Popular Number Systems

* Binary Number System: Radix = 2
\triangleleft Only two digit values: 0 and 1
\triangleleft Numbers are represented as 0s and 1s
* Octal Number System: Radix = 8
\& Eight digit values: 0, 1, 2, .., 7
* Decimal Number System: Radix $=10$
\triangleleft Ten digit values: $0,1,2, \ldots, 9$
* Hexadecimal Number Systems: Radix = 16
s Sixteen digit values: $0,1,2, \ldots, 9, A, B, \ldots, F$
$\diamond A=10, B=11, \ldots, F=15$
* Octal and Hexadecimal numbers can be converted easily to Binary and vice versa

Octal and Hexadecimal Numbers

* Octal = Radix 8
* Only eight digits: 0 to 7
* Digits 8 and 9 not used
* Hexadecimal = Radix 16
* 16 digits: 0 to 9 , A to F
* $A=10, B=11, \ldots, F=15$
* First 16 decimal values (0 to15) and their values in binary, octal and hex. Memorize table

Decimal Radix 10	Binary Radix 2	Octal Radix 8	Hex Radix 16
0	0000	0	0
1	0001	1	1
2	0010	2	2
3	0011	3	3
4	0100	4	4
5	0101	5	5
6	0110	6	6
7	0111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	A
11	1011	13	B
12	1100	14	C
13	1101	15	D
14	1110	16	E
15	1111	17	F

Binary, Octal, and Hexadecimal

* Binary, Octal, and Hexadecimal are related:

Radix $16=2^{4}$ and Radix $8=2^{3}$

* Hexadecimal digit $=4$ bits and Octal digit $=3$ bits
* Starting from least-significant bit, group each 4 bits into a hex digit or each 3 bits into an octal digit
* Example: Convert 32-bit number into octal and hex

3	5	3	0	5		5	2	3	6		2	4	Octal
		101	00	10	11		01	011	110	00	10	0100	32-bit binary
		B	1		6		A	7		9		4	Hexadecimal

Converting Octal \& Hex to Decimal

* Octal to Decimal: $N_{8}=\left(d_{n-1} \times 8^{n-1}\right)+\ldots+\left(d_{1} \times 8\right)+d_{0}$
* Hex to Decimal: $N_{16}=\left(d_{n-1} \times 16^{n-1}\right)+\ldots+\left(d_{1} \times 16\right)+d_{0}$
* Examples:

$$
\begin{aligned}
& (7204)_{8}=\left(7 \times 8^{3}\right)+\left(2 \times 8^{2}\right)+(0 \times 8)+4=3716 \\
& (3 B A 4)_{16}=\left(3 \times 16^{3}\right)+\left(11 \times 16^{2}\right)+(10 \times 16)+4=15268
\end{aligned}
$$

Converting Decimal to Hexadecimal

* Repeatedly divide the decimal integer by 16
* Each remainder is a hex digit in the translated value
* Example: convert 422 to hexadecimal

Division	Quotient	Remainder
$422 / 16$	26	6
$26 / 16$	1	A
$1 / 16$	0	1

* To convert decimal to octal divide by 8 instead of 16

Important Properties

* How many possible digits can we have in Radix r ?
r digits: 0 to $r-1$
* What is the result of adding 1 to the largest digit in Radix r ?

Since digit r is not represented, result is (10) $)_{r}$ in Radix r
Examples: $1_{2}+1=(10)_{2} \quad 7_{8}+1=(10)_{8}$

$$
9_{10}+1=(10)_{10} \quad F_{16}+1=(10)_{16}
$$

Representing Fractions

* A number $\boldsymbol{N}_{\boldsymbol{r}}$ in radix \boldsymbol{r} can also have a fraction part:

$$
N_{r}=\underbrace{d_{n-1} d_{n-2} \ldots d_{1} d_{0}}_{\text {Integer Part }} \cdot \underbrace{d_{-1} d_{-2} \ldots d_{-m+1} d_{-m}}_{\text {Fraction Part }} \quad 0 \leq d_{\mathrm{i}}<r
$$

* The number \boldsymbol{N}_{r} represents the value:

$$
\begin{array}{lll}
N_{r}= & d_{n-1} \times r^{n-1}+\ldots+d_{1} \times r+d_{0}+ & \text { (Integer Part) } \\
& d_{-1} \times r^{-1}+d_{-2} \times r^{-2} \ldots+d_{-m} \times r^{-m} & \text { (Fraction Part) } \\
N_{r}= & \sum_{i=0}^{i=n-1} d_{i} \times r^{i}+\sum_{j=-m}^{j=-1} d_{j} \times r^{j}
\end{array}
$$

Examples of Numbers with Fractions

$*(2409.87)_{10}=2 \times 10^{3}+4 \times 10^{2}+9+8 \times 10^{-1}+7 \times 10^{-2}$
$*(1101.1001)_{2}=2^{3}+2^{2}+2^{0}+2^{-1}+2^{-4}=13.5625$

