Boolean Algebra and

Logic Gates

Boolean Algebra

+ Two-valued Boolean algebra is also called switching algebra
+ A set of two values: B = {0, 1}
+ Three basic operations: AND, OR, and NOT
+» The AND operator is denoted by a dot (-)
< x-yorxyisread: x AND y
* The OR operator is denoted by a plus (+)
- x+yisread: x OR y
+« The NOT operator is denoted by (') or an overbar ().

< x' or x is the complement of x



Importance of Boolean Algebra

+¢+ Our objective is to learn how to design digital circuits
¢ These circuits use signals with two possible values
+« Logic 0 is a low voltage signal (around 0 volts)

+« Logic 1 is a high voltage signal (e.g. 5 or 3.3 volts)

+ Having only two logic values (0 and 1) simplifies the
implementation of the digital circuit

Postulates of Boolean Algebra

1. Closure: the result of any Boolean operation is in B = {0, 1}

2. ldentity element with respectto +is0: x +0=04+x =x
Identity element with respectto - isl:x-1=1-x=x

3. Commutative with respectto+: x +y =y +x
Commutative with respectto -:x-y = y-x

4. . is distributive over +: x - (y+2z) = (x - y) + (x - 2)
+ is distributive over i x4+ (y-z) = (x+y) - (x + 2)

5. For every x in B, there exists x’ in B (called complement of x)
suchthat: x +x'=1andx-x"=0



AND, OR, and NOT Operators

% The following tables define x - y, x + y, and x’
% x -y is the AND operator
% x + yis the OR operator

% x'" is the NOT operator

Xy Xy Xy X+y X X
0 0 0 00 (%] 1
01 0 01 1 1 (9]
10 0 10 1
11 1 11 1

Boolean Functions

+ Boolean functions are described by expressions that consist of:
<~ Boolean variables, such as: x, y, etc.
<~ Boolean constants: 0 and 1
<~ Boolean operators: AND (-), OR (+), NOT (")
< Parentheses, which can be nested
% Example: f=x(y+w'z)
< The dot operator is implicit and need not be written
¢+ Operator precedence: to avoid ambiguity in expressions
<~ Expressions within parentheses should be evaluated first
<~ The NOT (') operator should be evaluated second
<- The AND (-) operator should be evaluated third
<~ The OR (+) operator should be evaluated last



Truth Table

¢ A truth table can represent a Boolean function
+ List all possible combinations of 0's and 1's assigned to variables
% If n variables then 2" rows

% Example: Truth table for f = xy' + x'z

X y z y Xy X x'z f=xy'+x'z

@ 0 0o 1 0 1 0 0

6 0 1 1 0 1 1 1

e 1 0 0 0 1 0 0

6 1 1 ) 0 1 1 1

1 0 o 1 1 ) ) 1

1 0 1 1 1 0 0 1

11 o ) ) 0 ) 0

11 1 0 0 0 0 0

DeMorgan's Theorem
*x+y) =Y Can be verified
S xy) =x +y Using a Truth Table
x oy x' oy oxwy () x'y' ) xy [((xy)' ) x'+y
@ o 1 1 0 1 1 0 1 1
@ 1 1 @ 1 0 0 0 1 1
1 e o 1 1 0 0 0 1 1
1 1 o o 1 0 0 1 e A\ ©
Identical Identical

% Generalized DeMorgan's Theorem:
o (xl + x, + ..._|_xn)’ = xi.xé e x1'1

0:0 (xl -xz -...-xn), :x:ll +xé + ...+ x;l



Complementing Boolean Functions

% What is the complement of f = x'yz' + xy'z' ?
% Use DeMorgan's Theorem:

< Complement each variable and constant

< Interchange AND and OR operators
% So, what is the complement of f = x'yz" + xy'z"' ?
Answer: f'=(x+y' +2)(x' +y + 2)
% Example 2: Complement g = (a’ + bc)d' + e

% Answer: g' = (a(b' + ") + d)e’

Algebraic Manipulation of Expressions

% The objective is to acquire skills in manipulating Boolean
expressions, to transform them into simpler form.

