Numbering systems

Binary Numbers

+«+ Each binary digit (called a bit) is either 1 or 0

+» Bits have no inherent meaning, they can represent ...

<> Unsigned and signed integers

<> Fractions Most Lonct
< Characters Signiﬁc\am Bit Signifi't/:antBit
< Images, sound, etc. 7 6 5 4 3 2 1 0
(1]ofof1]1][1]0[1]
+ Bit Numbering 22 22t 2 2 2

< Least significant bit (LSB) is rightmost (bit 0)

<> Most significant bit (MSB) is leftmost (bit 7 in an 8-bit number)

Decimal Value of Binary Numbers

+«+ Each bit represents a power of 2

+«+ Every binary number is a sum of powers of 2

R/
L X4

Decimal Value = (d,, x 271 + ... + (d; x 22) + (dg x 29)

R/
L X4

Binary (10011101),= 27+ 24+ 23+ 22+ 1 = 157

lecimal Value ecimal Value
9 6 3 4 9 a2 a4 6 2n Decimal Val 2n Decimal Val
1fofof1]1[1]0]1] > : a 256
1 2 79 512
27 26 25 24 23 22 21 20 _ - _ _
2 4 2 1024
23 8 21l 2048
2 16 22 4096
Some common E> > 5 5
powers of 2 26 o4 oM 16384
57

128 215 32768

Positional Number Systems

Different Representations of Natural Numbers

XXVII Roman numerals (not positional)
27 Radix-10 or decimal number (positional)
11011, Radix-2 or binary number (also positional)

Fixed-radix positional representation with n digits

Number N in radix r = (d,_,d,_, . . . d;d),

N, Value =d,_;xr ™1 +d ,xr"™2+ .. +d;xr+d,

Examples: (11011), = 1x24+ 1x23+0%x22+ 1x2+1=27
(2107)g = 2x83 + 1x82 +0x8 + 7 = 1095

Convert Decimal to Binary

“+ Repeatedly divide the decimal integer by 2

+«» Each remainder is a binary digit in the translated value

s Example: Convert 37,, to Binary

Division Quotient Remainder
3712 18 l «—
18/2 9 0
9/2 e 1
4/2 2 0
2/2 1 0

172 0 1 «—
L3

least significant bit

37 = (100101),

most significant bit

\— stop when quotient is zero

Decimal to Binary Conversion

@ N = (dyq x 200 + ...+ (dy x 21) + (dg x 29)

+ Dividing N by 2 we first obtain

< Quotient; = (d,; x 2™2) + ..

< Remainder; = d,
< Therefore, first remainder is least significant bit of binary number

+ Dividing first quotient by 2 we first obtain
< Quotient, = (d,; x 2™3) + ..

< Remainder, = d;
¢ Repeat dividing quotient by 2

< Stop when new quotient is equal to zero

4+ (dyx2) +d,

4+ (dyx 2) +d,

< Remainders are the bits from least to most significant bit

Popular Number Systems

+ Binary Number System: Radix = 2
< Only two digit values: 0 and 1
<~ Numbers are represented as 0s and 1s
% Octal Number System: Radix = 8
< Eight digit values: 0,1, 2, ..., 7
% Decimal Number System: Radix = 10
< Ten digit values: 0,1, 2, ..., 9
% Hexadecimal Number Systems: Radix = 16
< Sixteen digit values: 0, 1,2, ...,9,A,B, ..., F
<~ A=10,B=11,...,F=15

+ Octal and Hexadecimal numbers can be converted easily to

Binary and vice versa

Octal and Hexadecimal Numbers

o — : Decimal Binary Octal Hex
* Octal Radix 8 Radix 10 Radix 2 Radix 8 Radix 16
% Only eight digits: 0 to 7 0 0000 0 0
1 0001 1 1
% Digits 8 and 9 not used 2 0010 2 2
3 0011 3 3
% Hexadecimal = Radix 16 4 0100 4 4
5 0101 5 5
o e 6 0110 6 6
% 16 digits: 0to 9, Ato F = YER = =
o A _ _ 8 1000 10 8
% A=10,B=11, ..., F=15 S o1 n 5
. - . 10 1010 12 A
¢ First 16 decmal values_, (0] m TolL 3 A
tol5) and their values in 12 1100 14 c
binary, octal and hex. 13 1101 15 D
Memorize table 14 1110 16 E
15 1111 17 F

