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Numbering systems 

Binary Numbers 

 Each binary digit (called a bit) is either 1 or 0 

 Bits have no inherent meaning, they can represent … 

 Unsigned and signed integers 

 Fractions 

 Characters 

 Images, sound, etc. 

 Bit Numbering 

 Least significant bit (LSB) is rightmost (bit 0) 

 Most significant bit (MSB) is leftmost (bit 7 in an 8-bit number) 

1 0 0 1 1 1 0 1 

2 7 2 6 2 5 2 4 2 3 2 2 2 1 2 0 

0 1 2 3 4 5 6 7 

Most 

Significant Bit 
Least 

Significant Bit 
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Decimal Value of Binary Numbers 

 Each bit represents a power of 2 

 Every binary number is a sum of powers of 2 

 Decimal Value = (dn-1  2n-1) + ... + (d1  21) + (d0  20) 

 Binary (10011101)2 = 

1 0 0 1 1 1 0 1 

2 7 2 6 2 5 2 4 2 3 2 2 2 1 2 0 

0 1 2 3 4 5 6 7 

Some common 

powers of 2 

27 + 24 + 23 + 22 + 1 = 157 

Different Representations of Natural Numbers 
 

 XXVII Roman numerals (not positional) 

 27 Radix-10 or decimal number (positional) 

110112 Radix-2 or binary number (also positional) 

Fixed-radix positional representation with n digits 

Number N in radix r = (dn–1dn–2 . . . d1d0)r
 

Nr Value = dn–1×r n–1 + dn–2×r n–2 + … + d1×r + d0 

Examples: (11011)2 = 

   (2107)8 = 

Positional Number Systems 

1×24 + 1×23 + 0×22 + 1×2 + 1 = 27 

2×83 + 1×82 + 0×8 + 7 = 1095 
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Convert Decimal to Binary 

 Repeatedly divide the decimal integer by 2 

 Each remainder is a binary digit in the translated value 

 Example: Convert 3710 to Binary 

37 = (100101)2 

least significant bit 

most significant bit 

stop when quotient is zero 

Decimal to Binary Conversion 

 N = (dn-1  2n-1) + ... + (d1  21) + (d0  20) 

 Dividing N by 2 we first obtain 

 Quotient1 = (dn-1  2n-2) + … + (d2  2) + d1 

 Remainder1 = d0 

 Therefore, first remainder is least significant bit of binary number 

 Dividing first quotient by 2 we first obtain 

 Quotient2 = (dn-1  2n-3) + … + (d3  2) + d2 

 Remainder2 = d1 

 Repeat dividing quotient by 2 

 Stop when new quotient is equal to zero 

 Remainders are the bits from least to most significant bit 
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Popular Number Systems 

 Binary Number System: Radix = 2 

 Only two digit values: 0 and 1 

 Numbers are represented as 0s and 1s 

 Octal Number System: Radix = 8 

 Eight digit values: 0, 1, 2, …, 7 

 Decimal Number System: Radix = 10 

 Ten digit values: 0, 1, 2, …, 9 

 Hexadecimal Number Systems: Radix = 16 

 Sixteen digit values: 0, 1, 2, …, 9, A, B, …, F 

 A = 10, B = 11, …, F = 15 

 Octal and Hexadecimal numbers can be converted easily to 
Binary and vice versa 

Octal and Hexadecimal Numbers 

 Octal = Radix 8 

 Only eight digits: 0 to 7 

 Digits 8 and 9 not used 

 Hexadecimal = Radix 16 

 16 digits: 0 to 9, A to F 

 A=10, B=11, …, F=15 

 First 16 decimal values (0 

to15) and their values in 

binary, octal and hex. 

Memorize table 

Decimal 

Radix 10 

Binary 

Radix 2 

Octal 

Radix 8 

Hex 

Radix 16 

0 0000 0 0 

1 0001 1 1 

2 0010 2 2 

3 0011 3 3 

4 0100 4 4 

5 0101 5 5 

6 0110 6 6 

7 0111 7 7 

8 1000 10 8 

9 1001 11 9 

10 1010 12 A 

11 1011 13 B 

12 1100 14 C 

13 1101 15 D 

14 1110 16 E 

15 1111 17 F 
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Binary, Octal, and Hexadecimal 

 Binary, Octal, and Hexadecimal are related: 

