
1

Boolean Algebra and

Logic Gates

Boolean Algebra

 Two-valued Boolean algebra is also called switching algebra

 A set of two values: B = {0, 1}

 Three basic operations: AND, OR, and NOT

 The AND operator is denoted by a dot (·)

 𝑥 · 𝑦 or 𝑥𝑦 is read: 𝑥 AND 𝑦

 The OR operator is denoted by a plus (+)

 𝑥 + 𝑦 is read: 𝑥 OR 𝑦

 The NOT operator is denoted by (') or an overbar (¯).

 𝑥′ or 𝑥 is the complement of 𝑥

2

Importance of Boolean Algebra

 Our objective is to learn how to design digital circuits

 These circuits use signals with two possible values

 Logic 0 is a low voltage signal (around 0 volts)

 Logic 1 is a high voltage signal (e.g. 5 or 3.3 volts)

 Having only two logic values (0 and 1) simplifies the

implementation of the digital circuit

Postulates of Boolean Algebra

1. Closure: the result of any Boolean operation is in B = {0, 1}

2. Identity element with respect to + is 0: 𝑥 + 0 = 0 + 𝑥 = 𝑥

 Identity element with respect to · is 1: 𝑥 · 1 = 1 · 𝑥 = 𝑥

3. Commutative with respect to +: 𝑥 + 𝑦 = 𝑦 + 𝑥

 Commutative with respect to ·: 𝑥 · 𝑦 = 𝑦 · 𝑥

4. · is distributive over +: 𝑥 · (𝑦 + 𝑧) = (𝑥 · 𝑦) + (𝑥 · 𝑧)

 + is distributive over ·: 𝑥 + (𝑦 · 𝑧) = (𝑥 + 𝑦) · (𝑥 + 𝑧)

5. For every 𝑥 in B, there exists 𝑥′ in B (called complement of 𝑥)

such that: 𝑥 + 𝑥′ = 1 and 𝑥 · 𝑥′ = 0

3

AND, OR, and NOT Operators

 The following tables define 𝑥 · 𝑦, 𝑥 + 𝑦, and 𝑥′

 𝑥 · 𝑦 is the AND operator

 𝑥 + 𝑦 is the OR operator

 𝑥′ is the NOT operator

x y x·y

0 0 0

0 1 0

1 0 0

1 1 1

x y x+y

0 0 0

0 1 1

1 0 1

1 1 1

x x'

0 1

1 0

Boolean Functions

 Boolean functions are described by expressions that consist of:

 Boolean variables, such as: 𝑥, 𝑦, etc.

 Boolean constants: 0 and 1

 Boolean operators: AND (·), OR (+), NOT (')

 Parentheses, which can be nested

 Example: 𝑓 = 𝑥 𝑦 + 𝑤′𝑧

 The dot operator is implicit and need not be written

 Operator precedence: to avoid ambiguity in expressions

 Expressions within parentheses should be evaluated first

 The NOT (') operator should be evaluated second

 The AND (·) operator should be evaluated third

 The OR (+) operator should be evaluated last

4

Truth Table

 A truth table can represent a Boolean function

 List all possible combinations of 0's and 1's assigned to variables

 If n variables then 2n rows

 Example: Truth table for 𝑓 = 𝑥𝑦′ + 𝑥′𝑧

x y z y' xy' x' x'z f = xy'+ x'z

0 0 0 1 0 1 0 0

0 0 1 1 0 1 1 1

0 1 0 0 0 1 0 0

0 1 1 0 0 1 1 1

1 0 0 1 1 0 0 1

1 0 1 1 1 0 0 1

1 1 0 0 0 0 0 0

1 1 1 0 0 0 0 0

DeMorgan's Theorem

 (𝑥 + 𝑦)′ = 𝑥′ 𝑦′

 (𝑥 𝑦)′ = 𝑥′ + 𝑦′

x y x' y' x+y (x+y)' x'y' x y (x y)' x'+ y'

0 0 1 1 0 1 1 0 1 1

0 1 1 0 1 0 0 0 1 1

1 0 0 1 1 0 0 0 1 1

1 1 0 0 1 0 0 1 0 0

Can be verified

Using a Truth Table

Identical Identical

 Generalized DeMorgan's Theorem:

 𝑥1 + 𝑥2 +⋯+ 𝑥𝑛
′ = 𝑥1
′ ∙ 𝑥2
′ ∙ ⋯ ∙ 𝑥𝑛

′

 𝑥1 ∙ 𝑥2 ∙ ⋯ ∙ 𝑥𝑛
′ = 𝑥1
′ + 𝑥2
′ + ⋯+ 𝑥𝑛

′

5

Complementing Boolean Functions

What is the complement of 𝑓 = 𝑥′𝑦𝑧′ + 𝑥𝑦′𝑧′ ?

