
1

Numbering systems

Binary Numbers

 Each binary digit (called a bit) is either 1 or 0

 Bits have no inherent meaning, they can represent …

 Unsigned and signed integers

 Fractions

 Characters

 Images, sound, etc.

 Bit Numbering

 Least significant bit (LSB) is rightmost (bit 0)

 Most significant bit (MSB) is leftmost (bit 7 in an 8-bit number)

1 0 0 1 1 1 0 1

2 7 2 6 2 5 2 4 2 3 2 2 2 1 2 0

0 1 2 3 4 5 6 7

Most

Significant Bit
Least

Significant Bit

2

Decimal Value of Binary Numbers

 Each bit represents a power of 2

 Every binary number is a sum of powers of 2

 Decimal Value = (dn-1  2n-1) + ... + (d1  21) + (d0  20)

 Binary (10011101)2 =

1 0 0 1 1 1 0 1

2 7 2 6 2 5 2 4 2 3 2 2 2 1 2 0

0 1 2 3 4 5 6 7

Some common

powers of 2

27 + 24 + 23 + 22 + 1 = 157

Different Representations of Natural Numbers

 XXVII Roman numerals (not positional)

 27 Radix-10 or decimal number (positional)

110112 Radix-2 or binary number (also positional)

Fixed-radix positional representation with n digits

Number N in radix r = (dn–1dn–2 . . . d1d0)r

Nr Value = dn–1×r n–1 + dn–2×r n–2 + … + d1×r + d0

Examples: (11011)2 =

 (2107)8 =

Positional Number Systems

1×24 + 1×23 + 0×22 + 1×2 + 1 = 27

2×83 + 1×82 + 0×8 + 7 = 1095

3

Convert Decimal to Binary

 Repeatedly divide the decimal integer by 2

 Each remainder is a binary digit in the translated value

 Example: Convert 3710 to Binary

37 = (100101)2

least significant bit

most significant bit

stop when quotient is zero

Decimal to Binary Conversion

 N = (dn-1  2n-1) + ... + (d1  21) + (d0  20)

 Dividing N by 2 we first obtain

 Quotient1 = (dn-1  2n-2) + … + (d2  2) + d1

 Remainder1 = d0

 Therefore, first remainder is least significant bit of binary number

 Dividing first quotient by 2 we first obtain

 Quotient2 = (dn-1  2n-3) + … + (d3  2) + d2

 Remainder2 = d1

 Repeat dividing quotient by 2

 Stop when new quotient is equal to zero

 Remainders are the bits from least to most significant bit

4

Popular Number Systems

 Binary Number System: Radix = 2

 Only two digit values: 0 and 1

 Numbers are represented as 0s and 1s

 Octal Number System: Radix = 8

 Eight digit values: 0, 1, 2, …, 7

 Decimal Number System: Radix = 10

 Ten digit values: 0, 1, 2, …, 9

 Hexadecimal Number Systems: Radix = 16

 Sixteen digit values: 0, 1, 2, …, 9, A, B, …, F

 A = 10, B = 11, …, F = 15

 Octal and Hexadecimal numbers can be converted easily to
Binary and vice versa

Octal and Hexadecimal Numbers

 Octal = Radix 8

 Only eight digits: 0 to 7

 Digits 8 and 9 not used

 Hexadecimal = Radix 16

 16 digits: 0 to 9, A to F

 A=10, B=11, …, F=15

 First 16 decimal values (0

to15) and their values in

binary, octal and hex.

Memorize table

Decimal

Radix 10

Binary

Radix 2

Octal

Radix 8

Hex

Radix 16

0 0000 0 0

1 0001 1 1

2 0010 2 2

3 0011 3 3

4 0100 4 4

5 0101 5 5

6 0110 6 6

7 0111 7 7

8 1000 10 8

9 1001 11 9

10 1010 12 A

11 1011 13 B

12 1100 14 C

13 1101 15 D

14 1110 16 E

15 1111 17 F

5

Binary, Octal, and Hexadecimal

 Binary, Octal, and Hexadecimal are related:

 Radix 16 = 24 and Radix 8 = 23

 Hexadecimal digit = 4 bits and Octal digit = 3 bits

 Starting from least-significant bit, group each 4 bits into a hex

digit or each 3 bits into an octal digit

 Example: Convert 32-bit number into octal and hex

4 9 7 A 6 1 B E Hexadecimal

32-bit binary 0 0 1 0 1 0 0 1 1 1 1 0 0 1 0 1 0 1 1 0 1 0 0 0 1 1 0 1 0 1 1 1

4 2 6 3 2 5 5 0 3 5 3 Octal

 Octal to Decimal: N8 = (dn-1  8n-1) +... + (d1  8) + d0

 Hex to Decimal: N16 = (dn-1  16n-1) +... + (d1  16) + d0

 Examples:

 (7204)8 = (7  83) + (2  82) + (0  8) + 4 = 3716

 (3BA4)16 = (3  163) + (11  162) + (10  16) + 4 = 15268

Converting Octal & Hex to Decimal

6

Converting Decimal to Hexadecimal

422 = (1A6)16 stop when

quotient is zero

least significant digit

most significant digit

 Repeatedly divide the decimal integer by 16

 Each remainder is a hex digit in the translated value

 Example: convert 422 to hexadecimal

 To convert decimal to octal divide by 8 instead of 16

Important Properties

 How many possible digits can we have in Radix r ?

 r digits: 0 to r – 1

What is the result of adding 1 to the largest digit in Radix r?

 Since digit r is not represented, result is (10)r in Radix r

 Examples: 12 + 1 = (10)2 78 + 1 = (10)8

 910 + 1 = (10)10 F16 + 1 = (10)16

7

Representing Fractions

 A number Nr in radix r can also have a fraction part:

 Nr = dn-1dn-2 … d1d0 . d-1 d-2 … d-m+1 d-m

 The number Nr represents the value:

 Nr = dn-1 × rn-1 + … + d1 × r + d0 + (Integer Part)

 d-1 × r -1 + d-2 × r -2 … + d-m × r –m (Fraction Part)

Integer Part Fraction Part

0 ≤ di < r

Radix Point

 Nr =   +
j = -m i = 0

di × ri

i = n-1 j = -1

dj × rj

Examples of Numbers with Fractions

 (2409.87)10

 (1101.1001)2

 (703.64)8

 (A1F.8)16

 (423.1)5

 (263.5)6

= 2×103 + 4×102 + 9 + 8×10-1 + 7×10-2

= 23 + 22 + 20 + 2-1 + 2-4 = 13.5625

= 7×82 + 3 + 6×8-1 + 4×8-2 = 451.8125

= 10×162 + 16 + 15 + 8×16-1 = 2591.5

= 4×52 + 2×5 + 3 + 5-1 = 113.2

Digit 6 is NOT allowed in radix 6

8

Converting Decimal Fraction to Binary

 Convert N = 0.6875 to Radix 2

 Solution: Multiply N by 2 repeatedly & collect integer bits

 Stop when new fraction = 0.0, or when enough fraction bits

are obtained

 Therefore, N = 0.6875 = (0.1011)2

 Check (0.1011)2 = 2-1 + 2-3 + 2-4 = 0.6875

Multiplication New Fraction Bit

0.6875 × 2 = 1.375 0.375 1

0.375 × 2 = 0.75 0.75 0

0.75 × 2 = 1.5 0.5 1

0.5 × 2 = 1.0 0.0 1

First fraction bit

Last fraction bit

More Conversion Examples

 Convert N = 139.6875 to Octal (Radix 8)

 Solution: N = 139 + 0.6875 (split integer from fraction)

 The integer and fraction parts are converted separately

 Therefore, 139 = (213)8 and 0.6875 = (0.54)8

 Now, join the integer and fraction parts with radix point

 N = 139.6875 = (213.54)8

Multiplication New Fraction Digit

0.6875 × 8 = 5.5 0.5 5

0.5 × 8 = 4.0 0.0 4

Division Quotient Remainder

139 / 8 17 3

17 / 8 2 1

2 / 8 0 2

9

Simplified Conversions

 Converting fractions between Binary, Octal, and Hexadecimal

can be simplified

 Starting at the radix pointing, the integer part is converted

from right to left and the fractional part is converted from left

to right

 Group 4 bits into a hex digit or 3 bits into an octal digit

 Use binary to convert between octal and hexadecimal

A C 3 5 8 5 7

2 5 4 7 4 2 1 6 2 7

Binary 1 0 1 0 1 0 0 1 1 1 1 0 0 1 0 1 0 1 1 0 1 0 0 0 1 1 0 1 0 1 1 1 .