 Radix 16 = 24 and Radix 8 = 23 

 Hexadecimal digit = 4 bits and Octal digit = 3 bits 

 Starting from least-significant bit, group each 4 bits into a hex 

digit or each 3 bits into an octal digit 

 Example: Convert 32-bit number into octal and hex 

4 9 7 A 6 1 B E Hexadecimal 

32-bit binary 0 0 1 0 1 0 0 1 1 1 1 0 0 1 0 1 0 1 1 0 1 0 0 0 1 1 0 1 0 1 1 1 

4 2 6 3 2 5 5 0 3 5 3 Octal 

 Octal to Decimal: N8 = (dn-1  8n-1) +... + (d1  8) + d0 

 Hex to Decimal: N16 = (dn-1  16n-1) +... + (d1  16) + d0 

 Examples: 

 (7204)8 = (7  83) + (2  82) + (0  8) + 4 = 3716 

 (3BA4)16 = (3  163) + (11  162) + (10  16) + 4 = 15268 

Converting Octal & Hex to Decimal 
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Converting Decimal to Hexadecimal 

422 = (1A6)16 stop when 

quotient is zero 

least significant digit 

most significant digit 

 Repeatedly divide the decimal integer by 16 

 Each remainder is a hex digit in the translated value 

 Example: convert 422 to hexadecimal 

 To convert decimal to octal divide by 8 instead of 16 

Important Properties 

 How many possible digits can we have in Radix r ? 

 r digits: 0 to r – 1 

What is the result of adding 1 to the largest digit in Radix r? 

 Since digit r is not represented, result is (10)r in Radix r 

 Examples: 12 + 1 = (10)2  78 + 1 = (10)8 

   910 + 1 = (10)10 F16 + 1 = (10)16 
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Representing Fractions 

 A number Nr in radix r can also have a fraction part: 

 Nr = dn-1dn-2 … d1d0  . d-1 d-2 … d-m+1 d-m  

 

  

 The number Nr represents the value: 

 Nr = dn-1 × rn-1 + … + d1 × r + d0  + (Integer Part) 

  d-1 × r -1 + d-2 × r -2 … + d-m × r –m (Fraction Part) 

  

Integer Part Fraction Part 

0 ≤ di < r 

Radix Point 

 Nr =    + 
j = -m i = 0 

di × ri 

i = n-1 j = -1 

dj × rj 

Examples of Numbers with Fractions 

 (2409.87)10 

 (1101.1001)2 

 (703.64)8 

 (A1F.8)16  

 (423.1)5 

 (263.5)6 

= 2×103 + 4×102 + 9 + 8×10-1 + 7×10-2 

= 23 + 22 + 20 + 2-1 + 2-4 = 13.5625 

= 7×82 + 3 + 6×8-1 + 4×8-2 = 451.8125 

= 10×162 + 16 + 15 + 8×16-1 = 2591.5 

= 4×52 + 2×5 + 3 + 5-1 = 113.2 

Digit 6 is NOT allowed in radix 6 
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Converting Decimal Fraction to Binary 

 Convert N = 0.6875  to Radix 2 

 Solution: Multiply N by 2 repeatedly & collect integer bits 

  

 

 

 

 Stop when new fraction = 0.0, or when enough fraction bits 

are obtained 

 Therefore, N = 0.6875 = (0.1011)2 

 Check (0.1011)2 = 2-1 + 2-3 + 2-4 = 0.6875 

Multiplication New Fraction Bit 

0.6875 × 2 = 1.375 0.375 1 

0.375 × 2 = 0.75 0.75 0 

0.75 × 2 = 1.5 0.5 1 

0.5 × 2 = 1.0 0.0 1 

First fraction bit 

Last fraction bit 

More Conversion Examples  

 Convert N = 139.6875  to Octal (Radix 8) 

 Solution: N = 139 + 0.6875 (split integer from fraction) 

 The integer and fraction parts are converted separately 

 

 

 

 

 Therefore, 139 = (213)8 and 0.6875 = (0.54)8  

 Now, join the integer and fraction parts with radix point 

 N = 139.6875 = (213.54)8 

Multiplication New Fraction Digit 

0.6875 × 8 = 5.5 0.5 5 

0.5 × 8 = 4.0 0.0 4 

Division Quotient Remainder 

139 / 8 17 3 

17 / 8 2 1 

2 / 8 0 2 
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Simplified Conversions 

 Converting fractions between Binary, Octal, and Hexadecimal 

can be simplified 

 Starting at the radix pointing, the integer part is converted 

from right to left and the fractional part is converted from left 

to right 

 Group 4 bits into a hex digit or 3 bits into an octal digit 

 

 

 

 Use binary to convert between octal and hexadecimal 

A C 3 5 8 5 7 

2 5 4 7 4 2 1 6 2 7 

Binary 1 0 1 0 1 0 0 1 1 1 1 0 0 1 0 1 0 1 1 0 1 0 0 0 1 1 0 1 0 1 1 1 . 

