
1 

Boolean Algebra and 

Logic Gates 

Boolean Algebra 

 Two-valued Boolean algebra is also called switching algebra 

 A set of two values: B = {0, 1} 

 Three basic operations: AND, OR, and NOT 

 The AND operator is denoted by a dot (·) 

 𝑥 · 𝑦 or 𝑥𝑦 is read: 𝑥 AND 𝑦 

 The OR operator is denoted by a plus (+) 

 𝑥 + 𝑦 is read: 𝑥 OR 𝑦 

 The NOT operator is denoted by (') or an overbar (¯). 

 𝑥′ or 𝑥 is the complement of 𝑥 



2 

Importance of Boolean Algebra 

 Our objective is to learn how to design digital circuits 

 These circuits use signals with two possible values 

 Logic 0 is a low voltage signal (around 0 volts) 

 Logic 1 is a high voltage signal (e.g. 5 or 3.3 volts) 

 Having only two logic values (0 and 1) simplifies the 

implementation of the digital circuit 

Postulates of Boolean Algebra 

1. Closure: the result of any Boolean operation is in B = {0, 1} 

2. Identity element with respect to + is 0: 𝑥 + 0 = 0 + 𝑥 = 𝑥 

 Identity element with respect to · is 1: 𝑥 · 1 = 1 · 𝑥 = 𝑥 

3. Commutative with respect to +: 𝑥 + 𝑦 = 𝑦 + 𝑥 

 Commutative with respect to ·: 𝑥 · 𝑦 =  𝑦 · 𝑥 

4. · is distributive over +: 𝑥 · (𝑦 + 𝑧) = (𝑥 · 𝑦) + (𝑥 · 𝑧) 

 + is distributive over ·: 𝑥 + (𝑦 · 𝑧) = (𝑥 + 𝑦) · (𝑥 + 𝑧) 

5. For every 𝑥 in B, there exists 𝑥′ in B (called complement of 𝑥) 

such that: 𝑥 + 𝑥′ = 1 and 𝑥 · 𝑥′ = 0 



3 

AND, OR, and NOT Operators 

 The following tables define 𝑥 · 𝑦, 𝑥 + 𝑦, and 𝑥′ 

 𝑥 · 𝑦 is the AND operator 

 𝑥 + 𝑦 is the OR operator 

 𝑥′ is the NOT operator 

x y x·y 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

x y x+y 

0 0 0 

0 1 1 

1 0 1 

1 1 1 

x x' 

0 1 

1 0 

Boolean Functions 

 Boolean functions are described by expressions that consist of: 

 Boolean variables, such as: 𝑥, 𝑦, etc. 

 Boolean constants: 0 and 1 

 Boolean operators: AND (·), OR (+), NOT (') 

 Parentheses, which can be nested 

 Example: 𝑓 = 𝑥 𝑦 + 𝑤′𝑧  

 The dot operator is implicit and need not be written 

 Operator precedence: to avoid ambiguity in expressions 

 Expressions within parentheses should be evaluated first 

 The NOT (') operator should be evaluated second 

 The AND (·) operator should be evaluated third 

 The OR (+) operator should be evaluated last 



4 

Truth Table 

 A truth table can represent a Boolean function 

 List all possible combinations of 0's and 1's assigned to variables 

 If n variables then 2n rows 

 Example: Truth table for 𝑓 = 𝑥𝑦′ + 𝑥′𝑧 

x  y  z  y'  xy'  x' x'z f = xy'+ x'z 

0  0  0 1 0 1 0 0 

0  0  1 1 0 1 1 1 

0  1  0 0 0 1 0 0 

0  1  1 0 0 1 1 1 

1  0  0 1 1 0 0 1 

1  0  1 1 1 0 0 1 

1  1  0 0 0 0 0 0 

1  1  1 0 0 0 0 0 

DeMorgan's Theorem 

 (𝑥 + 𝑦)′ =  𝑥′ 𝑦′ 

 (𝑥 𝑦)′ =  𝑥′ +  𝑦′ 

x y x' y' x+y (x+y)' x'y' x y (x y)' x'+ y' 

