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Numbering systems 

Binary Numbers 

 Each binary digit (called a bit) is either 1 or 0 

 Bits have no inherent meaning, they can represent … 

 Unsigned and signed integers 

 Fractions 

 Characters 

 Images, sound, etc. 

 Bit Numbering 

 Least significant bit (LSB) is rightmost (bit 0) 

 Most significant bit (MSB) is leftmost (bit 7 in an 8-bit number) 

1 0 0 1 1 1 0 1 

2 7 2 6 2 5 2 4 2 3 2 2 2 1 2 0 

0 1 2 3 4 5 6 7 

Most 

Significant Bit 
Least 

Significant Bit 
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Decimal Value of Binary Numbers 

 Each bit represents a power of 2 

 Every binary number is a sum of powers of 2 

 Decimal Value = (dn-1  2n-1) + ... + (d1  21) + (d0  20) 

 Binary (10011101)2 = 

1 0 0 1 1 1 0 1 

2 7 2 6 2 5 2 4 2 3 2 2 2 1 2 0 

0 1 2 3 4 5 6 7 

Some common 

powers of 2 

27 + 24 + 23 + 22 + 1 = 157 

Different Representations of Natural Numbers 
 

 XXVII Roman numerals (not positional) 

 27 Radix-10 or decimal number (positional) 

110112 Radix-2 or binary number (also positional) 

Fixed-radix positional representation with n digits 

Number N in radix r = (dn–1dn–2 . . . d1d0)r
 

Nr Value = dn–1×r n–1 + dn–2×r n–2 + … + d1×r + d0 

Examples: (11011)2 = 

   (2107)8 = 

Positional Number Systems 

1×24 + 1×23 + 0×22 + 1×2 + 1 = 27 

2×83 + 1×82 + 0×8 + 7 = 1095 
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Convert Decimal to Binary 

 Repeatedly divide the decimal integer by 2 

 Each remainder is a binary digit in the translated value 

 Example: Convert 3710 to Binary 

37 = (100101)2 

least significant bit 

most significant bit 

stop when quotient is zero 

Decimal to Binary Conversion 

 N = (dn-1  2n-1) + ... + (d1  21) + (d0  20) 

 Dividing N by 2 we first obtain 

 Quotient1 = (dn-1  2n-2) + … + (d2  2) + d1 

 Remainder1 = d0 

 Therefore, first remainder is least significant bit of binary number 

 Dividing first quotient by 2 we first obtain 

 Quotient2 = (dn-1  2n-3) + … + (d3  2) + d2 

 Remainder2 = d1 

 Repeat dividing quotient by 2 

 Stop when new quotient is equal to zero 

 Remainders are the bits from least to most significant bit 



4 

Popular Number Systems 

 Binary Number System: Radix = 2 

 Only two digit values: 0 and 1 

 Numbers are represented as 0s and 1s 

 Octal Number System: Radix = 8 

 Eight digit values: 0, 1, 2, …, 7 

 Decimal Number System: Radix = 10 

 Ten digit values: 0, 1, 2, …, 9 

 Hexadecimal Number Systems: Radix = 16 

 Sixteen digit values: 0, 1, 2, …, 9, A, B, …, F 

 A = 10, B = 11, …, F = 15 

 Octal and Hexadecimal numbers can be converted easily to 
Binary and vice versa 

Octal and Hexadecimal Numbers 

 Octal = Radix 8 

 Only eight digits: 0 to 7 

 Digits 8 and 9 not used 

 Hexadecimal = Radix 16 

 16 digits: 0 to 9, A to F 

 A=10, B=11, …, F=15 

 First 16 decimal values (0 

to15) and their values in 

binary, octal and hex. 

Memorize table 

Decimal 

Radix 10 

Binary 

Radix 2 

Octal 

Radix 8 

Hex 

Radix 16 

0 0000 0 0 

1 0001 1 1 

2 0010 2 2 

3 0011 3 3 

4 0100 4 4 

5 0101 5 5 

6 0110 6 6 

7 0111 7 7 

8 1000 10 8 

9 1001 11 9 

10 1010 12 A 

11 1011 13 B 

12 1100 14 C 

13 1101 15 D 

14 1110 16 E 

15 1111 17 F 
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Binary, Octal, and Hexadecimal 

 Binary, Octal, and Hexadecimal are related: 