 Use DeMorgan's Theorem:

 Complement each variable and constant

 Interchange AND and OR operators

 So, what is the complement of 𝑓 = 𝑥′𝑦𝑧′ + 𝑥𝑦′𝑧′ ?

 Answer: 𝑓′ = (𝑥 + 𝑦′ + 𝑧)(𝑥′ + 𝑦 + 𝑧)

 Example 2: Complement 𝑔 = (𝑎′ + 𝑏𝑐)𝑑′ + 𝑒

 Answer: 𝑔′ = (𝑎(𝑏′ + 𝑐′) + 𝑑)𝑒′

Algebraic Manipulation of Expressions

 The objective is to acquire skills in manipulating Boolean

expressions, to transform them into simpler form.

 Example 1: prove 𝑥 + 𝑥𝑦 = 𝑥 (absorption theorem)

 Proof: 𝑥 + 𝑥𝑦 = 𝑥 · 1 + 𝑥𝑦 𝑥 · 1 = 𝑥

 = 𝑥 · (1 + 𝑦) Distributive · over +

 = 𝑥 · 1 = 𝑥 (1 + 𝑦) = 1

 Example 2: prove 𝑥 + 𝑥′𝑦 = 𝑥 + 𝑦 (simplification theorem)

 Proof: 𝑥 + 𝑥′𝑦 = (𝑥 + 𝑥′)(𝑥 + 𝑦) Distributive + over ·

 = 1 · (𝑥 + 𝑦) (𝑥 + 𝑥′) = 1

 = 𝑥 + 𝑦

6

Duality Principle

 The dual of a Boolean expression can be obtained by:

 Interchanging AND (·) and OR (+) operators

 Interchanging 0's and 1's

 Example: the dual of 𝑥(𝑦 + 𝑧′) is 𝑥 + 𝑦𝑧′

 The complement operator does not change

 The properties of Boolean algebra appear in dual pairs

 If a property is proven to be true then its dual is also true

Property Dual Property

Identity 𝑥 + 0 = 𝑥 𝑥 · 1 = 𝑥

Complement 𝑥 + 𝑥′ = 1 𝑥 · 𝑥′ = 0

Distributive 𝑥 (𝑦 + 𝑧) = 𝑥𝑦 + 𝑥𝑧 𝑥 + 𝑦𝑧 = (𝑥 + 𝑦)(𝑥 + 𝑧)

Summary of Boolean Algebra

Property Dual Property

Identity 𝑥 + 0 = 𝑥 𝑥 · 1 = 𝑥

Complement 𝑥 + 𝑥′ = 1 𝑥 · 𝑥′ = 0

Null 𝑥 + 1 = 1 𝑥 · 0 = 0

Idempotence 𝑥 + 𝑥 = 𝑥 𝑥 · 𝑥 = 𝑥

Involution (𝑥′)′ = 𝑥

Commutative 𝑥 + 𝑦 = 𝑦 + 𝑥 𝑥 𝑦 = 𝑦 𝑥

Associative (𝑥 + 𝑦) + 𝑧 = 𝑥 + (𝑦 + 𝑧) 𝑥 𝑦 𝑧 = 𝑥 (𝑦 𝑧)

Distributive 𝑥 (𝑦 + 𝑧) = 𝑥𝑦 + 𝑥𝑧 𝑥 + 𝑦𝑧 = (𝑥 + 𝑦)(𝑥 + 𝑧)

Absorption 𝑥 + 𝑥𝑦 = 𝑥 𝑥(𝑥 + 𝑦) = 𝑥

Simplification 𝑥 + 𝑥′𝑦 = 𝑥 + 𝑦 𝑥(𝑥′ + 𝑦) = 𝑥𝑦

De Morgan (𝑥 + 𝑦)′ = 𝑥′ 𝑦′ 𝑥 𝑦 ′ = 𝑥′ + 𝑦′

7

Logic Gates and Symbols

𝑥

𝑦
𝑥 · 𝑦

AND gate

𝑥

𝑦
𝑥 + 𝑦

OR gate

𝑥′ 𝑥

NOT gate (inverter)