0 0 1 1 0 1 1 0 1 1 

0 1 1 0 1 0 0 0 1 1 

1 0 0 1 1 0 0 0 1 1 

1 1 0 0 1 0 0 1 0 0 

Can be verified 

Using a Truth Table 

Identical Identical 

 Generalized DeMorgan's Theorem: 

 𝑥1 + 𝑥2 +⋯+ 𝑥𝑛
′ = 𝑥1
′ ∙ 𝑥2
′ ∙  ⋯ ∙  𝑥𝑛

′  

 𝑥1 ∙ 𝑥2 ∙ ⋯ ∙ 𝑥𝑛
′ = 𝑥1
′ + 𝑥2
′ + ⋯+ 𝑥𝑛

′  

 



5 

Complementing Boolean Functions 

What is the complement of 𝑓 = 𝑥′𝑦𝑧′ + 𝑥𝑦′𝑧′ ? 

 Use DeMorgan's Theorem: 

 Complement each variable and constant 

 Interchange AND and OR operators 

 So, what is the complement of 𝑓 = 𝑥′𝑦𝑧′ + 𝑥𝑦′𝑧′ ? 

 Answer: 𝑓′ = (𝑥 + 𝑦′ + 𝑧)(𝑥′ + 𝑦 + 𝑧) 

 Example 2: Complement 𝑔 = (𝑎′ + 𝑏𝑐)𝑑′ + 𝑒 

 Answer: 𝑔′ = (𝑎(𝑏′ + 𝑐′) + 𝑑)𝑒′ 

Algebraic Manipulation of Expressions 

 The objective is to acquire skills in manipulating Boolean 

expressions, to transform them into simpler form. 

 Example 1: prove 𝑥 + 𝑥𝑦 = 𝑥 (absorption theorem) 

 Proof: 𝑥 + 𝑥𝑦 = 𝑥 · 1 + 𝑥𝑦 𝑥 · 1 = 𝑥 

 = 𝑥 · (1 + 𝑦) Distributive · over + 

 = 𝑥 · 1 = 𝑥 (1 + 𝑦) = 1 

 Example 2: prove 𝑥 + 𝑥′𝑦 = 𝑥 + 𝑦  (simplification theorem) 

 Proof: 𝑥 + 𝑥′𝑦 = (𝑥 + 𝑥′)(𝑥 + 𝑦) Distributive + over · 

 = 1 · (𝑥 + 𝑦) (𝑥 + 𝑥′) = 1 

 = 𝑥 + 𝑦 



6 

Duality Principle 

 The dual of a Boolean expression can be obtained by: 

 Interchanging AND (·) and OR (+) operators 

 Interchanging 0's and 1's 

 Example: the dual of 𝑥(𝑦 + 𝑧′) is 𝑥 + 𝑦𝑧′ 

 The complement operator does not change 

 The properties of Boolean algebra appear in dual pairs 

 If a property is proven to be true then its dual is also true 

Property Dual Property 

Identity 𝑥 + 0 = 𝑥 𝑥 · 1 = 𝑥 

Complement 𝑥 + 𝑥′ = 1 𝑥 · 𝑥′ = 0 

Distributive 𝑥 (𝑦 + 𝑧)  = 𝑥𝑦 + 𝑥𝑧 𝑥 + 𝑦𝑧 = (𝑥 + 𝑦)(𝑥 + 𝑧) 

Summary of Boolean Algebra 

Property Dual Property 

Identity 𝑥 + 0 = 𝑥 𝑥 · 1 = 𝑥 

Complement 𝑥 + 𝑥′ = 1 𝑥 · 𝑥′ = 0 

Null 𝑥 + 1 = 1 𝑥 · 0 = 0 

Idempotence 𝑥 + 𝑥 = 𝑥 𝑥 · 𝑥 = 𝑥 

Involution (𝑥′)′ = 𝑥 

Commutative 𝑥 + 𝑦 =  𝑦 + 𝑥 𝑥 𝑦 =  𝑦 𝑥 

Associative (𝑥 + 𝑦) + 𝑧 = 𝑥 + (𝑦 + 𝑧) 𝑥 𝑦  𝑧 = 𝑥 (𝑦 𝑧) 

