
1

Numbering systems

Binary Numbers

 Each binary digit (called a bit) is either 1 or 0

 Bits have no inherent meaning, they can represent …

 Unsigned and signed integers

 Fractions

 Characters

 Images, sound, etc.

 Bit Numbering

 Least significant bit (LSB) is rightmost (bit 0)

 Most significant bit (MSB) is leftmost (bit 7 in an 8-bit number)

1 0 0 1 1 1 0 1

2 7 2 6 2 5 2 4 2 3 2 2 2 1 2 0

0 1 2 3 4 5 6 7

Most

Significant Bit
Least

Significant Bit

2

Decimal Value of Binary Numbers

 Each bit represents a power of 2

 Every binary number is a sum of powers of 2

 Decimal Value = (dn-1 2n-1) + ... + (d1 21) + (d0 20)

 Binary (10011101)2 =

1 0 0 1 1 1 0 1

2 7 2 6 2 5 2 4 2 3 2 2 2 1 2 0

0 1 2 3 4 5 6 7

Some common

powers of 2

27 + 24 + 23 + 22 + 1 = 157

Different Representations of Natural Numbers

 XXVII Roman numerals (not positional)

 27 Radix-10 or decimal number (positional)

110112 Radix-2 or binary number (also positional)

Fixed-radix positional representation with n digits

Number N in radix r = (dn–1dn–2 . . . d1d0)r

Nr Value = dn–1×r n–1 + dn–2×r n–2 + … + d1×r + d0

Examples: (11011)2 =

 (2107)8 =

Positional Number Systems

1×24 + 1×23 + 0×22 + 1×2 + 1 = 27

2×83 + 1×82 + 0×8 + 7 = 1095

3

Convert Decimal to Binary

 Repeatedly divide the decimal integer by 2

 Each remainder is a binary digit in the translated value

 Example: Convert 3710 to Binary

37 = (100101)2

least significant bit

most significant bit

stop when quotient is zero

Decimal to Binary Conversion

 N = (dn-1 2n-1) + ... + (d1 21) + (d0 20)

 Dividing N by 2 we first obtain

 Quotient1 = (dn-1 2n-2) + … + (d2 2) + d1

 Remainder1 = d0

 Therefore, first remainder is least significant bit of binary number

 Dividing first quotient by 2 we first obtain

 Quotient2 = (dn-1 2n-3) + … + (d3 2) + d2

 Remainder2 = d1

 Repeat dividing quotient by 2

 Stop when new quotient is equal to zero

 Remainders are the bits from least to most significant bit

4

Popular Number Systems

 Binary Number System: Radix = 2

 Only two digit values: 0 and 1

 Numbers are represented as 0s and 1s

 Octal Number System: Radix = 8

 Eight digit values: 0, 1, 2, …, 7

 Decimal Number System: Radix = 10

 Ten digit values: 0, 1, 2, …, 9

 Hexadecimal Number Systems: Radix = 16

 Sixteen digit values: 0, 1, 2, …, 9, A, B, …, F

 A = 10, B = 11, …, F = 15

 Octal and Hexadecimal numbers can be converted easily to
Binary and vice versa

Octal and Hexadecimal Numbers

 Octal = Radix 8

 Only eight digits: 0 to 7

 Digits 8 and 9 not used

 Hexadecimal = Radix 16

 16 digits: 0 to 9, A to F

 A=10, B=11, …, F=15

 First 16 decimal values (0

to15) and their values in

binary, octal and hex.

Memorize table

Decimal

Radix 10

Binary

Radix 2

Octal

Radix 8

Hex

Radix 16

0 0000 0 0

1 0001 1 1

2 0010 2 2

3 0011 3 3

4 0100 4 4

5 0101 5 5

6 0110 6 6

7 0111 7 7

8 1000 10 8

9 1001 11 9

10 1010 12 A

11 1011 13 B

12 1100 14 C

13 1101 15 D

14 1110 16 E

15 1111 17 F

5

Binary, Octal, and Hexadecimal

 Binary, Octal, and Hexadecimal are related:

 Radix 16 = 24 and Radix 8 = 23

 Hexadecimal digit = 4 bits and Octal digit = 3 bits

 Starting from least-significant bit, group each 4 bits into a hex

digit or each 3 bits into an octal digit

 Example: Convert 32-bit number into octal and hex

4 9 7 A 6 1 B E Hexadecimal

32-bit binary 0 0 1 0 1 0 0 1 1 1 1 0 0 1 0 1 0 1 1 0 1 0 0 0 1 1 0 1 0 1 1 1

4 2 6 3 2 5 5 0 3 5 3 Octal

 Octal to Decimal: N8 = (dn-1 8n-1) +... + (d1 8) + d0

 Hex to Decimal: N16 = (dn-1 16n-1) +... + (d1 16) + d0

 Examples:

 (7204)8 = (7 83) + (2 82) + (0 8) + 4 = 3716

 (3BA4)16 = (3 163) + (11 162) + (10 16) + 4 = 15268

Converting Octal & Hex to Decimal

6

Converting Decimal to Hexadecimal

422 = (1A6)16 stop when

quotient is zero

least significant digit

most significant digit

 Repeatedly divide the decimal integer by 16

 Each remainder is a hex digit in the translated value

 Example: convert 422 to hexadecimal

 To convert decimal to octal divide by 8 instead of 16

Important Properties

 How many possible digits can we have in Radix r ?

 r digits: 0 to r – 1

What is the result of adding 1 to the largest digit in Radix r?

 Since digit r is not represented, result is (10)r in Radix r

 Examples: 12 + 1 = (10)2 78 + 1 = (10)8

 910 + 1 = (10)10 F16 + 1 = (10)16

7

Representing Fractions

 A number Nr in radix r can also have a fraction part:

 Nr = dn-1dn-2 … d1d0 . d-1 d-2 … d-m+1 d-m

 The number Nr represents the value:

 Nr = dn-1 × rn-1 + … + d1 × r + d0 + (Integer Part)

 d-1 × r -1 + d-2 × r -2 … + d-m × r –m (Fraction Part)

Integer Part Fraction Part

0 ≤ di < r

Radix Point

 Nr = +
j = -m i = 0

di × ri

i = n-1 j = -1

dj × rj

Examples of Numbers with Fractions

 (2409.87)10

 (1101.1001)2

 (703.64)8

 (A1F.8)16

 (423.1)5

 (263.5)6

= 2×103 + 4×102 + 9 + 8×10-1 + 7×10-2

= 23 + 22 + 20 + 2-1 + 2-4 = 13.5625

= 7×82 + 3 + 6×8-1 + 4×8-2 = 451.8125

= 10×162 + 16 + 15 + 8×16-1 = 2591.5

= 4×52 + 2×5 + 3 + 5-1 = 113.2

Digit 6 is NOT allowed in radix 6

8

Converting Decimal Fraction to Binary

 Convert N = 0.6875 to Radix 2

 Solution: Multiply N by 2 repeatedly & collect integer bits

 Stop when new fraction = 0.0, or when enough fraction bits

are obtained

 Therefore, N = 0.6875 = (0.1011)2

 Check (0.1011)2 = 2-1 + 2-3 + 2-4 = 0.6875

Multiplication New Fraction Bit

0.6875 × 2 = 1.375 0.375 1

0.375 × 2 = 0.75 0.75 0

0.75 × 2 = 1.5 0.5 1

0.5 × 2 = 1.0 0.0 1

First fraction bit

Last fraction bit

More Conversion Examples

 Convert N = 139.6875 to Octal (Radix 8)

 Solution: N = 139 + 0.6875 (split integer from fraction)

 The integer and fraction parts are converted separately

 Therefore, 139 = (213)8 and 0.6875 = (0.54)8

 Now, join the integer and fraction parts with radix point

 N = 139.6875 = (213.54)8

Multiplication New Fraction Digit

0.6875 × 8 = 5.5 0.5 5

0.5 × 8 = 4.0 0.0 4

Division Quotient Remainder

139 / 8 17 3

17 / 8 2 1

2 / 8 0 2

9

Simplified Conversions

 Converting fractions between Binary, Octal, and Hexadecimal

can be simplified

 Starting at the radix pointing, the integer part is converted

from right to left and the fractional part is converted from left

to right

 Group 4 bits into a hex digit or 3 bits into an octal digit

 Use binary to convert between octal and hexadecimal

A C 3 5 8 5 7

2 5 4 7 4 2 1 6 2 7

Binary 1 0 1 0 1 0 0 1 1 1 1 0 0 1 0 1 0 1 1 0 1 0 0 0 1 1 0 1 0 1 1 1 .