* $(703.64)_{8} \quad=7 \times 8^{2}+3+6 \times 8^{-1}+4 \times 8^{-2}=451.8125$
$*(\text { A1F.8 })_{16} \quad=10 \times 16^{2}+16+15+8 \times 16^{-1}=2591.5$
$*(423.1)_{5} \quad=4 \times 5^{2}+2 \times 5+3+5^{-1}=113.2$
* $(263.5)_{6} \quad$ Digit 6 is NOT allowed in radix 6

Converting Decimal Fraction to Binary

* Convert $N=0.6875$ to Radix 2
* Solution: Multiply N by 2 repeatedly \& collect integer bits

Multiplication	New Fraction	Bit
$0.6875 \times 2=1.375$	0.375	1
$0.375 \times 2=0.75$	0.75	0
$0.75 \times 2=1.5$	0.5	1
$0.5 \times 2=1.0$	0.0	1

* Stop when new fraction $=0.0$, or when enough fraction bits are obtained
* Therefore, $N=0.6875=(0.1011)_{2}$
* Check $(0.1011)_{2}=2^{-1}+2^{-3}+2^{-4}=0.6875$

More Conversion Examples

* Convert $N=139.6875$ to Octal (Radix 8)
* Solution: $N=139+0.6875$ (split integer from fraction)
* The integer and fraction parts are converted separately

Division	Quotient	Remainder
$139 / 8$	17	3
$17 / 8$	2	1
$2 / 8$	0	2

Multiplication	New Fraction	Digit
$0.6875 \times 8=5.5$	0.5	5
$0.5 \times 8=4.0$	0.0	4

* Therefore, $139=(213)_{8}$ and $0.6875=(0.54)_{8}$
* Now, join the integer and fraction parts with radix point

$$
N=139.6875=(213.54)_{8}
$$

Simplified Conversions

* Converting fractions between Binary, Octal, and Hexadecimal can be simplified
* Starting at the radix pointing, the integer part is converted from right to left and the fractional part is converted from left to right
* Group 4 bits into a hex digit or 3 bits into an octal digit
\leftarrow integer: right to left $-\quad$ fraction: left to right \longrightarrow

7	2	6			3		2	4		7	4		5	2	Octal Binary
11	10	0	00		011		1	0	0	1	10	01	01	01	
7	5		8		B		5		3		C		A	8	

Use binary to convert between octal and hexadecimal

Adding Bits

* $1+1=2$, but 2 should be represented as $(10)_{2}$ in binary
* Adding two bits: the sum is S and the carry is C

X	0	0	1	1
+Y	+0	+1	+0	+1
CS	00	01	01	10

* Adding three bits: the sum is S and the carry is C

0	0	0	0	1	1	1	1
0	0	1	1	0	0	1	1
+0	+1	+0	+1	+0	+1	+0	+1
00	+1	01	$\frac{+10}{01}$	$\frac{+1}{10}$	$\frac{11}{10}$		

Signed Integers

* Highest bit indicates the sign
* 1 = negative
* $0=$ positive

* There are three formats for representing negative numbers
- Sign-magnitude
- 1's complement
- 2's complement

Sign-magnitude

- Sign-magnitude uses one bit for the sign ($0=+, 1=-$) and the remaining bits represent the magnitude of the number as in the case of unsigned numbers
- For example, using 4-bit numbers
$+5=0101-5=1101$
$+3=0011-3=1011$
$+7=0111-7=1111$
- Although this is easy to understand, it is not well suited for use in computers

1's complement representation

- In the 1's complement scheme, an n-bit negative number K, is obtained simply by complementing each bit of the number, including the sign bit.

Using 4-bit, write -5 and -3 in 1's complement representation
$5=(0101) 2$ >>>>>>> -5=(1010)2
$3=(0011) 2 \quad$ >>>>>>>>> $-3=(1100) 2$

2's complement representation

In the 2's complement scheme, an n-bit negative number K, is obtained simply by adding 1 to its 1 's complement

Forming the Two's Complement

starting value	$00100100=+36$
step1: reverse the bits (1's complement)	11011011
step 2: add 1 to the value from step 1	$+\quad 1$
sum = 2's complement representation	$11011100=-36$

Sum of an integer and its 2's complement must be zero:

$$
00100100+11011100=00000000(8 \text {-bit sum }) \Rightarrow \text { Ignore Carry }
$$

```
Another way to obtain the 2's complement:
Start at the least significant 1
Leave all the 0s to its right unchanged
Complement all the bits to its left
```

Binary Value
$=00100 \sqrt{100 \text { significant } 1}$
2 's Complement
$=11011000$

Two's Complement Representation

- Positive numbers
» Signed value = Unsigned value

8 -bit Binary value	Unsigned value	Signed value
00000000	0	0
00000001	1	+1
00000010	2	+2
\ldots	\ldots	\ldots
01111110	126	+126
01111111	127	+127
10000000	128	-128
10000001	129	-127
\ldots	\ldots	\ldots
11111110	254	-2
11111111	255	-1