Distributive 𝑥 (𝑦 + 𝑧)  = 𝑥𝑦 + 𝑥𝑧 𝑥 + 𝑦𝑧 = (𝑥 + 𝑦)(𝑥 + 𝑧) 

Absorption 𝑥 + 𝑥𝑦 =  𝑥 𝑥(𝑥 + 𝑦)  =  𝑥 

Simplification 𝑥 + 𝑥′𝑦 =  𝑥 + 𝑦 𝑥(𝑥′ + 𝑦)  =  𝑥𝑦 

De Morgan (𝑥 + 𝑦)′ =  𝑥′ 𝑦′ 𝑥 𝑦 ′ = 𝑥′ + 𝑦′ 



7 

Logic Gates and Symbols 

𝑥 

𝑦 
𝑥 · 𝑦 

AND gate 

𝑥 

𝑦 
𝑥 + 𝑦 

OR gate 

𝑥′ 𝑥 

NOT gate (inverter) 

 In the earliest computers, relays were used as mechanical 

switches controlled by electricity (coils) 

 Today, tiny transistors are used as electronic switches that 

implement the logic gates (CMOS technology) 

AND: Switches in series 

logic 0 is open switch 

OR: Switches in parallel 

logic 0 is open switch 

NOT: Switch is normally 

closed when x is 0 

𝑥 𝑦 
𝑥 

𝑦 

𝑥′ 

Truth Table and Logic Diagram 

 Given the following logic function: 𝑓 = 𝑥(𝑦′ + 𝑧) 

 Draw the corresponding truth table and logic diagram 

Truth Table 

x y z y'+ z f = x(y'+ z) 

0 0 0 1 0 

0 0 1 1 0 

0 1 0 0 0 

0 1 1 1 0 

1 0 0 1 1 

1 0 1 1 1 

1 1 0 0 0 

1 1 1 1 1 

Truth Table and Logic Diagram 

describe the same function 𝑓. 

Truth table is unique, but logic 

expression and logic diagram 

are not. This gives flexibility in 

implementing logic functions. 

𝑥 

𝑦 

𝑓 = 𝑥(𝑦′ + 𝑧) 

𝑧 

Logic Diagram 



8 

Combinational Circuit 

 A combinational circuit is a block of logic gates having: 

 𝑛 inputs: 𝑥1, 𝑥2, … , 𝑥𝑛 

 𝑚 outputs: 𝑓1, 𝑓2, … , 𝑓𝑚 

 Each output is a function of the input variables  

 Each output is determined from present combination of inputs 

 Combination circuit performs operation specified by logic gates 


 Combinational 

Circuit 


 

𝑛 inputs 𝑚 outputs 

Example of a Simple Combinational Circuit 

 The above circuit has: 

 Three inputs: 𝑥, 𝑦, and 𝑧 

 Two outputs: 𝑓 and 𝑔 

What are the logic expressions of 𝑓 and 𝑔 ? 

 Answer: 𝑓 = 𝑥𝑦 + 𝑧′ 

 𝑔 = 𝑥𝑦 + 𝑦𝑧 

𝑥 

𝑦 𝑓 

𝑔 

𝑧 



9 

From Truth Tables to Gate Implementation 

 Given the truth table of a Boolean function 𝑓, how do we 

implement the truth table using logic gates? 

Truth Table 

x y z f 

0 0 0 0 

0 0 1 0 

0 1 0 1 

0 1 1 1 

1 0 0 0 

1 0 1 1 

1 1 0 0 

1 1 1 1 

What is the logic expression of 𝑓? 

What is the gate implementation of 𝑓? 