% Example 1: prove x + xy = x (absorption theorem)

% Proofix+xy=x-1+xy x-1=x
=x-(1+y) Distributive - over +
=x-1=x Q+y)=1

% Example 2: prove x + x'y = x + y (simplification theorem)

% Proof: x + x'y = (x + x)(x + y) Distributive + over -
=1-(x+y) x+x)=1
=x+Yy



Duality Principle

% The dual of a Boolean expression can be obtained by:
< Interchanging AND (-) and OR (+) operators
< Interchanging O's and 1's

< Example: the dual of x(y + z') is x + yz’

<+ The complement operator does not change

% The properties of Boolean algebra appear in dual pairs

< If a property is proven to be true then its dual is also true

Property Dual Property
Identity x+0=x x-1=x
Complement x+x' =1 x-x'=0
Distributive x(y+2z) =xy+xz x+yz =x+y)(x+2)
Summary of Boolean Algebra
Property Dual Property
Identity x+0=x x-1=x
Complement x+x' =1 x-x'=0
Null x+1=1 x-0=0
Idempotence xX+x=x X X=X
Involution x) =x
Commutative x+y =y+x Xy =yx
Associative x+y)+z=x+@y+2 xy)z =xy2)
Distributive x(y+z) =xy+xz x+yz =x+y)(x+2)
Absorption x+xy = x x(x+y) =x
Simplification x+x'y =x+y x(x'+y) = xy
De Morgan (x+y) =xy xy)' =x"+y



Logic Gates and Symbols

x x
x - x + x—Do—x’

y
AND gate OR gate NOT gate (inverter)
X

X !
o — ? .
—_— —_— y —_—

AND: Switches in series OR: Switches in parallel NOT: Switch is normally

logic O is open switch logic 0 is open switch closed when x is 0

+ In the earliest computers, relays were used as mechanical
switches controlled by electricity (coils)

% Today, tiny transistors are used as electronic switches that
implement the logic gates (CMOS technology)

Truth Table and Logic Diagram

% Given the following logic function: f = x(y' + z)

+«» Draw the corresponding truth table and logic diagram

Truth Table Logic Diagram
X z '+z f=x(y'+z x ,
y y (y'+2) f=x(' +7)
000 1 0
y
001 1 0
z
0160 0 0
011 1 0 Truth Table and Logic Diagram
100 1 1 describe the_ sam_e function f. _
Truth table is unique, but logic
101 1 1 . . .
expression and logic diagram
1160 0 0 are not. This gives flexibility in
111 1 1 implementing logic functions.




Combinational Circuit

+« A combinational circuit is a block of logic gates having:
n iNputs: x,, x,, ..., X,
m outputs: f, f, ., fm
+ Each output is a function of the input variables
+« Each output is determined from present combination of inputs

+«+» Combination circuit performs operation specified by logic gates

—>] —>
— Combinational [—

n inputs : . m outputs
Circuit L

Example of a Simple Combinational Circuit
AT =

«* The above circuit has:

< Three inputs: x, y, and z

< Two outputs: f and g
“ What are the logic expressions of f and g ?
% Answer: f=xy+2

g=xy+tyz



From Truth Tables to Gate Implementation

+ Given the truth table of a Boolean function f, how do we

implement the truth table using logic gates?

Truth Table

-

What is the logic expression of f?

What is the gate implementation of f?