 Radix 16 = 24 and Radix 8 = 23 

 Hexadecimal digit = 4 bits and Octal digit = 3 bits 

 Starting from least-significant bit, group each 4 bits into a hex 

digit or each 3 bits into an octal digit 

 Example: Convert 32-bit number into octal and hex 

4 9 7 A 6 1 B E Hexadecimal 

32-bit binary 0 0 1 0 1 0 0 1 1 1 1 0 0 1 0 1 0 1 1 0 1 0 0 0 1 1 0 1 0 1 1 1 

4 2 6 3 2 5 5 0 3 5 3 Octal 

 Octal to Decimal: N8 = (dn-1  8n-1) +... + (d1  8) + d0 

 Hex to Decimal: N16 = (dn-1  16n-1) +... + (d1  16) + d0 

 Examples: 

 (7204)8 = (7  83) + (2  82) + (0  8) + 4 = 3716 

 (3BA4)16 = (3  163) + (11  162) + (10  16) + 4 = 15268 

Converting Octal & Hex to Decimal 
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Converting Decimal to Hexadecimal 

422 = (1A6)16 stop when 

quotient is zero 

least significant digit 

most significant digit 

 Repeatedly divide the decimal integer by 16 

 Each remainder is a hex digit in the translated value 

 Example: convert 422 to hexadecimal 

 To convert decimal to octal divide by 8 instead of 16 

Important Properties 

 How many possible digits can we have in Radix r ? 

 r digits: 0 to r – 1 

What is the result of adding 1 to the largest digit in Radix r? 

 Since digit r is not represented, result is (10)r in Radix r 

 Examples: 12 + 1 = (10)2  78 + 1 = (10)8 

   910 + 1 = (10)10 F16 + 1 = (10)16 
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Representing Fractions 

 A number Nr in radix r can also have a fraction part: 

 Nr = dn-1dn-2 … d1d0  . d-1 d-2 … d-m+1 d-m  

 

  

 The number Nr represents the value: 

 Nr = dn-1 × rn-1 + … + d1 × r + d0  + (Integer Part) 

  d-1 × r -1 + d-2 × r -2 … + d-m × r –m (Fraction Part) 

  

Integer Part Fraction Part 

0 ≤ di < r 

Radix Point 

 Nr =    + 
j = -m i = 0 

di × ri 

i = n-1 j = -1 

dj × rj 

Examples of Numbers with Fractions 

 (2409.87)10 

 (1101.1001)2 

 (703.64)8 

 (A1F.8)16  

 (423.1)5 

 (263.5)6 

= 2×103 + 4×102 + 9 + 8×10-1 + 7×10-2 

= 23 + 22 + 20 + 2-1 + 2-4 = 13.5625 

= 7×82 + 3 + 6×8-1 + 4×8-2 = 451.8125 

= 10×162 + 16 + 15 + 8×16-1 = 2591.5 

= 4×52 + 2×5 + 3 + 5-1 = 113.2 

Digit 6 is NOT allowed in radix 6 
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Converting Decimal Fraction to Binary 

 Convert N = 0.6875  to Radix 2 

 Solution: Multiply N by 2 repeatedly & collect integer bits 

  

 

 

 

 Stop when new fraction = 0.0, or when enough fraction bits 

are obtained 

 Therefore, N = 0.6875 = (0.1011)2 

 Check (0.1011)2 = 2-1 + 2-3 + 2-4 = 0.6875 

Multiplication New Fraction Bit 

0.6875 × 2 = 1.375 0.375 1 

0.375 × 2 = 0.75 0.75 0 

0.75 × 2 = 1.5 0.5 1 

0.5 × 2 = 1.0 0.0 1 

First fraction bit 

Last fraction bit 

More Conversion Examples  

 Convert N = 139.6875  to Octal (Radix 8) 

 Solution: N = 139 + 0.6875 (split integer from fraction) 

 The integer and fraction parts are converted separately 

 

 

 

 

 Therefore, 139 = (213)8 and 0.6875 = (0.54)8  

 Now, join the integer and fraction parts with radix point 

 N = 139.6875 = (213.54)8 

Multiplication New Fraction Digit 

0.6875 × 8 = 5.5 0.5 5 

0.5 × 8 = 4.0 0.0 4 

Division Quotient Remainder 

139 / 8 17 3 

17 / 8 2 1 

2 / 8 0 2 
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Simplified Conversions 

 Converting fractions between Binary, Octal, and Hexadecimal 

can be simplified 

 Starting at the radix pointing, the integer part is converted 

from right to left and the fractional part is converted from left 

to right 

 Group 4 bits into a hex digit or 3 bits into an octal digit 

 

 

 

 Use binary to convert between octal and hexadecimal 

A C 3 5 8 5 7 

2 5 4 7 4 2 1 6 2 7 

Binary 1 0 1 0 1 0 0 1 1 1 1 0 0 1 0 1 0 1 1 0 1 0 0 0 1 1 0 1 0 1 1 1 . 