To answer these questions, we need 

to define Minterms and Maxterms 

Minterms and Maxterms 

Minterms are AND terms with every variable present in either 

true or complement form 

Maxterms are OR terms with every variable present in either 

true or complement form 

Minterms and Maxterms for 2 variables 𝑥 and 𝑦  

 

 

 

 

 For n variables, there are 2n Minterms and Maxterms 

x y index Minterm Maxterm 

0 0 0 𝑚0 = 𝑥′𝑦′ 𝑀0 = 𝑥 + 𝑦 

0 1 1 𝑚1 = 𝑥′𝑦 𝑀1 = 𝑥 + 𝑦′ 

1 0 2 𝑚2 = 𝑥𝑦′ 𝑀2 = 𝑥′ + 𝑦 

1 1 3 𝑚3 = 𝑥𝑦 𝑀3 = 𝑥′ + 𝑦′ 



10 

Minterms and Maxterms for 3 Variables 

Maxterm 𝑀𝑖 is the complement of Minterm 𝑚𝑖 

𝑀𝑖 = 𝑚𝑖′  and  𝑚𝑖 = 𝑀𝑖′ 

x y z index Minterm Maxterm 

0 0 0 0 𝑚0 = 𝑥
′𝑦′𝑧′ 𝑀0 = 𝑥 + 𝑦 + 𝑧 

0 0 1 1 𝑚1 = 𝑥
′𝑦′𝑧 𝑀1 = 𝑥 + 𝑦 + 𝑧′ 

0 1 0 2 𝑚2 = 𝑥′𝑦𝑧′ 𝑀2 = 𝑥 + 𝑦′ + 𝑧 

0 1 1 3 𝑚3 = 𝑥′𝑦𝑧 𝑀3 = 𝑥 + 𝑦
′ + 𝑧′ 

1 0 0 4 𝑚4 = 𝑥𝑦
′𝑧′ 𝑀4 = 𝑥′ + 𝑦 + 𝑧 

1 0 1 5 𝑚5 = 𝑥𝑦
′𝑧 𝑀5 = 𝑥′ + 𝑦 + 𝑧′ 

1 1 0 6 𝑚6 = 𝑥𝑦𝑧′ 𝑀6 = 𝑥′ + 𝑦′ + 𝑧 

1 1 1 7 𝑚7 = 𝑥𝑦𝑧 𝑀7 = 𝑥′ + 𝑦
′ + 𝑧′ 

Purpose of the Index 

Minterms and Maxterms are designated with an index  

 The index for the Minterm or Maxterm, expressed as a 

binary number, is used to determine whether the variable 

is shown in the true or complemented form 

 For Minterms: 

 ‘1’ means the variable is Not Complemented 

 ‘0’ means  the variable is Complemented 

 For Maxterms: 

 ‘0’ means  the variable is Not Complemented 

 ‘1’ means the variable is Complemented  



11 

Sum-Of-Minterms (SOM) Canonical Form 

Sum of Minterm entries 

that evaluate to ‘1’ 

Truth Table 

x y z f Minterm 

0 0 0 0 

0 0 1 0 

0 1 0 1 𝑚2 = 𝑥′𝑦𝑧′ 

0 1 1 1 𝑚3 = 𝑥′𝑦𝑧 

1 0 0 0 

1 0 1 1 𝑚5 = 𝑥𝑦′𝑧 

1 1 0 0 

1 1 1 1 𝑚7 = 𝑥𝑦𝑧 

Focus on the ‘1’ entries  

𝑓 = 𝑚2 +𝑚3 +𝑚5 +𝑚7 

𝑓 = 2, 3, 5, 7  

𝑓 = 𝑥′𝑦𝑧′ + 𝑥′𝑦𝑧 + 𝑥𝑦′𝑧 + 𝑥𝑦𝑧 

Examples of Sum-Of-Minterms 

 𝑓 𝑎, 𝑏, 𝑐, 𝑑 =  (2, 3, 6, 10, 11) 

 𝑓 𝑎, 𝑏, 𝑐, 𝑑 = 𝑚2 +𝑚3 +𝑚6 +𝑚10 +𝑚11 

 𝑓 𝑎, 𝑏, 𝑐, 𝑑 = 𝑎′𝑏′𝑐𝑑′ + 𝑎′𝑏′𝑐𝑑 + 𝑎′𝑏𝑐𝑑′ + 𝑎𝑏′𝑐𝑑′ + 𝑎𝑏′𝑐𝑑 

 𝑔 𝑎, 𝑏, 𝑐, 𝑑 =  (0, 1, 12, 15) 