Binary Addition

* Start with the least significant bit (rightmost bit)
* Add each pair of bits

Binary Subtraction

* When subtracting $A-B$, convert B to its 2 's complement
* Add A to (-B), and ignore the end carry (if any)

> carry:1 $1 \quad 11$
> $\begin{aligned} & 01001101 \\ & +1000110 \text { (2's complement) }\end{aligned}$
> 00010011

01001101
-00111010

Carry and Overflow

* Carry is important when ...
\triangleleft Adding or subtracting unsigned integers
\diamond Indicates that the unsigned sum is out of range
\diamond Either < 0 or >maximum unsigned n-bit value
* Overflow is important when ...
\& Adding or subtracting signed integers
\diamond Indicates that the signed sum is out of range
* Overflow occurs when
\triangleleft Adding two positive numbers and the sum is negative
\diamond Adding two negative numbers and the sum is positive
\diamond Can happen because of the fixed number of sum bits

Carry and Overflow Examples

* We can have carry without overflow and vice-versa
* Four cases are possible (Examples are 8-bit numbers)

Carry $=0 \quad$ Overflow $=0$

Carry $=1 \quad$ Overflow $=0$

$1 \quad 1$								218 (-38)
1	1	0	1	1	0	1	0	
1	0	0	1	1	1	0	1	157 (-99)
0	1	1	1	0	1	1	1	119
Carry = $1 \quad$ Overflow $=1$								

Overflow Detection

overflow can be detected if carry into sign-bit does not equal carry out of sign bit.

Sign Extension

Step 1: Move the number into the lower-significant bits
Step 2: Fill all the remaining higher bits with the sign bit

* This will ensure that both magnitude and sign are correct

* Examples

« Sign-Extend 10110011 to 16 bits

« Sign-Extend 01100010 to 16 bits
$01100010=+98 \Rightarrow 00000000$ (1100010 $=+98$

* Infinite 0s can be added to the left of a positive number
* Infinite 1s can be added to the left of a negative number

Shifting the Bits to the Left

* What happens if the bits are shifted to the left by 1 bit position?

```
Before \begin{array}{lllll:l|l|l|l|l|}{\hline0}&{0}&{0}&{0}&{0}&{1}&{0}&{1}\\{\hline}\end{array}=5
```


Multiplication

By 2
*What happens if the bits are shifted to the left by 2 bit positions?

Multiplication
By 4

* Shifting the Bits to the Left by n bit positions is multiplication by 2^{n}
* As long as we have sufficient space to store the bits

Shifting the Bits to the Right

*What happens if the bits are shifted to the right by 1 bit position?

```
Before \begin{array}{lllllll:l|l|l|l|}{\hline0}&{0}&{1}&{0}&{0}&{1}&{0}&{0}\\{\hline}\end{array}=36
```


Division
By 2

* What happens if the bits are shifted to the right by 2 bit positions?

$$
\begin{aligned}
& \text { Before } \begin{array}{|l|l|l|l|l|l|l|l|}
\hline 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
\cline { 2 - 9 } & =36 \\
\text { After } & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
\hline
\end{array}
\end{aligned}
$$

Division

By 4

* Shifting the Bits to the Right by n bit positions is division by 2^{n}
* The remainder r is the value of the bits that are shifted out

Binary Codes

* How to represent characters, colors, etc?

Define the set of all represented elements

* Assign a unique binary code to each element of the set
* Given n bits, a binary code is a mapping from the set of elements to a subset of the 2^{n} binary numbers

Example

* Suppose we want to code 7 colors of the rainbow
* As a minimum, we need 3 bits to define 7 unique values
* 3 bits define 8 possible combinations
* Only 7 combinations are needed
* Code 111 is not used
* Other assignments are also possible

Color	3-bit code
Red	000
Orange	001
Yellow	010
Green	011
Blue	100
Indigo	101
Violet	110

Binary Coded Decimal (BCD)

* Simplest binary code for decimal digits
* Only encodes ten digits from 0 to 9
* BCD is a weighted code
* The weights are 8,4,2,1
* Same weights as a binary number
* There are six invalid code words

1010, 1011, 1100, 1101, 1110, 1111

* Example on BCD coding:
$13 \Leftrightarrow(00010011)_{B C D}$

Decimal	BCD
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001
	1010
Unused	\ldots
	1111

Warning: Conversion or Coding?

* Do NOT mix up conversion of a decimal number to a binary number with coding a decimal number with a binary code
* $13_{10}=(1101)_{2} \quad$ This is conversion
* $13 \Leftrightarrow(00010011)_{B C D} \quad$ This is coding
* In general, coding requires more bits than conversion
* A number with n decimal digits is coded with $4 n$ bits in BCD