To answer these questions, we need

to define Minterms and Maxterms

P P P PO O O O X
R PO O B P O oKX
P ® P ®© P ®© B ©®© N
P ®O P ®© P P ®© O

Minterms and Maxterms
“ Minterms are AND terms with every variable present in either
true or complement form

“ Maxterms are OR terms with every variable present in either
true or complement form

Minterms and Maxterms for 2 variables x and y

X y index Minterm Maxterm
0 0 0 my = x"y' My=x+y
0 1 1 my =x"y My=x+y
1 0 2 m, =xy' M,=x"+y
1 1 3 ms = xy M;=x"+y

« For n variables, there are 2" Minterms and Maxterms



Minterms and Maxterms for 3 Variables

X y z index Minterm Maxterm

0 0 0 0 my=x"y'z My=x+y+z
0 0 1 1 m, =x'y'z Mi=x+y+7
0 1 0 2 m, =x'yz M,=x+y +2z
0 1 1 3 ms; =x'yz My=x+y' +7
1 0 0 4 m, =xy'z M,=x"4+y+z
1 0 1 5 ms=xy'z Mi=x"+y+7
1 1 0 6 mg = xyz' Mg=x"+y' +2z
1 1 1 7 m, = xyz M,=x"+y' +7

Maxterm M, is the complement of Minterm m,

M;=m; and m; = M/

Purpose of the Index

+«» Minterms and Maxterms are designated with an index

+«»» The index for the Minterm or Maxterm, expressed as a
binary number, is used to determine whether the variable
is shown in the true or complemented form

% For Minterms:
< ‘1’ means the variable is Not Complemented
<~ ‘0’ means the variable is Complemented

% For Maxterms:
< ‘0’ means the variable is Not Complemented

< ‘1’ means the variable is Complemented
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Sum-Of-Minterms (SOM) Canonical Form

Truth Table

N

Minterm . ]
Sum of Minterm entries

that evaluate to ‘1’

m, = x'yz' -
Focus on the ‘1’ entries

f=my+mg+mg+my

ms = xy'z

P P P PO & & & X
P P ©®& & B PR &0 o X
P ®© P ®© B ©®© B ©

£
(4]
(4]
1
1 my;=x'yz
(4]
1
(4]
1

f= Z(z, 3,5,7)

m; = xyz

f=xyz' +x'yz+xy'z + xyz

Examples of Sum-Of-Minterms

% f(ab,c,d) = %(2,3,6,10,11)

% f(a,b,c,d) = my + mg +mg +myg + my;

% f(a,b,c,d)=a'b'cd" +a'b'cd + a’'bcd’ + ab’'cd' + ab’cd
% g(ab,c,d)=2(0,1,12,15)

wg(ab,c,d) =my+my +my, +mys

% g(a,b,c,d) =a'b'c'd’ +a’b'c'd + abc'd’ + abcd



Product-Of-Maxterms (POM) Canonical Form

Truth Table
Xy z f Maxterm .
Product of Maxterm entries
000 %) My=x+y+z
00 1 0 M =x4y+z that evaluate to ‘O
910 1 :
Focus on the ‘0O’ entries

011 1
100 0 M,=x"+y+

Ty f=My-M; M, Mg
101 1
110 ) M,=x+7y'

c=X+y +2z f=H(0,1,4,6)
111 1

f=(x+y+2)(x+y+z)X' +y+2)(x'+y' +2)

Examples of Product-Of-Maxterms

% f(a,b,c,d) =TI(1,3,11)

% f(a,b,c,d) = My - M3 - My,
*fla,bc,dy=(a+b+c+d)a+b+c'"+d) (@ +b+c' +d)
% g(a,b,c,d) =11(0,5,13)

s g(a,b,c,d) =My Mg -M;;

*fla,bc,dy=(a+b+c+d)(a+b ' +c+d) (@ +b +c+d)



Conversions between Canonical Forms

% The same Boolean function f can be expressed in two ways:
< Sum-of-Minterms f=mg+my+my+ms+m; =2(0235,7)
< Product-of-Maxterms f =M, - M, - Mg = [1(1,4,6)

Truth Table

Minterms Maxterms

I SN |
my=x'y'z

Mi=x+y+Z To convert from one canonical
T !
m;=xyz form to another, interchange
the symbols X and [T and list
M,=x"+y+2z o
, those numbers missing from
me =xy'z
My=x+y +2 the original form.