 𝑔 𝑎, 𝑏, 𝑐, 𝑑 = 𝑚0 +𝑚1 +𝑚12 +𝑚15 

 𝑔 𝑎, 𝑏, 𝑐, 𝑑 = 𝑎′𝑏′𝑐′𝑑′ + 𝑎′𝑏′𝑐′𝑑 + 𝑎𝑏𝑐′𝑑′ + 𝑎𝑏𝑐𝑑 



12 

Product-Of-Maxterms (POM) Canonical Form 

Truth Table 

x y z f Maxterm 

0 0 0 0 𝑀0 = 𝑥 + 𝑦 + 𝑧 

0 0 1 0 𝑀1 = 𝑥 + 𝑦 + 𝑧′ 

0 1 0 1 

0 1 1 1 

1 0 0 0 𝑀4 = 𝑥′ + 𝑦 + 𝑧 

1 0 1 1 

1 1 0 0 𝑀6 = 𝑥′ + 𝑦′ + 𝑧 

1 1 1 1 

Product of Maxterm entries 

that evaluate to ‘0’ 

Focus on the ‘0’ entries  

𝑓 = 𝑀0 · 𝑀1 · 𝑀4 · 𝑀6 

𝑓 = 0,1, 4, 6  

𝑓 = (𝑥 + 𝑦 + 𝑧)(𝑥 + 𝑦 + 𝑧′)(𝑥′ + 𝑦 + 𝑧)(𝑥′ + 𝑦′ + 𝑧) 

Examples of Product-Of-Maxterms 

 𝑓 𝑎, 𝑏, 𝑐, 𝑑 =  (1, 3, 11) 

 𝑓(𝑎, 𝑏, 𝑐, 𝑑) = 𝑀1 ∙ 𝑀3 ∙ 𝑀11 

 𝑓(𝑎, 𝑏, 𝑐, 𝑑) = 𝑎 + 𝑏 + 𝑐 + 𝑑′ 𝑎 + 𝑏 + 𝑐′ + 𝑑′  (𝑎′ + 𝑏 + 𝑐′ + 𝑑′) 

 𝑔 𝑎, 𝑏, 𝑐, 𝑑 =  (0, 5, 13) 

 𝑔(𝑎, 𝑏, 𝑐, 𝑑) = 𝑀0 ∙ 𝑀5 ∙ 𝑀13 

 𝑓(𝑎, 𝑏, 𝑐, 𝑑) = 𝑎 + 𝑏 + 𝑐 + 𝑑 𝑎 + 𝑏′ + 𝑐 + 𝑑′  (𝑎′ + 𝑏′ + 𝑐 + 𝑑′) 



13 

Conversions between Canonical Forms 

 The same Boolean function 𝑓 can be expressed in two ways: 

 Sum-of-Minterms 𝑓 = 𝑚0 +𝑚2 +𝑚3 +𝑚5 +𝑚7 =  (0, 2, 3, 5, 7) 

 Product-of-Maxterms 𝑓 = 𝑀1 ∙ 𝑀4 ∙ 𝑀6 =  (1, 4, 6) 

x y z f Minterms Maxterms 

0 0 0 1 𝑚0 = 𝑥
′𝑦′𝑧′ 

0 0 1 0 𝑀1 = 𝑥 + 𝑦 + 𝑧′ 

0 1 0 1 𝑚2 = 𝑥
′𝑦𝑧′ 

0 1 1 1 𝑚3 = 𝑥
′𝑦𝑧 

1 0 0 0 𝑀4 = 𝑥′ + 𝑦 + 𝑧 

1 0 1 1 𝑚5 = 𝑥𝑦′𝑧 

1 1 0 0 𝑀6 = 𝑥′ + 𝑦′ + 𝑧 

1 1 1 1 𝑚7 = 𝑥𝑦𝑧 

To convert from one canonical 

form to another, interchange 

the symbols  and  and list 

those numbers missing from 

the original form. 