Hexadecimal B . 8 

Octal 3 . 

fraction: left to right integer: right to left 

Adding Bits 

 1 + 1 = 2, but 2 should be represented as (10)2 in binary 

 Adding two bits: the sum is S and the carry is C 

 

 

 

 Adding three bits: the sum is S and the carry is C 

 

X 

+ Y 

C S 

0 

+ 0 

0 0 

0 

+ 1 

0 1 

1 

+ 0 

0 1 

1 

+ 1 

1 0 

1 

0 

+ 0 

0 1 

1 

0 

+ 1 

1 0 

1 

1 

+ 0 

1 0 

1 

1 

+ 1 

1 1 

0 

0 

+ 0 

0 0 

0 

0 

+ 1 

0 1 

0 

1 

+ 0 

0 1 

0 

1 

+ 1 

1 0 
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Signed Integers 

 Highest bit indicates the sign 

 1 = negative 

 0 = positive 1 1 1 1 0 1 1 0 

0 0 0 0 1 0 1 0 

Sign bit 

Negative 

Positive 

 There are three formats for  representing negative 

numbers 

– Sign-magnitude 

– 1’s complement 

– 2’s complement 

Sign-magnitude 

• Sign-magnitude uses one bit for the sign (0=+, 1=-) and the 

remaining bits represent the magnitude of the number as in the 

case of unsigned numbers 

• For example, using 4-bit numbers 

+5=0101 -5=1101 

+3=0011 -3=1011 

+7=0111 -7=1111 

• Although this is easy to understand, it is not well suited for 

use in computers 
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1’s complement representation 

• In the 1’s complement scheme, an n-bit negative number K, 

is obtained simply by complementing each bit of the number, 

including the sign bit. 

Using 4-bit, write -5 and -3 in 1’s complement representation 

5=(0101)2      >>>>>>>   -5=(1010)2 

3= (0011)2         >>>>>>>>>   -3=(1100)2 

2’s complement representation 

In the 2’s complement scheme, an n-bit negative number K, 

is obtained simply by adding 1 to its 1’s complement 



12 

Forming the Two's Complement 

Sum of an integer and its 2's complement must be zero: 

00100100 + 11011100 = 00000000 (8-bit sum)  Ignore Carry 

Another way to obtain the 2's complement: 

Start at the least significant 1 

Leave all the 0s to its right unchanged 

Complement all the bits to its left 

starting value 00100100 = +36 

step1: reverse the bits (1's complement) 11011011 

step 2: add 1 to the value from step 1 +      1 

sum = 2's complement representation 11011100 = -36 

Binary Value 

= 00100 1 00 

2's Complement 

= 11011 1 00 

least 

significant 1 

Two's Complement Representation 

8-bit Binary 

value 

Unsigned 

value 

Signed 

value 

00000000 0 0 

00000001 1 +1 

00000010 2 +2 

. . . . . . . . . 

01111110 126 +126 

01111111 127 +127 

10000000 128 -128 

10000001 129 -127 

. . . . . . . . . 

11111110 254 -2 

11111111 255 -1 

 Positive numbers 

 Signed value = Unsigned value 
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Binary Addition 

 Start with the least significant bit (rightmost bit) 

 Add each pair of bits 

0 0 0 1 1 1 0 1 

0 0 1 1 0 1 1 0 

+ 

(54) 

(29) 

(83) 

1 carry 

0 1 2 3 4 bit position: 5 6 7 

1 1 1 

0 1 0 1 0 0 1 1 

Binary Subtraction 

When subtracting A – B, convert B to its 2's complement 

 Add A to (–B), and ignore the end carry (if any) 

 

   0 1 0 0 1 1 0 1 0 1 0 0 1 1 0 1 

   0 0 1 1 1 0 1 0 1 1 0 0 0 1 1 0  (2's complement) 

          0 0 0 1 0 0 1 1   

– + 

carry: 1 1 1 1 
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Carry and Overflow 