 In the earliest computers, relays were used as mechanical

switches controlled by electricity (coils)

 Today, tiny transistors are used as electronic switches that

implement the logic gates (CMOS technology)

AND: Switches in series

logic 0 is open switch

OR: Switches in parallel

logic 0 is open switch

NOT: Switch is normally

closed when x is 0

𝑥 𝑦
𝑥

𝑦

𝑥′

Truth Table and Logic Diagram

 Given the following logic function: 𝑓 = 𝑥(𝑦′ + 𝑧)

 Draw the corresponding truth table and logic diagram

Truth Table

x y z y'+ z f = x(y'+ z)

0 0 0 1 0

0 0 1 1 0

0 1 0 0 0

0 1 1 1 0

1 0 0 1 1

1 0 1 1 1

1 1 0 0 0

1 1 1 1 1

Truth Table and Logic Diagram

describe the same function 𝑓.

Truth table is unique, but logic

expression and logic diagram

are not. This gives flexibility in

implementing logic functions.

𝑥

𝑦

𝑓 = 𝑥(𝑦′ + 𝑧)

𝑧

Logic Diagram

8

Combinational Circuit

 A combinational circuit is a block of logic gates having:

 𝑛 inputs: 𝑥1, 𝑥2, … , 𝑥𝑛

 𝑚 outputs: 𝑓1, 𝑓2, … , 𝑓𝑚

 Each output is a function of the input variables

 Each output is determined from present combination of inputs

 Combination circuit performs operation specified by logic gates


 Combinational

Circuit



𝑛 inputs 𝑚 outputs

Example of a Simple Combinational Circuit

 The above circuit has:

 Three inputs: 𝑥, 𝑦, and 𝑧

 Two outputs: 𝑓 and 𝑔

What are the logic expressions of 𝑓 and 𝑔 ?

 Answer: 𝑓 = 𝑥𝑦 + 𝑧′

 𝑔 = 𝑥𝑦 + 𝑦𝑧

𝑥

𝑦 𝑓

𝑔

𝑧

9

From Truth Tables to Gate Implementation

 Given the truth table of a Boolean function 𝑓, how do we

implement the truth table using logic gates?

Truth Table

x y z f

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

What is the logic expression of 𝑓?

What is the gate implementation of 𝑓?

To answer these questions, we need

to define Minterms and Maxterms

Minterms and Maxterms

Minterms are AND terms with every variable present in either

true or complement form

Maxterms are OR terms with every variable present in either

true or complement form

Minterms and Maxterms for 2 variables 𝑥 and 𝑦

 For n variables, there are 2n Minterms and Maxterms

x y index Minterm Maxterm

0 0 0 𝑚0 = 𝑥′𝑦′ 𝑀0 = 𝑥 + 𝑦

0 1 1 𝑚1 = 𝑥′𝑦 𝑀1 = 𝑥 + 𝑦′

1 0 2 𝑚2 = 𝑥𝑦′ 𝑀2 = 𝑥′ + 𝑦

1 1 3 𝑚3 = 𝑥𝑦 𝑀3 = 𝑥′ + 𝑦′

10

Minterms and Maxterms for 3 Variables

Maxterm 𝑀𝑖 is the complement of Minterm 𝑚𝑖

𝑀𝑖 = 𝑚𝑖′ and 𝑚𝑖 = 𝑀𝑖′

x y z index Minterm Maxterm

0 0 0 0 𝑚0 = 𝑥
′𝑦′𝑧′ 𝑀0 = 𝑥 + 𝑦 + 𝑧

0 0 1 1 𝑚1 = 𝑥
′𝑦′𝑧 𝑀1 = 𝑥 + 𝑦 + 𝑧′

0 1 0 2 𝑚2 = 𝑥′𝑦𝑧′ 𝑀2 = 𝑥 + 𝑦′ + 𝑧

0 1 1 3 𝑚3 = 𝑥′𝑦𝑧 𝑀3 = 𝑥 + 𝑦
′ + 𝑧′

1 0 0 4 𝑚4 = 𝑥𝑦
′𝑧′ 𝑀4 = 𝑥′ + 𝑦 + 𝑧

1 0 1 5 𝑚5 = 𝑥𝑦
′𝑧 𝑀5 = 𝑥′ + 𝑦 + 𝑧′

1 1 0 6 𝑚6 = 𝑥𝑦𝑧′ 𝑀6 = 𝑥′ + 𝑦′ + 𝑧

1 1 1 7 𝑚7 = 𝑥𝑦𝑧 𝑀7 = 𝑥′ + 𝑦
′ + 𝑧′

Purpose of the Index

Minterms and Maxterms are designated with an index

 The index for the Minterm or Maxterm, expressed as a

binary number, is used to determine whether the variable

is shown in the true or complemented form

 For Minterms:

 ‘1’ means the variable is Not Complemented

 ‘0’ means the variable is Complemented

 For Maxterms:

 ‘0’ means the variable is Not Complemented

 ‘1’ means the variable is Complemented

11

Sum-Of-Minterms (SOM) Canonical Form

Sum of Minterm entries

that evaluate to ‘1’

Truth Table

x y z f Minterm

0 0 0 0

0 0 1 0

0 1 0 1 𝑚2 = 𝑥′𝑦𝑧′

0 1 1 1 𝑚3 = 𝑥′𝑦𝑧

1 0 0 0

1 0 1 1 𝑚5 = 𝑥𝑦′𝑧

1 1 0 0

1 1 1 1 𝑚7 = 𝑥𝑦𝑧

Focus on the ‘1’ entries

𝑓 = 𝑚2 +𝑚3 +𝑚5 +𝑚7

𝑓 = 2, 3, 5, 7

𝑓 = 𝑥′𝑦𝑧′ + 𝑥′𝑦𝑧 + 𝑥𝑦′𝑧 + 𝑥𝑦𝑧

Examples of Sum-Of-Minterms

 𝑓 𝑎, 𝑏, 𝑐, 𝑑 = (2, 3, 6, 10, 11)

 𝑓 𝑎, 𝑏, 𝑐, 𝑑 = 𝑚2 +𝑚3 +𝑚6 +𝑚10 +𝑚11

 𝑓 𝑎, 𝑏, 𝑐, 𝑑 = 𝑎′𝑏′𝑐𝑑′ + 𝑎′𝑏′𝑐𝑑 + 𝑎′𝑏𝑐𝑑′ + 𝑎𝑏′𝑐𝑑′ + 𝑎𝑏′𝑐𝑑

 𝑔 𝑎, 𝑏, 𝑐, 𝑑 = (0, 1, 12, 15)

 𝑔 𝑎, 𝑏, 𝑐, 𝑑 = 𝑚0 +𝑚1 +𝑚12 +𝑚15

 𝑔 𝑎, 𝑏, 𝑐, 𝑑 = 𝑎′𝑏′𝑐′𝑑′ + 𝑎′𝑏′𝑐′𝑑 + 𝑎𝑏𝑐′𝑑′ + 𝑎𝑏𝑐𝑑

12

Product-Of-Maxterms (POM) Canonical Form

Truth Table

x y z f Maxterm

0 0 0 0 𝑀0 = 𝑥 + 𝑦 + 𝑧

0 0 1 0 𝑀1 = 𝑥 + 𝑦 + 𝑧′

0 1 0 1

0 1 1 1

1 0 0 0 𝑀4 = 𝑥′ + 𝑦 + 𝑧

1 0 1 1

1 1 0 0 𝑀6 = 𝑥′ + 𝑦′ + 𝑧

1 1 1 1

Product of Maxterm entries

that evaluate to ‘0’

Focus on the ‘0’ entries

𝑓 = 𝑀0 · 𝑀1 · 𝑀4 · 𝑀6

𝑓 = 0,1, 4, 6

𝑓 = (𝑥 + 𝑦 + 𝑧)(𝑥 + 𝑦 + 𝑧′)(𝑥′ + 𝑦 + 𝑧)(𝑥′ + 𝑦′ + 𝑧)

Examples of Product-Of-Maxterms

 𝑓 𝑎, 𝑏, 𝑐, 𝑑 = (1, 3, 11)

 𝑓(𝑎, 𝑏, 𝑐, 𝑑) = 𝑀1 ∙ 𝑀3 ∙ 𝑀11

 𝑓(𝑎, 𝑏, 𝑐, 𝑑) = 𝑎 + 𝑏 + 𝑐 + 𝑑′ 𝑎 + 𝑏 + 𝑐′ + 𝑑′ (𝑎′ + 𝑏 + 𝑐′ + 𝑑′)