Truth Table 

Function Complement 

Given a Boolean function 𝑓 

𝑓(𝑥, 𝑦, 𝑧) = 0, 2, 3, 5, 7 = (1, 4, 6) 

Then, the complement 𝑓′ of function 𝑓 

𝑓′(𝑥, 𝑦, 𝑧) = 0, 2, 3, 5, 7 = (1, 4, 6)  

x y z f f' 

0 0 0 1 0 

0 0 1 0 1 

0 1 0 1 0 

0 1 1 1 0 

1 0 0 0 1 

1 0 1 1 0 

1 1 0 0 1 

1 1 1 1 0 

The complement of a function expressed by a 

Sum of Minterms is the Product of Maxterms 

with the same indices. Interchange the symbols 

 and , but keep the same list of indices. 

Truth Table 



14 

Summary of Minterms and Maxterms 

 There are 2n Minterms and Maxterms for Boolean functions with 

n variables, indexed from 0 to 2n – 1 

Minterms correspond to the 1-entries of the function 

Maxterms correspond to the 0-entries of the function 

 Any Boolean function can be expressed as a Sum-of-Minterms 

and as a Product-of-Maxterms 

 For a Boolean function, given the list of Minterm indices one can 

determine the list of Maxterms indices (and vice versa) 

 The complement of a Sum-of-Minterms is a Product-of-Maxterms 

with the same indices (and vice versa) 

Sum-of-Products and Products-of-Sums 

 Canonical forms contain a larger number of literals 

 Because the Minterms (and Maxterms) must contain, by definition, all 

the variables either complemented or not 

 Another way to express Boolean functions is in standard form 

 Two standard forms: Sum-of-Products and Product-of -Sums 

 Sum of Products (SOP) 

 Boolean expression is the ORing (sum) of AND terms (products) 

 Examples: 𝑓1 = 𝑥𝑦′ + 𝑥𝑧 𝑓2 = 𝑦 + 𝑥𝑦′𝑧 

 Products of Sums (POS) 

 Boolean expression is the ANDing (product) of OR terms (sums) 

 Examples: 𝑓3 = (𝑥 + 𝑧)(𝑥′ + 𝑦′) 𝑓4 = 𝑥(𝑥′ + 𝑦′ + 𝑧) 



15 

Two-Level Gate Implementation 

𝑓1 = 𝑥𝑦′ + 𝑥𝑧 

𝑥 

𝑦′ 
𝑓1 

𝑥 

𝑧 

𝑓2 = 𝑦 + 𝑥𝑦′𝑧 

𝑦 

𝑦′ 

𝑓2 𝑥 

𝑧 3-input AND gate AND-OR 

implementations 

𝑓3 = (𝑥 + 𝑧)(𝑥
′ + 𝑦′) 

𝑥 

𝑧 
𝑓3 

𝑥′ 

𝑦′ 

𝑓4 = 𝑥(𝑥
′ + 𝑦′ + 𝑧) 

𝑥 

𝑓4 𝑥′ 
𝑦′ 
𝑧 3-input OR gate OR-AND 

implementations 

Two-Level vs. Three-Level Implementation 

 ℎ = 𝑎𝑏 + 𝑐𝑑 + 𝑐𝑒 (6 literals) is a sum-of-products 

 ℎ may also be written as: ℎ = 𝑎𝑏 + 𝑐(𝑑 + 𝑒) (5 literals) 

 However, ℎ = 𝑎𝑏 + 𝑐(𝑑 + 𝑒) is a non-standard form 

 ℎ = 𝑎𝑏 + 𝑐(𝑑 + 𝑒) is not a sum-of-products nor a product-of-sums 

2-level implementation 

ℎ = 𝑎𝑏 + 𝑐𝑑 + 𝑐𝑒 

3-level implementation 

ℎ = 𝑎𝑏 + 𝑐(𝑑 + 𝑒) 

𝑎 

𝑏 

ℎ 
𝑐 

𝑑 

𝑐 

𝑒 3-input OR gate 

𝑎 

𝑏 

ℎ 𝑐 

𝑑 

𝑒 



16 

Additional Logic Gates and Symbols 

Why? 