Binary, Octal, and Hexadecimal

« Binary, Octal, and Hexadecimal are related:
Radix 16 = 24 and Radix 8 = 23

+ Hexadecimal digit = 4 bits and Octal digit = 3 bits

+« Starting from least-significant bit, group each 4 bits into a hex

digit or each 3 bits into an octal digit

s Example: Convert 32-bit number into octal and hex

3530|552 |3]|]6]2]4

1/1/1|0/1/0{1|1|0|0|0[1|0|1|1|0(1|0|1|0|O(1|1|1|1|0(O(1|0|1|O|O

E B 1 6 A 7 9 4

Octal
32-bit binary

Hexadecimal

Converting Octal & Hex to Decimal

% Octal to Decimal: Ng = (d,,,; x 8™1) +... + (d; x 8) + d,

% Hex to Decimal: N, = (d, 4 x 16™1) +... + (d; x 16) + d,

s Examples:

(7204)g = (7 x 8%) + (2 x 82) + (0 x 8) + 4 = 3716

(3BA4),, = (3 x 16%) + (11 x 162) + (10 x 16) + 4 = 15268

Converting Decimal fo Hexadecimal

“ Repeatedly divide the decimal integer by 16
« Each remainder is a hex digit in the translated value

« Example: convert 422 to hexadecimal

Division Quotient Remainder
422/ 16 26 6 least significant digit
26/ 16 1 A
1716 0 1 <«———— most significant digit
. g g
422 = (1A6)16 stop when

quotient is zero

+¢+ To convert decimal to octal divide by 8 instead of 16

Important Properties

%+ How many possible digits can we have in Radix r ?
rdigits:0tor—1
s What is the result of adding 1 to the largest digit in Radix r?
Since digit r is not represented, result is (10), in Radix r
Examples: 1, + 1 = (10), 7g+1=(10)g
910+ 1 =(10)4 Fie+1=(10)

Representing Fractions

% A number N, in radix r can also have a fraction part:

N,=d,,d,5...d,dy.d ;d,...d ,,d, 0sd;<r
Integer Part Fraction Part
Radix Point
% The number N, represents the value:
N,=d, xr"1+ . .. +d;xr+d, + (Integer Part)
d,xrl+d,xr2..+d,xr™ (Fraction Part)
i=n-1 j=-1
— i i
N, = Zdixr + Z d; xrl
i=0 j=-m

Examples of Numbers with Fractions

% (2409.87)4, =2x10% + 4x10%2 + 9 + 8x101 + 7x102
% (1101.1001), =23+22+20+21+24=135625

% (703.64), =7%x82+ 3 + 6x81 +4x82=451.8125
% (A1F.8)44 =10x16°+ 16 + 15 + 8x161 = 2591.5
% (423.1), =4x52 +2x5+ 3 +51=113.2

% (263.5)¢ Digit 6 is NOT allowed in radix 6

% Convert N = 0.6875 to Radix 2
++ Solution: Multiply N by 2 repeatedly & collect integer bits

Converting Decimal Fraction to Binary

— First fraction bit

Multiplication New Fraction | Bit
0.6875 x 2 =1.375 0.375 1
0.375x2=0.75 0.75 0
0.75x2=15 0.5 1

05x2=1.0 0.0 1 A

— Last fraction bit

++ Stop when new fraction = 0.0, or when enough fraction bits
are obtained

% Therefore, N = 0.6875 = (0.1011),
% Check (0.1011), =21 + 23 + 24 = 0.6875

¢ Convert N =139.6875 to Octal (Radix 8)
++ Solution: N = 139 + 0.6875 (split integer from fraction)

More Conversion Examples

 The integer and fraction parts are converted separately

% Therefore, 139 = (213)g and 0.6875 = (0.54)4

+«* Now, join the integer and fraction parts with radix point
N =139.6875 = (213.54),

Division | Quotient | Remainder Multiplication New Fraction | Digit
139/8 17 3 0.6875x8=5.5 0.5 5
17/8 2 1 0.5x8=4.0 0.0 4