 𝑔 𝑎, 𝑏, 𝑐, 𝑑 = (0, 5, 13)

 𝑔(𝑎, 𝑏, 𝑐, 𝑑) = 𝑀0 ∙ 𝑀5 ∙ 𝑀13

 𝑓(𝑎, 𝑏, 𝑐, 𝑑) = 𝑎 + 𝑏 + 𝑐 + 𝑑 𝑎 + 𝑏′ + 𝑐 + 𝑑′ (𝑎′ + 𝑏′ + 𝑐 + 𝑑′)

13

Conversions between Canonical Forms

 The same Boolean function 𝑓 can be expressed in two ways:

 Sum-of-Minterms 𝑓 = 𝑚0 +𝑚2 +𝑚3 +𝑚5 +𝑚7 = (0, 2, 3, 5, 7)

 Product-of-Maxterms 𝑓 = 𝑀1 ∙ 𝑀4 ∙ 𝑀6 = (1, 4, 6)

x y z f Minterms Maxterms

0 0 0 1 𝑚0 = 𝑥
′𝑦′𝑧′

0 0 1 0 𝑀1 = 𝑥 + 𝑦 + 𝑧′

0 1 0 1 𝑚2 = 𝑥
′𝑦𝑧′

0 1 1 1 𝑚3 = 𝑥
′𝑦𝑧

1 0 0 0 𝑀4 = 𝑥′ + 𝑦 + 𝑧

1 0 1 1 𝑚5 = 𝑥𝑦′𝑧

1 1 0 0 𝑀6 = 𝑥′ + 𝑦′ + 𝑧

1 1 1 1 𝑚7 = 𝑥𝑦𝑧

To convert from one canonical

form to another, interchange

the symbols  and  and list

those numbers missing from

the original form.

Truth Table

Function Complement

Given a Boolean function 𝑓

𝑓(𝑥, 𝑦, 𝑧) = 0, 2, 3, 5, 7 = (1, 4, 6)

Then, the complement 𝑓′ of function 𝑓

𝑓′(𝑥, 𝑦, 𝑧) = 0, 2, 3, 5, 7 = (1, 4, 6)

x y z f f'

0 0 0 1 0

0 0 1 0 1

0 1 0 1 0

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 0 1

1 1 1 1 0

The complement of a function expressed by a

Sum of Minterms is the Product of Maxterms

with the same indices. Interchange the symbols

 and , but keep the same list of indices.

Truth Table

14

Summary of Minterms and Maxterms

 There are 2n Minterms and Maxterms for Boolean functions with

n variables, indexed from 0 to 2n – 1

Minterms correspond to the 1-entries of the function

Maxterms correspond to the 0-entries of the function

 Any Boolean function can be expressed as a Sum-of-Minterms

and as a Product-of-Maxterms

 For a Boolean function, given the list of Minterm indices one can

determine the list of Maxterms indices (and vice versa)

 The complement of a Sum-of-Minterms is a Product-of-Maxterms

with the same indices (and vice versa)

Sum-of-Products and Products-of-Sums

 Canonical forms contain a larger number of literals

 Because the Minterms (and Maxterms) must contain, by definition, all

the variables either complemented or not

 Another way to express Boolean functions is in standard form

 Two standard forms: Sum-of-Products and Product-of -Sums

 Sum of Products (SOP)

 Boolean expression is the ORing (sum) of AND terms (products)

 Examples: 𝑓1 = 𝑥𝑦′ + 𝑥𝑧 𝑓2 = 𝑦 + 𝑥𝑦′𝑧

 Products of Sums (POS)

 Boolean expression is the ANDing (product) of OR terms (sums)

 Examples: 𝑓3 = (𝑥 + 𝑧)(𝑥′ + 𝑦′) 𝑓4 = 𝑥(𝑥′ + 𝑦′ + 𝑧)

15

Two-Level Gate Implementation

𝑓1 = 𝑥𝑦′ + 𝑥𝑧

𝑥

𝑦′
𝑓1

𝑥

𝑧

𝑓2 = 𝑦 + 𝑥𝑦′𝑧

𝑦

𝑦′

𝑓2 𝑥

𝑧 3-input AND gate AND-OR

implementations

𝑓3 = (𝑥 + 𝑧)(𝑥
′ + 𝑦′)

𝑥

𝑧
𝑓3

𝑥′

𝑦′

𝑓4 = 𝑥(𝑥
′ + 𝑦′ + 𝑧)