 Low cost implementation 

 Useful in implementing Boolean functions 

𝑥 

𝑦 
𝑥 · 𝑦 

AND gate 

𝑥 

𝑦 
𝑥 + 𝑦 

OR gate 

𝑥′ 𝑥 

NOT gate (inverter) 

𝑥 

𝑦 
𝑥 · 𝑦 ′ 

NAND gate 

𝑥 

𝑦 
(𝑥 + 𝑦)′ 

NOR gate 

𝑥 

𝑦 
𝑥 ⊕ 𝑦 

XOR gate 

𝑥 

𝑦 
(𝑥 ⊕ 𝑦)′ 

XNOR gate 

𝑥 𝑥 

Buffer 

NAND Gate 

 The NAND gate has the following symbol and truth table 

 NAND represents NOT AND 

 The small bubble circle represents the invert function 

 

 

 

 

 

x   y NAND 

0  0 1 

0  1 1 

1  0 1 

1  1 0 

𝑥 
𝑦 

𝑥 · 𝑦 ′ = 𝑥′ + 𝑦′ 

NAND gate 𝑥 
𝑦 

𝑥′ + 𝑦′ 

Another symbol for NAND 



17 

NOR Gate 

 The NOR gate has the following symbol and truth table 

 NOR represents NOT OR 

 The small bubble circle represents the invert function 

 

 

 

 

 

x   y NOR 

0  0 1 

0  1 0 

1  0 0 

1  1 0 

𝑥 
𝑦 

𝑥 + 𝑦 ′ = 𝑥′ · 𝑦′ 

NOR gate 𝑥 
𝑦 

𝑥′ · 𝑦′ 

Another symbol for NOR 

The NAND Gate is Universal 

 NAND gates can implement any Boolean function 

 NAND gates can be used as inverters, or to implement AND/OR 

 A single-input NAND gate is an inverter 

𝑥 NAND 𝑥 = (𝑥 · 𝑥)′ = 𝑥′ 

 AND is equivalent to NAND with inverted output 

(𝑥 NAND 𝑦)′ = ((𝑥 · 𝑦)′)′ = 𝑥 · 𝑦 (AND) 

 OR is equivalent to NAND with inverted inputs 

(𝑥′ NAND 𝑦′) = (𝑥′ · 𝑦′)′ = 𝑥 + 𝑦 (OR) 

𝑥 

𝑦 
𝑥 · 𝑦 

𝑥 

𝑦 
𝑥 + 𝑦 

𝑥′ 

𝑦′ 



18 

The NOR Gate is also Universal 

 NOR gates can implement any Boolean function 

 NOR gates can be used as inverters, or to implement AND/OR 

 A single-input NOR gate is an inverter 

𝑥 NOR 𝑥 = (𝑥 + 𝑥)′ = 𝑥′ 

 OR is equivalent to NOR with inverted output 

(𝑥 NOR 𝑦)′ = ((𝑥 + 𝑦)′)′ = 𝑥 + 𝑦 (OR) 

 AND is equivalent to NOR with inverted inputs 

(𝑥′ NOR 𝑦′) = (𝑥′ + 𝑦′)′ = 𝑥 · 𝑦 (AND) 

𝑥 

𝑦 
𝑥 + 𝑦 

𝑥 

𝑦 
𝑥 · 𝑦 

𝑥′ 

𝑦′ 

Multiple-Input NAND / NOR Gates 

NAND/NOR gates can have multiple inputs, similar to AND/OR gates 

𝑥 

𝑦 
𝑥 · 𝑦 ′ 

2-input NAND gate 

𝑥 

𝑧 
𝑥 · 𝑦 · 𝑧 ′ 

3-input NAND gate 

𝑦 

𝑤 

𝑧 
𝑤 · 𝑥 · 𝑦 · 𝑧 ′ 

4-input NAND gate 

𝑦 
𝑥 

𝑥 

𝑦 
𝑥 + 𝑦 ′ 

2-input NOR gate 

𝑥 

𝑧 
𝑥 + 𝑦 + 𝑧 ′ 

3-input NOR gate 

𝑦 

𝑤 

𝑧 
𝑤 + 𝑥 + 𝑦 + 𝑧 ′ 

4-input NOR gate 

𝑦 
𝑥 

Note: a 3-input NAND is a single gate, NOT a combination of two 2-input gates. 