Hexadecimal B . 8

Octal 3 .

fraction: left to right integer: right to left

Adding Bits

 1 + 1 = 2, but 2 should be represented as (10)2 in binary

 Adding two bits: the sum is S and the carry is C

 Adding three bits: the sum is S and the carry is C

X

+ Y

C S

0

+ 0

0 0

0

+ 1

0 1

1

+ 0

0 1

1

+ 1

1 0

1

0

+ 0

0 1

1

0

+ 1

1 0

1

1

+ 0

1 0

1

1

+ 1

1 1

0

0

+ 0

0 0

0

0

+ 1

0 1

0

1

+ 0

0 1

0

1

+ 1

1 0

10

Signed Integers

 Highest bit indicates the sign

 1 = negative

 0 = positive 1 1 1 1 0 1 1 0

0 0 0 0 1 0 1 0

Sign bit

Negative

Positive

 There are three formats for representing negative

numbers

– Sign-magnitude

– 1’s complement

– 2’s complement

Sign-magnitude

• Sign-magnitude uses one bit for the sign (0=+, 1=-) and the

remaining bits represent the magnitude of the number as in the

case of unsigned numbers

• For example, using 4-bit numbers

+5=0101 -5=1101

+3=0011 -3=1011

+7=0111 -7=1111

• Although this is easy to understand, it is not well suited for

use in computers

11

1’s complement representation

• In the 1’s complement scheme, an n-bit negative number K,

is obtained simply by complementing each bit of the number,

including the sign bit.

Using 4-bit, write -5 and -3 in 1’s complement representation

5=(0101)2 >>>>>>> -5=(1010)2

3= (0011)2 >>>>>>>>> -3=(1100)2

2’s complement representation

In the 2’s complement scheme, an n-bit negative number K,

is obtained simply by adding 1 to its 1’s complement

12

Forming the Two's Complement

Sum of an integer and its 2's complement must be zero:

00100100 + 11011100 = 00000000 (8-bit sum) Ignore Carry

Another way to obtain the 2's complement:

Start at the least significant 1

Leave all the 0s to its right unchanged

Complement all the bits to its left

starting value 00100100 = +36

step1: reverse the bits (1's complement) 11011011

step 2: add 1 to the value from step 1 + 1

sum = 2's complement representation 11011100 = -36

Binary Value

= 00100 1 00

2's Complement

= 11011 1 00

least

significant 1

Two's Complement Representation

8-bit Binary

value

Unsigned

value

Signed

value

00000000 0 0

00000001 1 +1

00000010 2 +2

.

01111110 126 +126

01111111 127 +127

10000000 128 -128

10000001 129 -127

.

11111110 254 -2

11111111 255 -1

 Positive numbers

 Signed value = Unsigned value

13

Binary Addition

 Start with the least significant bit (rightmost bit)

 Add each pair of bits

0 0 0 1 1 1 0 1

0 0 1 1 0 1 1 0

+

(54)

(29)

(83)

1 carry

0 1 2 3 4 bit position: 5 6 7

1 1 1

0 1 0 1 0 0 1 1

Binary Subtraction

When subtracting A – B, convert B to its 2's complement

 Add A to (–B), and ignore the end carry (if any)

 0 1 0 0 1 1 0 1 0 1 0 0 1 1 0 1

 0 0 1 1 1 0 1 0 1 1 0 0 0 1 1 0 (2's complement)