𝑥

𝑓4 𝑥′
𝑦′
𝑧 3-input OR gate OR-AND

implementations

Two-Level vs. Three-Level Implementation

 ℎ = 𝑎𝑏 + 𝑐𝑑 + 𝑐𝑒 (6 literals) is a sum-of-products

 ℎ may also be written as: ℎ = 𝑎𝑏 + 𝑐(𝑑 + 𝑒) (5 literals)

 However, ℎ = 𝑎𝑏 + 𝑐(𝑑 + 𝑒) is a non-standard form

 ℎ = 𝑎𝑏 + 𝑐(𝑑 + 𝑒) is not a sum-of-products nor a product-of-sums

2-level implementation

ℎ = 𝑎𝑏 + 𝑐𝑑 + 𝑐𝑒

3-level implementation

ℎ = 𝑎𝑏 + 𝑐(𝑑 + 𝑒)

𝑎

𝑏

ℎ
𝑐

𝑑

𝑐

𝑒 3-input OR gate

𝑎

𝑏

ℎ 𝑐

𝑑

𝑒

16

Additional Logic Gates and Symbols

Why?

 Low cost implementation

 Useful in implementing Boolean functions

𝑥

𝑦
𝑥 · 𝑦

AND gate

𝑥

𝑦
𝑥 + 𝑦

OR gate

𝑥′ 𝑥

NOT gate (inverter)

𝑥

𝑦
𝑥 · 𝑦 ′

NAND gate

𝑥

𝑦
(𝑥 + 𝑦)′

NOR gate

𝑥

𝑦
𝑥 ⊕ 𝑦

XOR gate

𝑥

𝑦
(𝑥 ⊕ 𝑦)′

XNOR gate

𝑥 𝑥

Buffer

NAND Gate

 The NAND gate has the following symbol and truth table

 NAND represents NOT AND

 The small bubble circle represents the invert function

x y NAND

0 0 1

0 1 1

1 0 1

1 1 0

𝑥
𝑦

𝑥 · 𝑦 ′ = 𝑥′ + 𝑦′

NAND gate 𝑥
𝑦

𝑥′ + 𝑦′

Another symbol for NAND

17

NOR Gate

 The NOR gate has the following symbol and truth table

 NOR represents NOT OR

 The small bubble circle represents the invert function

x y NOR

0 0 1

0 1 0

1 0 0

1 1 0

𝑥
𝑦

𝑥 + 𝑦 ′ = 𝑥′ · 𝑦′

NOR gate 𝑥
𝑦

𝑥′ · 𝑦′

Another symbol for NOR

The NAND Gate is Universal

 NAND gates can implement any Boolean function

 NAND gates can be used as inverters, or to implement AND/OR

 A single-input NAND gate is an inverter

𝑥 NAND 𝑥 = (𝑥 · 𝑥)′ = 𝑥′

 AND is equivalent to NAND with inverted output

(𝑥 NAND 𝑦)′ = ((𝑥 · 𝑦)′)′ = 𝑥 · 𝑦 (AND)

 OR is equivalent to NAND with inverted inputs

(𝑥′ NAND 𝑦′) = (𝑥′ · 𝑦′)′ = 𝑥 + 𝑦 (OR)

𝑥

𝑦
𝑥 · 𝑦

𝑥

𝑦
𝑥 + 𝑦

𝑥′

𝑦′

18

The NOR Gate is also Universal

 NOR gates can implement any Boolean function

 NOR gates can be used as inverters, or to implement AND/OR

 A single-input NOR gate is an inverter

𝑥 NOR 𝑥 = (𝑥 + 𝑥)′ = 𝑥′

 OR is equivalent to NOR with inverted output

(𝑥 NOR 𝑦)′ = ((𝑥 + 𝑦)′)′ = 𝑥 + 𝑦 (OR)

 AND is equivalent to NOR with inverted inputs

(𝑥′ NOR 𝑦′) = (𝑥′ + 𝑦′)′ = 𝑥 · 𝑦 (AND)