Hexadecimal B . 8 

Octal 3 . 

fraction: left to right integer: right to left 

Adding Bits 

 1 + 1 = 2, but 2 should be represented as (10)2 in binary 

 Adding two bits: the sum is S and the carry is C 

 

 

 

 Adding three bits: the sum is S and the carry is C 

 

X 

+ Y 

C S 

0 

+ 0 

0 0 

0 

+ 1 

0 1 

1 

+ 0 

0 1 

1 

+ 1 

1 0 

1 

0 

+ 0 

0 1 

1 

0 

+ 1 

1 0 

1 

1 

+ 0 

1 0 

1 

1 

+ 1 

1 1 

0 

0 

+ 0 

0 0 

0 

0 

+ 1 

0 1 

0 

1 

+ 0 

0 1 

0 

1 

+ 1 

1 0 
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Signed Integers 

 Highest bit indicates the sign 

 1 = negative 

 0 = positive 1 1 1 1 0 1 1 0 

0 0 0 0 1 0 1 0 

Sign bit 

Negative 

Positive 

 There are three formats for  representing negative 

numbers 

– Sign-magnitude 

– 1’s complement 

– 2’s complement 

Sign-magnitude 

• Sign-magnitude uses one bit for the sign (0=+, 1=-) and the 

remaining bits represent the magnitude of the number as in the 

case of unsigned numbers 

• For example, using 4-bit numbers 

+5=0101 -5=1101 

+3=0011 -3=1011 

+7=0111 -7=1111 

• Although this is easy to understand, it is not well suited for 

use in computers 
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1’s complement representation 

• In the 1’s complement scheme, an n-bit negative number K, 

is obtained simply by complementing each bit of the number, 

including the sign bit. 

Using 4-bit, write -5 and -3 in 1’s complement representation 

5=(0101)2      >>>>>>>   -5=(1010)2 

3= (0011)2         >>>>>>>>>   -3=(1100)2 

2’s complement representation 

In the 2’s complement scheme, an n-bit negative number K, 

is obtained simply by adding 1 to its 1’s complement 
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Forming the Two's Complement 

Sum of an integer and its 2's complement must be zero: 

00100100 + 11011100 = 00000000 (8-bit sum)  Ignore Carry 

Another way to obtain the 2's complement: 

Start at the least significant 1 

Leave all the 0s to its right unchanged 

Complement all the bits to its left 

starting value 00100100 = +36 

step1: reverse the bits (1's complement) 11011011 

step 2: add 1 to the value from step 1 +      1 

sum = 2's complement representation 11011100 = -36 

Binary Value 

= 00100 1 00 

2's Complement 

= 11011 1 00 

least 

significant 1 

Two's Complement Representation 

8-bit Binary 

value 

Unsigned 

value 

Signed 

value 

00000000 0 0 

00000001 1 +1 

00000010 2 +2 

. . . . . . . . . 

01111110 126 +126 

01111111 127 +127 

10000000 128 -128 

10000001 129 -127 

. . . . . . . . . 

11111110 254 -2 

11111111 255 -1 

 Positive numbers 

 Signed value = Unsigned value 
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Binary Addition 

 Start with the least significant bit (rightmost bit) 

 Add each pair of bits 

0 0 0 1 1 1 0 1 

0 0 1 1 0 1 1 0 

+ 

(54) 

(29) 

(83) 

1 carry 

0 1 2 3 4 bit position: 5 6 7 

1 1 1 

0 1 0 1 0 0 1 1 

Binary Subtraction 

When subtracting A – B, convert B to its 2's complement 

 Add A to (–B), and ignore the end carry (if any) 

 

   0 1 0 0 1 1 0 1 0 1 0 0 1 1 0 1 

   0 0 1 1 1 0 1 0 1 1 0 0 0 1 1 0  (2's complement) 

          0 0 0 1 0 0 1 1   

– + 

carry: 1 1 1 1 
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Carry and Overflow 