The same can be said about other multiple-input NAND/NOR gates. 



19 

NAND – NAND Implementation 

 Consider the following sum-of-products expression: 

𝑓 = 𝑏𝑑 + 𝑎′𝑐𝑑′ 

 A 2-level AND-OR circuit can be converted easily to a 2-level 

NAND-NAND implementation 

𝑏 

𝑑 
𝑓 

𝑎′ 
𝑐 
𝑑′ 

2-Level AND-OR 

𝑏 

𝑑 
𝑓 

𝑎′ 
𝑐 
𝑑′ 

Inserting Bubbles 

Two successive bubbles on same line cancel each other 

𝑏 

𝑑 
𝑓 

𝑎′ 
𝑐 
𝑑′ 

2-Level NAND-NAND 

3-input 

NAND gate 

3-input 

AND gate 

NOR – NOR Implementation 

 Consider the following product-of-sums expression: 

𝑔 = (𝑎 + 𝑑)(𝑏 + 𝑐 + 𝑑′) 

 A 2-level OR-AND circuit can be converted easily to a 2-level 

NOR-NOR implementation 

Two successive bubbles on same line cancel each other 

2-Level OR-AND 

𝑎 

𝑑 
𝑔 

𝑏 
𝑐 
𝑑′ 

Inserting Bubbles 

𝑎 

𝑑 
𝑔 

𝑏 
𝑐 
𝑑′ 

2-Level NOR-NOR 

𝑎 

𝑑 
𝑔 

𝑏 
𝑐 
𝑑′ 3-input 

NOR gate 

3-input 

OR gate 



20 

Exclusive OR / Exclusive NOR 

 Exclusive OR (XOR) is an important Boolean operation used 

extensively in logic circuits 

 Exclusive NOR (XNOR) is the complement of XOR 

𝑥 
𝑦 

𝑥 ⨁ 𝑦 

XOR gate 

𝑥 
𝑦 

(𝑥 ⨁ 𝑦)′ 

XNOR gate 

x   y XOR 

0  0 0 

0  1 1 

1  0 1 

1  1 0 

x   y XNOR 

0  0 1 

0  1 0 

1  0 0 

1  1 1 

XNOR is also known 

as equivalence 

XOR / XNOR Functions 

 The XOR function is: 𝑥 ⨁ 𝑦 = 𝑥𝑦′ + 𝑥′𝑦 

 The XNOR function is: (𝑥 ⨁ 𝑦)′ = 𝑥𝑦 + 𝑥′𝑦′ 

 XOR and XNOR gates are complex 

 Can be implemented as a true gate, or by 

 Interconnecting other gate types 

 XOR and XNOR gates do not exist for more than two inputs 

 For 3 inputs, use two XOR gates 

 The cost of a 3-input XOR gate is greater than the cost of two XOR gates 

 Uses for XOR and XNOR gates include: 

 Adders, subtractors, multipliers, counters, incrementers, decrementers 

 Parity generators and checkers 



21 

XOR and XNOR Properties 

 𝑥 ⨁ 0 = 𝑥 𝑥 ⨁ 1 = 𝑥′ 

 𝑥 ⨁ 𝑥 = 0 𝑥 ⨁ 𝑥′ = 1 

 𝑥 ⨁ 𝑦 = 𝑦 ⨁ 𝑥 

 𝑥′ ⨁ 𝑦′ = 𝑥 ⨁ 𝑦 

 𝑥 ⨁ 𝑦 ′ = 𝑥′ ⨁ 𝑦 = 𝑥 ⨁ 𝑦′ 

XOR and XNOR are associative operations 

 𝑥 ⨁ 𝑦  ⨁ 𝑧 = 𝑥 ⨁ 𝑦 ⨁ 𝑧 = 𝑥 ⨁ 𝑦 ⨁ 𝑧 

 𝑥 ⨁ 𝑦 ′ ⨁ 𝑧
′
= 𝑥 ⨁ (𝑦 ⨁ 𝑧)′ ′ = 𝑥 ⨁ 𝑦 ⨁ 𝑧 