𝑥

𝑦
𝑥 + 𝑦

𝑥

𝑦
𝑥 · 𝑦

𝑥′

𝑦′

Multiple-Input NAND / NOR Gates

NAND/NOR gates can have multiple inputs, similar to AND/OR gates

𝑥

𝑦
𝑥 · 𝑦 ′

2-input NAND gate

𝑥

𝑧
𝑥 · 𝑦 · 𝑧 ′

3-input NAND gate

𝑦

𝑤

𝑧
𝑤 · 𝑥 · 𝑦 · 𝑧 ′

4-input NAND gate

𝑦
𝑥

𝑥

𝑦
𝑥 + 𝑦 ′

2-input NOR gate

𝑥

𝑧
𝑥 + 𝑦 + 𝑧 ′

3-input NOR gate

𝑦

𝑤

𝑧
𝑤 + 𝑥 + 𝑦 + 𝑧 ′

4-input NOR gate

𝑦
𝑥

Note: a 3-input NAND is a single gate, NOT a combination of two 2-input gates.

The same can be said about other multiple-input NAND/NOR gates.

19

NAND – NAND Implementation

 Consider the following sum-of-products expression:

𝑓 = 𝑏𝑑 + 𝑎′𝑐𝑑′

 A 2-level AND-OR circuit can be converted easily to a 2-level

NAND-NAND implementation

𝑏

𝑑
𝑓

𝑎′
𝑐
𝑑′

2-Level AND-OR

𝑏

𝑑
𝑓

𝑎′
𝑐
𝑑′

Inserting Bubbles

Two successive bubbles on same line cancel each other

𝑏

𝑑
𝑓

𝑎′
𝑐
𝑑′

2-Level NAND-NAND

3-input

NAND gate

3-input

AND gate

NOR – NOR Implementation

 Consider the following product-of-sums expression:

𝑔 = (𝑎 + 𝑑)(𝑏 + 𝑐 + 𝑑′)

 A 2-level OR-AND circuit can be converted easily to a 2-level

NOR-NOR implementation

Two successive bubbles on same line cancel each other

2-Level OR-AND

𝑎

𝑑
𝑔

𝑏
𝑐
𝑑′

Inserting Bubbles

𝑎

𝑑
𝑔

𝑏
𝑐
𝑑′

2-Level NOR-NOR

𝑎

𝑑
𝑔

𝑏
𝑐
𝑑′ 3-input

NOR gate

3-input

OR gate

20

Exclusive OR / Exclusive NOR

 Exclusive OR (XOR) is an important Boolean operation used

extensively in logic circuits

 Exclusive NOR (XNOR) is the complement of XOR

𝑥
𝑦

𝑥 ⨁ 𝑦

XOR gate

𝑥
𝑦

(𝑥 ⨁ 𝑦)′

XNOR gate

x y XOR

0 0 0

0 1 1

1 0 1

1 1 0

x y XNOR

0 0 1

0 1 0

1 0 0

1 1 1

XNOR is also known

as equivalence

XOR / XNOR Functions

 The XOR function is: 𝑥 ⨁ 𝑦 = 𝑥𝑦′ + 𝑥′𝑦

 The XNOR function is: (𝑥 ⨁ 𝑦)′ = 𝑥𝑦 + 𝑥′𝑦′

 XOR and XNOR gates are complex

 Can be implemented as a true gate, or by

 Interconnecting other gate types

 XOR and XNOR gates do not exist for more than two inputs

 For 3 inputs, use two XOR gates

 The cost of a 3-input XOR gate is greater than the cost of two XOR gates

 Uses for XOR and XNOR gates include:

 Adders, subtractors, multipliers, counters, incrementers, decrementers

 Parity generators and checkers

21

XOR and XNOR Properties

 𝑥 ⨁ 0 = 𝑥 𝑥 ⨁ 1 = 𝑥′

 𝑥 ⨁ 𝑥 = 0 𝑥 ⨁ 𝑥′ = 1

 𝑥 ⨁ 𝑦 = 𝑦 ⨁ 𝑥

 𝑥′ ⨁ 𝑦′ = 𝑥 ⨁ 𝑦

 𝑥 ⨁ 𝑦 ′ = 𝑥′ ⨁ 𝑦 = 𝑥 ⨁ 𝑦′

XOR and XNOR are associative operations

 𝑥 ⨁ 𝑦 ⨁ 𝑧 = 𝑥 ⨁ 𝑦 ⨁ 𝑧 = 𝑥 ⨁ 𝑦 ⨁ 𝑧

 𝑥 ⨁ 𝑦 ′ ⨁ 𝑧
′
= 𝑥 ⨁ (𝑦 ⨁ 𝑧)′ ′ = 𝑥 ⨁ 𝑦 ⨁ 𝑧