 Carry is important when … 

 Adding or subtracting unsigned integers 

 Indicates that the unsigned sum is out of range 

 Either < 0 or >maximum unsigned n-bit value 

 Overflow is important when … 

 Adding or subtracting signed integers 

 Indicates that the signed sum is out of range 

 Overflow occurs when 

 Adding two positive numbers and the sum is negative 

 Adding two negative numbers and the sum is positive 

 Can happen because of the fixed number of sum bits 

0 1 0 0 0 0 0 0 

0 1 0 0 1 1 1 1 
+ 

1 0 0 0 1 1 1 1 

79 

64 

143 

(-113) 
Carry = 0    Overflow = 1 

1 

1 0 0 1 1 1 0 1 

1 1 0 1 1 0 1 0 
+ 

0 1 1 1 0 1 1 1 

218 (-38) 

157 (-99) 

119 

Carry = 1    Overflow = 1 

1 1 1 

Carry and Overflow Examples 

We can have carry without overflow and vice-versa 

 Four cases are possible (Examples are 8-bit numbers) 

1 1 1 1 1 0 0 0 

0 0 0 0 1 1 1 1 
+ 

0 0 0 0 0 1 1 1 

15 

248 (-8) 

7 

Carry = 1    Overflow = 0 

1 1 1 1 1 

0 0 0 0 1 0 0 0 

0 0 0 0 1 1 1 1 
+ 

0 0 0 1 0 1 1 1 

15 

8 

23 

Carry = 0    Overflow = 0 

1 
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Overflow Detection 

overflow can be detected if carry into sign-bit does not equal 

carry out of sign bit. 

Sign Extension 

Step 1: Move the number into the lower-significant bits 

Step 2: Fill all the remaining higher bits with the sign bit 

 This will ensure that both magnitude and sign are correct 

 Examples 

 Sign-Extend 10110011 to 16 bits 

 

 Sign-Extend 01100010 to 16 bits 

 

 Infinite 0s can be added to the left of a positive number 

 Infinite 1s can be added to the left of a negative number 

 

10110011 = -77 11111111 10110011 = -77 

01100010 = +98 00000000 01100010 = +98 
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Shifting the Bits to the Left 

What happens if the bits are shifted to the left by 1 bit position? 

What happens if the bits are shifted to the left by 2 bit positions? 

0 0 0 0 1 0 1 0 

0 0 0 0 0 1 0 1 = 5 Before 

After = 10 

0 0 0 1 0 1 0 0 

0 0 0 0 0 1 0 1 = 5 Before 

After = 20 

 Shifting the Bits to the Left by n bit positions is multiplication by 2n 

 As long as we have sufficient space to store the bits 

Multiplication 

By 2 

Multiplication 

By 4 

Shifting the Bits to the Right 

What happens if the bits are shifted to the right by 1 bit position? 

What happens if the bits are shifted to the right by 2 bit positions? 

0 0 0 1 0 0 1 0 

0 0 1 0 0 1 0 0 = 36 Before 

After = 18, r=0 

 Shifting the Bits to the Right by n bit positions is division by 2n 

 The remainder r is the value of the bits that are shifted out 

Division 

By 2 

Division 

By 4 0 0 0 0 1 0 0 1 

0 0 1 0 0 1 0 0 = 36 Before 

After = 9, r=2 
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Binary Codes 

 How to represent characters, colors, etc? 

 Define the set of all represented elements 

 Assign a unique binary code to each element of the set 

 Given n bits, a binary code is a mapping from the set of 

elements to a subset of the 2n binary numbers 

 Suppose we want to code 7 colors of the rainbow 

 As a minimum, we need 3 bits to define 7 unique values 

 3 bits define 8 possible combinations 

 Only 7 combinations are needed 

 Code 111 is not used 

 Other assignments are also possible 

Example 

Color 3-bit code 

Red 000 

Orange 001 

Yellow 010 

Green 011 

Blue 100 

Indigo 101 

Violet 110 
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Binary Coded Decimal (BCD) 

 Simplest binary code for decimal digits 

 Only encodes ten digits from 0 to 9 

 BCD is a weighted code 

 The weights are 8,4,2,1 

 Same weights as a binary number 

 There are six invalid code words 

 1010, 1011, 1100, 1101, 1110, 1111 

 Example on BCD coding: 

 13   (0001 0011)BCD 

Decimal BCD 

0 0000 

1 0001 

2 0010 

3 0011 

4 0100 

5 0101 

6 0110 

7 0111 

8 1000 

9 1001 

Unused 
1010 
··· 
1111 

Warning: Conversion or Coding? 

 Do NOT mix up conversion of a decimal number to a binary 

number with coding a decimal number with a binary code 

 1310 = (1101)2 This is conversion 

 13   (0001 0011)BCD This is coding 

 In general, coding requires more bits than conversion 

 A number with n decimal digits is coded with 4n bits in BCD 