 Carry is important when … 

 Adding or subtracting unsigned integers 

 Indicates that the unsigned sum is out of range 

 Either < 0 or >maximum unsigned n-bit value 

 Overflow is important when … 

 Adding or subtracting signed integers 

 Indicates that the signed sum is out of range 

 Overflow occurs when 

 Adding two positive numbers and the sum is negative 

 Adding two negative numbers and the sum is positive 

 Can happen because of the fixed number of sum bits 

0 1 0 0 0 0 0 0 

0 1 0 0 1 1 1 1 
+ 

1 0 0 0 1 1 1 1 

79 

64 

143 

(-113) 
Carry = 0    Overflow = 1 

1 

1 0 0 1 1 1 0 1 

1 1 0 1 1 0 1 0 
+ 

0 1 1 1 0 1 1 1 

218 (-38) 

157 (-99) 

119 

Carry = 1    Overflow = 1 

1 1 1 

Carry and Overflow Examples 

We can have carry without overflow and vice-versa 

 Four cases are possible (Examples are 8-bit numbers) 

1 1 1 1 1 0 0 0 

0 0 0 0 1 1 1 1 
+ 

0 0 0 0 0 1 1 1 

15 

248 (-8) 

7 

Carry = 1    Overflow = 0 

1 1 1 1 1 

0 0 0 0 1 0 0 0 

0 0 0 0 1 1 1 1 
+ 

0 0 0 1 0 1 1 1 

15 

8 

23 

Carry = 0    Overflow = 0 

1 
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Overflow Detection 

overflow can be detected if carry into sign-bit does not equal 

carry out of sign bit. 

Sign Extension 

Step 1: Move the number into the lower-significant bits 

Step 2: Fill all the remaining higher bits with the sign bit 

 This will ensure that both magnitude and sign are correct 

 Examples 

 Sign-Extend 10110011 to 16 bits 

 

 Sign-Extend 01100010 to 16 bits 

 

 Infinite 0s can be added to the left of a positive number 

 Infinite 1s can be added to the left of a negative number 

 

10110011 = -77 11111111 10110011 = -77 

01100010 = +98 00000000 01100010 = +98 
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Shifting the Bits to the Left 

What happens if the bits are shifted to the left by 1 bit position? 

What happens if the bits are shifted to the left by 2 bit positions? 

0 0 0 0 1 0 1 0 

0 0 0 0 0 1 0 1 = 5 Before 

After = 10 

0 0 0 1 0 1 0 0 

0 0 0 0 0 1 0 1 = 5 Before 

After = 20 

 Shifting the Bits to the Left by n bit positions is multiplication by 2n 

 As long as we have sufficient space to store the bits 

Multiplication 

By 2 

Multiplication 

By 4 

Shifting the Bits to the Right 

What happens if the bits are shifted to the right by 1 bit position? 

What happens if the bits are shifted to the right by 2 bit positions? 

0 0 0 1 0 0 1 0 

0 0 1 0 0 1 0 0 = 36 Before 

After = 18, r=0 

 Shifting the Bits to the Right by n bit positions is division by 2n 

 The remainder r is the value of the bits that are shifted out 

Division 

By 2 

Division 

By 4 0 0 0 0 1 0 0 1 

0 0 1 0 0 1 0 0 = 36 Before 

After = 9, r=2 
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Binary Codes 

 How to represent characters, colors, etc? 

 Define the set of all represented elements 

 Assign a unique binary code to each element of the set 

 Given n bits, a binary code is a mapping from the set of 

elements to a subset of the 2n binary numbers 

 Suppose we want to code 7 colors of the rainbow 

 As a minimum, we need 3 bits to define 7 unique values 

 3 bits define 8 possible combinations 

 Only 7 combinations are needed 

 Code 111 is not used 

 Other assignments are also possible 

Example 

Color 3-bit code 

Red 000 

Orange 001 

Yellow 010 

Green 011 

Blue 100 

Indigo 101 

Violet 110 
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Binary Coded Decimal (BCD) 

 Simplest binary code for decimal digits 

 Only encodes ten digits from 0 to 9 

 BCD is a weighted code 

 The weights are 8,4,2,1 

 Same weights as a binary number 

 There are six invalid code words 

 1010, 1011, 1100, 1101, 1110, 1111 

 Example on BCD coding: 

 13   (0001 0011)BCD 

Decimal BCD 

0 0000 

1 0001 

2 0010 

3 0011 

4 0100 

5 0101 

6 0110 

7 0111 

8 1000 

9 1001 

Unused 
1010 
··· 
1111 

Warning: Conversion or Coding? 

 Do NOT mix up conversion of a decimal number to a binary 

number with coding a decimal number with a binary code 

 1310 = (1101)2 This is conversion 

 13   (0001 0011)BCD This is coding 

 In general, coding requires more bits than conversion 

 A number with n decimal digits is coded with 4n bits in BCD 