2/8 0 2

Simplified Conversions

% Converting fractions between Binary, Octal, and Hexadecimal
can be simplified

% Starting at the radix pointing, the integer part is converted
from right to left and the fractional part is converted from left
to right

% Group 4 bits into a hex digit or 3 bits into an octal digit
< integer: right to left — —— fraction: left to right —»

7 2 6 1 3 || 2 4 7 4 5 | 2| Octal

1/1/1|0/1/0{1|1|0|0(0[1|0|1|1|.[O[1|O|1|0[O|1|1|1|1|0|O|1|O(1|O

[y

Binary

7 5 8 B (.| 5 3 C A |8| Hexadecimal

+ Use binary to convert between octal and hexadecimal

Adding Bits

1+ 1=2, but2should be represented as (10), in binary

% Adding two bits: the sum is S and the carry is C

X 0 0 1 1
+Y +0 +1 +0 +1
CS 00 01 01 10

0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
+0 +1 +0 +1 +0 +1 +0 +1

Signed Integers

% Highest bit indicates the sign

< 1 =negative Sigrl bit
s 0 = positive ‘1‘1‘1‘1‘0‘1‘1‘0DNegative

(o [o Lo (o[o[+ o] rume

% There are three formats for representing negative
numbers
- Sign-magnitude
- 1’s complement

- 2's complement

Sign-magnitude

» Sign-magnitude uses one bit for the sign (0O=+, 1=-) and the
remaining bits represent the magnitude of the number as in the
case of unsigned numbers

* For example, using 4-bit numbers
+5=0101 -5=1101
+3=0011 -3=1011
+7=0111 -7=1111

+ Although this is easy to understand, it is not well suited for

use in computers

10

1’s complement representation

* In the 1’s complement scheme, an n-bit negative number K,
is obtained simply by complementing each bit of the number,
including the sign bit.

Using 4-bit, write -5 and -3 in 1’'s complement representation
5=(0101)2 >>>>>>> -5=(1010)2

3= (0011)2 >>>>>>>>> -3=(1100)2

2's complement representation

In the 2’s complement scheme, an n-bit negative number K,

is obtained simply by adding 1 to its 1’s complement

11

Forming the Two's Complement

starting value 00100100 = +36
stepl: reverse the bits (1's complement) 11011011
step 2: add 1 to the value from step 1 + 1
sum = 2's complement representation 11011100 = -36

Sum of an integer and its 2's complement must be zero:
00100100 + 11011100 = 00000000 (8-bit sum) = Ignore Carry

Another way to obtain the 2's complement:

Start at the least significant 1
Leave all the Os to its right unchanged
Complement all the bits to its left

N

Binary Value

least

0010 00 0 significant 1

's Complement

11011(1)o0

Two's Complement Representation

% Positive numbers 8-bit Binary | Unsigned | Signed
< Signed value = Unsigned value value value value
00000000 0 0
00000001 1 +1
00000010 2 +2
01111110 126 +126
01111111 127 +127
10000000 128 -128
10000001 129 -127
11111110 254 -2
11111111 255 -1

12

Binary Addition

¢+ Start with the least significant bit (rightmost bit)

% Add each pair of bits

carry 1 1 1 1
olof1]1]ol1][1]0] (5

+ (ojojol1]1|1]0/1] (29

ol1]ol1]olof1]1] (83)

bit position: 7 6 5 4 3 2 1 0

Binary Subtraction

“ When subtracting A — B, convert B to its 2's complement

% Add A to (—B), and ignore the end carry (if any)

carry:1 1 11
01001101 01001101
- > +
00111010 11000110 (2'scomplement)
00010011

13

Carry and Overflow

¢ Carry is important when ...
<~ Adding or subtracting unsigned integers
< Indicates that the unsigned sum is out of range
<~ Either < 0 or >maximum unsigned n-bit value
¢ Overflow is important when ...
<~ Adding or subtracting signed integers
< Indicates that the signed sum is out of range
++ Overflow occurs when
< Adding two positive humbers and the sum is negative
< Adding two negative numbers and the sum is positive
<> Can happen because of the fixed number of sum bits

Carry and Overflow Examples

% We can have carry without overflow and vice-versa
¢ Four cases are possible (Examples are 8-bit numbers)