P P P PO O OO O X
P P ® 0 B P O &KX
P ©®© P ®© P ®© P ® N

£
1
0
1
1 my=x'yz
(4]
1
(4]
1

m, = xyz

Function Complement

Truth Table Given a Boolean function f

xyz f £ fxyz)= Z(o, 2,3,5,7) = 1_[(1,4, 6)
000 1 0
01 o 1 Then, the complement f’ of function f
ere 1% sty 2= 1_[(0, 2,3,5,7) = 2(1,4, 6)
011 1 )
100 0 1

The complement of a function expressed by a
tet ! ° Sum of Minterms is the Product of Maxterms
110 ° ! with the same indices. Interchange the symbols
11t 1 0 2 and [T, but keep the same list of indices.




Summary of Minterms and Maxterms

+* There are 2" Minterms and Maxterms for Boolean functions with
n variables, indexed from 0to 2"—-1

% Minterms correspond to the 1-entries of the function
% Maxterms correspond to the 0-entries of the function

% Any Boolean function can be expressed as a Sum-of-Minterms
and as a Product-of-Maxterms

% For a Boolean function, given the list of Minterm indices one can
determine the list of Maxterms indices (and vice versa)

% The complement of a Sum-of-Minterms is a Product-of-Maxterms
with the same indices (and vice versa)

Sum-of-Products and Products-of-Sums

% Canonical forms contain a larger number of literals

< Because the Minterms (and Maxterms) must contain, by definition, all
the variables either complemented or not

% Another way to express Boolean functions is in standard form
% Two standard forms: Sum-of-Products and Product-of -Sums
% Sum of Products (SOP)

< Boolean expression is the ORing (sum) of AND terms (products)

< Examples: f; = xy' + xz fo=v+xy'z
¢ Products of Sums (POS)

< Boolean expression is the ANDing (product) of OR terms (sums)

< Examples: f; = (x + 2)(x' + y") s=x(x'+y' +2)
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Two-Level Gate Implementation

fi=xy' +xz

R

<

f1

, =y +xy'z

f2

N R

AND-OR

implementations

N < &R

3-input AND gate |

fa= &+ +y")

, f3

fa=x(x"+y +2)

: fa

y OR-AND

implementations

z 3-input OR gate |

Two-Level vs. Three-Level Implementation

s h = ab + cd + ce (6 literals) is a sum-of-products
% h may also be written as: h = ab + c(d + e) (5 literals)
% However, h = ab + c(d + e) is a non-standard form

< h =ab + c(d + e) is not a sum-of-products nor a product-of-sums

2-level implementation
h=ab+cd + ce

3-level implementation
h=ab+c(d+e)

S8
=

O Q o T Q
=

Q O

| 3-input OR gate |




Additional Logic Gates and Symbols

s Why?

< Low cost implementation

< Useful in implementing Boolean functions

X X
X - x +
y:D_ g yj>_ g

AND gate OR gate
e T D
y y

NAND gate NOR gate

—
X D—xéBy XD—(XEBJI)’
Yy = y

XOR gate XNOR gate

NAND Gate

X . ! — l+ !
T ey =xey
NAND gate ;:D_ Xy

Another symbol for NAND

x—DO—x’

NOT gate (inverter)

x—>— x

Buffer

% The NAND gate has the following symbol and truth table
+* NAND represents NOT AND

+ The small bubble circle represents the invert function

x y NAND
00 1
01 1
10 1
11 0
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NOR Gate

% The NOR gate has the following symbol and truth table
% NOR represents NOT OR

 The small bubble circle represents the invert function

xj)o— @+y) =x"-y e
y 00 1
NOR gate x:D—x’-y’ 01 0
y 10 O

0

Another symbol for NOR 11

The NAND Gate is Universal

% NAND gates can implement any Boolean function
% NAND gates can be used as inverters, or to implement AND/OR
+ A single-input NAND gate is an inverter
xNAND x = (x - x)' = x'
% AND is equivalent to NAND with inverted output

(x NAND y)' = ((x - y)")’ = x - y (AND) i:D—po— x-y

% OR is equivalent to NAND with inverted inputs

!