 0 0 0 1 0 0 1 1

– +

carry: 1 1 1 1

14

Carry and Overflow

 Carry is important when …

 Adding or subtracting unsigned integers

 Indicates that the unsigned sum is out of range

 Either < 0 or >maximum unsigned n-bit value

 Overflow is important when …

 Adding or subtracting signed integers

 Indicates that the signed sum is out of range

 Overflow occurs when

 Adding two positive numbers and the sum is negative

 Adding two negative numbers and the sum is positive

 Can happen because of the fixed number of sum bits

0 1 0 0 0 0 0 0

0 1 0 0 1 1 1 1
+

1 0 0 0 1 1 1 1

79

64

143

(-113)
Carry = 0 Overflow = 1

1

1 0 0 1 1 1 0 1

1 1 0 1 1 0 1 0
+

0 1 1 1 0 1 1 1

218 (-38)

157 (-99)

119

Carry = 1 Overflow = 1

1 1 1

Carry and Overflow Examples

We can have carry without overflow and vice-versa

 Four cases are possible (Examples are 8-bit numbers)

1 1 1 1 1 0 0 0

0 0 0 0 1 1 1 1
+

0 0 0 0 0 1 1 1

15

248 (-8)

7

Carry = 1 Overflow = 0

1 1 1 1 1

0 0 0 0 1 0 0 0

0 0 0 0 1 1 1 1
+

0 0 0 1 0 1 1 1

15

8

23

Carry = 0 Overflow = 0

1

15

Overflow Detection

overflow can be detected if carry into sign-bit does not equal

carry out of sign bit.

Sign Extension

Step 1: Move the number into the lower-significant bits

Step 2: Fill all the remaining higher bits with the sign bit

 This will ensure that both magnitude and sign are correct

 Examples

 Sign-Extend 10110011 to 16 bits

 Sign-Extend 01100010 to 16 bits

 Infinite 0s can be added to the left of a positive number

 Infinite 1s can be added to the left of a negative number

10110011 = -77 11111111 10110011 = -77

01100010 = +98 00000000 01100010 = +98

16

Shifting the Bits to the Left

What happens if the bits are shifted to the left by 1 bit position?

What happens if the bits are shifted to the left by 2 bit positions?

0 0 0 0 1 0 1 0

0 0 0 0 0 1 0 1 = 5 Before

After = 10

0 0 0 1 0 1 0 0

0 0 0 0 0 1 0 1 = 5 Before

After = 20

 Shifting the Bits to the Left by n bit positions is multiplication by 2n

 As long as we have sufficient space to store the bits

Multiplication

By 2

Multiplication

By 4

Shifting the Bits to the Right

What happens if the bits are shifted to the right by 1 bit position?

What happens if the bits are shifted to the right by 2 bit positions?

0 0 0 1 0 0 1 0

0 0 1 0 0 1 0 0 = 36 Before

After = 18, r=0

 Shifting the Bits to the Right by n bit positions is division by 2n

 The remainder r is the value of the bits that are shifted out

Division

By 2

Division

By 4 0 0 0 0 1 0 0 1

0 0 1 0 0 1 0 0 = 36 Before

After = 9, r=2

17

Binary Codes

 How to represent characters, colors, etc?

 Define the set of all represented elements

 Assign a unique binary code to each element of the set

 Given n bits, a binary code is a mapping from the set of

elements to a subset of the 2n binary numbers

 Suppose we want to code 7 colors of the rainbow

 As a minimum, we need 3 bits to define 7 unique values

 3 bits define 8 possible combinations

 Only 7 combinations are needed

 Code 111 is not used

 Other assignments are also possible

Example

Color 3-bit code

Red 000

Orange 001

Yellow 010

Green 011

Blue 100

Indigo 101

Violet 110

18

Binary Coded Decimal (BCD)

 Simplest binary code for decimal digits

 Only encodes ten digits from 0 to 9

 BCD is a weighted code

 The weights are 8,4,2,1

 Same weights as a binary number

 There are six invalid code words

 1010, 1011, 1100, 1101, 1110, 1111

 Example on BCD coding:

 13 (0001 0011)BCD

Decimal BCD

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

9 1001

Unused
1010
···
1111

Warning: Conversion or Coding?

 Do NOT mix up conversion of a decimal number to a binary

number with coding a decimal number with a binary code

 1310 = (1101)2 This is conversion

 13 (0001 0011)BCD This is coding

 In general, coding requires more bits than conversion

 A number with n decimal digits is coded with 4n bits in BCD