1 1 1 1 1 1
‘0‘0‘0‘0‘1‘1‘1‘1‘ 15 ‘0‘0‘0‘0‘1‘1‘1‘1‘ 15
‘0‘0‘0‘0‘1‘0‘0‘0‘ 8 ‘1‘1‘1‘1‘1‘0‘0‘0‘248(-8)
ojofo|1]ol1][1]2] =8 olofolofol1]1|2]| 7

Carry =0 Overflow =0 Carry=1 Overflow =0

1 1 1 1

of1]ofo|1]1]1]1] 70 110 1]1]0]1]o0 2828

‘0‘1‘0‘0‘0‘0‘0‘0‘ 64 ‘1‘0‘0‘1‘1‘1‘0‘1‘157(-99)

‘1‘0‘0‘0‘1‘1‘1‘1‘ 143 ‘0‘1‘1‘1‘0‘1‘1‘1‘ 119
(-113)

Carry =0 Overflow =1 Carry =1 Overflow =1

14

Overflow Detection

overflow can be detected if carry into sign-bit does not equal

carry out of sign bit.

Sign Extension

Step 1: Move the number into the lower-significant bits
Step 2: Fill all the remaining higher bits with the sign bit
+¢+ This will ensure that both magnitude and sign are correct
s Examples

< Sign-Extend 10110011 to 16 bits

10110011 = -77 = 0110011
< Sign-Extend 01100010 to 16 bits

01100010 = +98 00000000 1100010

+¢ Infinite Os can be added to the left of a positive number

=77

+98

+¢ Infinite 1s can be added to the left of a negative number

15

Shifting the Bits to the Left

“ What happens if the bits are shifted to the left by 1 bit position?

Before| 0 |0 |0 0|0 |1]0]1|=5 Multiplication

After |0 |o|o|o|1|0]1]0]=10 By 2

“ What happens if the bits are shifted to the left by 2 bit positions?

Before| 0 |0 |0 0|0 |1]0]1]|=5 Multiplication

After |0 |o|o|1]0|1]0]0]=20 By 4

++ Shifting the Bits to the Left by n bit positions is multiplication by 2"
+* As long as we have sufficient space to store the bits

Shifting the Bits fo the Right

+» What happens if the bits are shifted to the right by 1 bit position?

Before| 0 |0 |1/0]0 /1|00 |=36 Division

After |0 |o|o|1]0|0]|1]0]|=18r=0 By 2

« What happens if the bits are shifted to the right by 2 bit positions?

Before‘O‘O‘l‘0‘0‘1‘0‘0‘:36 Division

After‘0‘0‘0\0\1‘0‘0‘1‘:9,r:2 By4

+ Shifting the Bits to the Right by n bit positions is division by 2"
« The remainder r is the value of the bits that are shifted out

16

Binary Codes

% How to represent characters, colors, etc?
+ Define the set of all represented elements
% Assign a unique binary code to each element of the set

% Given n bits, a binary code is a mapping from the set of
elements to a subset of the 2" binary numbers

Example

+» Suppose we want to code 7 colors of the rainbow
+« As a minimum, we need 3 bits to define 7 unique values

+¢ 3 bits define 8 possible combinations

Color | 3-bit code

% Only 7 combinations are needed Red 000
Orange 001

+» Code 111 is not used Yellow 010
Green 011

+« Other assignments are also possible Blue 100
Indigo 101
Violet 110

17

Binary Coded Decimal (BCD)

++ Simplest binary code for decimal digits

+ Only encodes ten digits from 0 to 9 Decimal | BCD
0 0000

% BCD is a weighted code 1 0001
2 0010

% The weights are 8,4,2,1 3 0011
. . 4 0100

% Same weights as a binary number 5 9101
. L . 6 0110
< There are six invalid code words 7 0111
8 1000

1010, 1011, 1100, 1101, 1110, 1211 5 ool
< Example on BCD coding: le1e
Unused <o

13 < (0001 0011)5-p 1111

Warning: Conversion or Coding?

%+ Do NOT mix up conversion of a decimal number to a binary
number with coding a decimal number with a binary code

% 13,,=(1101), This is conversion
% 13 < (0001 0011)gep This is coding
+ In general, coding requires more bits than conversion

¢ A number with n decimal digits is coded with 4n bits in BCD

18