Hexadecimal B . 8

Octal 3 .

fraction: left to right integer: right to left

Adding Bits

 1 + 1 = 2, but 2 should be represented as (10)2 in binary

 Adding two bits: the sum is S and the carry is C

 Adding three bits: the sum is S and the carry is C

X

+ Y

C S

0

+ 0

0 0

0

+ 1

0 1

1

+ 0

0 1

1

+ 1

1 0

1

0

+ 0

0 1

1

0

+ 1

1 0

1

1

+ 0

1 0

1

1

+ 1

1 1

0

0

+ 0

0 0

0

0

+ 1

0 1

0

1

+ 0

0 1

0

1

+ 1

1 0

10

Signed Integers

 Highest bit indicates the sign

 1 = negative

 0 = positive 1 1 1 1 0 1 1 0

0 0 0 0 1 0 1 0

Sign bit

Negative

Positive

 There are three formats for representing negative

numbers

– Sign-magnitude

– 1’s complement

– 2’s complement

Sign-magnitude

• Sign-magnitude uses one bit for the sign (0=+, 1=-) and the

remaining bits represent the magnitude of the number as in the

case of unsigned numbers

• For example, using 4-bit numbers

+5=0101 -5=1101

+3=0011 -3=1011

+7=0111 -7=1111

• Although this is easy to understand, it is not well suited for

use in computers

11

1’s complement representation

• In the 1’s complement scheme, an n-bit negative number K,

is obtained simply by complementing each bit of the number,

including the sign bit.

Using 4-bit, write -5 and -3 in 1’s complement representation

5=(0101)2 >>>>>>> -5=(1010)2

3= (0011)2 >>>>>>>>> -3=(1100)2

2’s complement representation

In the 2’s complement scheme, an n-bit negative number K,

is obtained simply by adding 1 to its 1’s complement

12

Forming the Two's Complement

Sum of an integer and its 2's complement must be zero:

00100100 + 11011100 = 00000000 (8-bit sum)  Ignore Carry

Another way to obtain the 2's complement:

Start at the least significant 1

Leave all the 0s to its right unchanged

Complement all the bits to its left

starting value 00100100 = +36

step1: reverse the bits (1's complement) 11011011

step 2: add 1 to the value from step 1 + 1

sum = 2's complement representation 11011100 = -36

Binary Value

= 00100 1 00

2's Complement

= 11011 1 00

least

significant 1

Two's Complement Representation

8-bit Binary

value

Unsigned

value

Signed

value

00000000 0 0

00000001 1 +1

00000010 2 +2

.

01111110 126 +126

01111111 127 +127

10000000 128 -128

10000001 129 -127

.

11111110 254 -2

11111111 255 -1

 Positive numbers

 Signed value = Unsigned value

13

Binary Addition

 Start with the least significant bit (rightmost bit)

 Add each pair of bits

0 0 0 1 1 1 0 1

0 0 1 1 0 1 1 0

+

(54)

(29)

(83)

1 carry

0 1 2 3 4 bit position: 5 6 7

1 1 1

0 1 0 1 0 0 1 1

Binary Subtraction

When subtracting A – B, convert B to its 2's complement

 Add A to (–B), and ignore the end carry (if any)

 0 1 0 0 1 1 0 1 0 1 0 0 1 1 0 1

 0 0 1 1 1 0 1 0 1 1 0 0 0 1 1 0 (2's complement)