X

x —Po—
(x’ NAND y') = (x"-y") =x + ¥ (OR) y—(>o—,:>°_x+y
y

17



The NOR Gate is also Universal
“ NOR gates can implement any Boolean function
% NOR gates can be used as inverters, or to implement AND/OR
% A single-input NOR gate is an inverter
xNORx=(x+x) =x'
+ OR is equivalent to NOR with inverted output

(x NORy)' = ((x +¥)") =x + y (OR) ;j>—(>o— x+y

¢ AND is equivalent to NOR with inverted inputs

X
X
(FNORY)= (' +y) =x-y (AND) 5 o) D=

y

Multiple-Input NAND / NOR Gates

NAND/NOR gates can have multiple inputs, similar to AND/OR gates

x — W —
y Z — zZ —

2-input NAND gate 3-input NAND gate 4-input NAND gate

X
xj)o—(x+y)' YD(x+y+Z)’ @W(W+x+y+2)’
y A

2-input NOR gate 3-input NOR gate 4-input NOR gate

N<RE

Note: a 3-input NAND is a single gate, NOT a combination of two 2-input gates.
The same can be said about other multiple-input NAND/NOR gates.

18



NAND - NAND Implementation

+ Consider the following sum-of-products expression:

f=bd+dcd

s A 2-level AND-OR circuit can be converted easily to a 2-level

NAND-NAND implementation

2-Level AND-OR Inserting Bubbles 2-Level NAND-NAND

b b
d d
£ £ f
. c c .
3-input d’ d' 3-input
AND gate NAND gate

Two successive bubbles on same line cancel each other

NOR - NOR Implementation

++ Consider the following product-of-sums expression:

g=@+d)(b+c+d)

s A 2-level OR-AND circuit can be converted easily to a 2-level

QU Q

o

NOR-NOR implementation

2-Level OR-AND Inserting Bubbles 2-Level NOR-NOR

a a
d d
g b g b g
3-input Zr Zr 3-input
OR gate NOR gate

Two successive bubbles on same line cancel each other
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Exclusive OR / Exclusive NOR

“+ Exclusive OR (XOR) is an important Boolean operation used

extensively in logic circuits

¢+ Exclusive NOR (XNOR) is the complement of XOR

X y XOR x y XNOR
00 0 00 1
01 1 01 0 XNOR is also known
10 1 10 0 as equivalence
11 0 11 1

x% X ,

yﬂD_xeay yD—(xeay)
XOR gate XNOR gate

XOR / XNOR Functions
% The XOR functionis: x @y = xy' + x'y
% The XNOR functionis: (x ®y)' = xy + x'y’
+ XOR and XNOR gates are complex

<- Can be implemented as a true gate, or by

< Interconnecting other gate types
+ XOR and XNOR gates do not exist for more than two inputs

< For 3 inputs, use two XOR gates

< The cost of a 3-input XOR gate is greater than the cost of two XOR gates
¢ Uses for XOR and XNOR gates include:

<~ Adders, subtractors, multipliers, counters, incrementers, decrementers

< Parity generators and checkers
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XOR and XNOR Properties

Cx®0=x x®1=x'
Px®x=0 x@®x' =1
CxDy=y®x

Cx' Py =x®y

PxBy) =x"Dy=x®y

XOR and XNOR are associative operations
P xBY)Dz=xD(YyDz)=xDyDz

(x®y)®2) =(xO Y B2) =xDyDz
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