 0 0 0 1 0 0 1 1

– +

carry: 1 1 1 1

14

Carry and Overflow

 Carry is important when …

 Adding or subtracting unsigned integers

 Indicates that the unsigned sum is out of range

 Either < 0 or >maximum unsigned n-bit value

 Overflow is important when …

 Adding or subtracting signed integers

 Indicates that the signed sum is out of range

 Overflow occurs when

 Adding two positive numbers and the sum is negative

 Adding two negative numbers and the sum is positive

 Can happen because of the fixed number of sum bits

0 1 0 0 0 0 0 0

0 1 0 0 1 1 1 1
+

1 0 0 0 1 1 1 1

79

64

143

(-113)
Carry = 0 Overflow = 1

1

1 0 0 1 1 1 0 1

1 1 0 1 1 0 1 0
+

0 1 1 1 0 1 1 1

218 (-38)

157 (-99)

119

Carry = 1 Overflow = 1

1 1 1

Carry and Overflow Examples

We can have carry without overflow and vice-versa

 Four cases are possible (Examples are 8-bit numbers)

1 1 1 1 1 0 0 0

0 0 0 0 1 1 1 1
+

0 0 0 0 0 1 1 1

15

248 (-8)

7

Carry = 1 Overflow = 0

1 1 1 1 1

0 0 0 0 1 0 0 0

0 0 0 0 1 1 1 1
+

0 0 0 1 0 1 1 1

15

8

23

Carry = 0 Overflow = 0

1

15

Overflow Detection

overflow can be detected if carry into sign-bit does not equal

carry out of sign bit.

Sign Extension

Step 1: Move the number into the lower-significant bits

Step 2: Fill all the remaining higher bits with the sign bit

 This will ensure that both magnitude and sign are correct

 Examples

 Sign-Extend 10110011 to 16 bits

 Sign-Extend 01100010 to 16 bits

 Infinite 0s can be added to the left of a positive number

 Infinite 1s can be added to the left of a negative number

10110011 = -77 11111111 10110011 = -77

01100010 = +98 00000000 01100010 = +98

16

Shifting the Bits to the Left

What happens if the bits are shifted to the left by 1 bit position?

What happens if the bits are shifted to the left by 2 bit positions?

0 0 0 0 1 0 1 0

0 0 0 0 0 1 0 1 = 5 Before

After = 10

0 0 0 1 0 1 0 0

0 0 0 0 0 1 0 1 = 5 Before

After = 20

 Shifting the Bits to the Left by n bit positions is multiplication by 2n

 As long as we have sufficient space to store the bits

Multiplication

By 2

Multiplication

By 4

Shifting the Bits to the Right

What happens if the bits are shifted to the right by 1 bit position?

What happens if the bits are shifted to the right by 2 bit positions?

0 0 0 1 0 0 1 0

0 0 1 0 0 1 0 0 = 36 Before

After = 18, r=0

 Shifting the Bits to the Right by n bit positions is division by 2n

 The remainder r is the value of the bits that are shifted out

Division

By 2

Division

By 4 0 0 0 0 1 0 0 1

0 0 1 0 0 1 0 0 = 36 Before

After = 9, r=2

17

Binary Codes

 How to represent characters, colors, etc?

 Define the set of all represented elements

 Assign a unique binary code to each element of the set

 Given n bits, a binary code is a mapping from the set of

elements to a subset of the 2n binary numbers

 Suppose we want to code 7 colors of the rainbow

 As a minimum, we need 3 bits to define 7 unique values

 3 bits define 8 possible combinations

 Only 7 combinations are needed

 Code 111 is not used

 Other assignments are also possible

Example

Color 3-bit code

Red 000

Orange 001

Yellow 010

Green 011

Blue 100

Indigo 101

Violet 110

18

Binary Coded Decimal (BCD)

 Simplest binary code for decimal digits

 Only encodes ten digits from 0 to 9

 BCD is a weighted code

 The weights are 8,4,2,1

 Same weights as a binary number

 There are six invalid code words

 1010, 1011, 1100, 1101, 1110, 1111

 Example on BCD coding:

 13  (0001 0011)BCD

Decimal BCD

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

9 1001

Unused
1010
···
1111

Warning: Conversion or Coding?

 Do NOT mix up conversion of a decimal number to a binary

number with coding a decimal number with a binary code

 1310 = (1101)2 This is conversion

 13  (0001 0011)BCD This is coding

 In general, coding requires more bits than conversion

 A number with n decimal digits is coded with 4n bits in BCD

