Boolean Algebra and Logic Gates

Boolean Algebra

* Two-valued Boolean algebra is also called switching algebra
* A set of two values: $B=\{0,1\}$
* Three basic operations: AND, OR, and NOT
* The AND operator is denoted by a dot (•)
$\diamond x \cdot y$ or $x y$ is read: x AND y
* The OR operator is denoted by a plus (+)
$\diamond x+y$ is read: $x \mathbf{O R} y$
* The NOT operator is denoted by (') or an overbar (${ }^{-}$).
$\diamond x^{\prime}$ or \bar{x} is the complement of x

Importance of Boolean Algebra

* Our objective is to learn how to design digital circuits
* These circuits use signals with two possible values
* Logic 0 is a low voltage signal (around 0 volts)

Logic 1 is a high voltage signal (e.g. 5 or 3.3 volts)

* Having only two logic values (0 and 1) simplifies the implementation of the digital circuit

Postulates of Boolean Algebra

1. Closure: the result of any Boolean operation is in $B=\{0,1\}$
2. Identity element with respect to + is $0: x+0=0+x=x$ Identity element with respect to \cdot is $1: x \cdot 1=1 \cdot x=x$
3. Commutative with respect to $+: x+y=y+x$

Commutative with respect to $\cdot: x \cdot y=y \cdot x$
4. \cdot is distributive over $+: x \cdot(y+z)=(x \cdot y)+(x \cdot z)$

+ is distributive over $\cdot: x+(y \cdot z)=(x+y) \cdot(x+z)$

5. For every x in B, there exists x^{\prime} in B (called complement of x) such that: $x+x^{\prime}=1$ and $x \cdot x^{\prime}=0$

AND, OR, and NOT Operators

* The following tables define $x \cdot y, x+y$, and x^{\prime}
* $x \cdot y$ is the AND operator
* $x+y$ is the OR operator
* x^{\prime} is the NOT operator

\mathbf{x}	\mathbf{y}	$\mathbf{x} \cdot \mathbf{y}$	\mathbf{x}	\mathbf{y}	$\mathbf{x + y}$	\mathbf{x}
0	0	0	0	0	0	\mathbf{x}^{\prime}
0	1	0	0	1	1	0
1	0	0	1	0	1	1
1	1	1	1	1	1	

Boolean Functions

* Boolean functions are described by expressions that consist of:
\triangleleft Boolean variables, such as: x, y, etc.
\diamond Boolean constants: 0 and 1
« Boolean operators: AND (•), OR (+), NOT (')
\triangleleft Parentheses, which can be nested
* Example: $f=x\left(y+w^{\prime} z\right)$
\diamond The dot operator is implicit and need not be written
* Operator precedence: to avoid ambiguity in expressions
\& Expressions within parentheses should be evaluated first
\diamond The NOT (') operator should be evaluated second
\diamond The AND (•) operator should be evaluated third
\diamond The OR (+) operator should be evaluated last

Truth Table

* A truth table can represent a Boolean function

List all possible combinations of 0's and 1's assigned to variables

* If n variables then 2^{n} rows
* Example: Truth table for $f=x y^{\prime}+x^{\prime} z$

\mathbf{x}	\mathbf{y}	\mathbf{z}	\mathbf{y}^{\prime}	$\mathbf{x} \mathbf{y}^{\prime}$	\mathbf{x}^{\prime}	$\mathbf{x}^{\prime} \mathbf{z}$	$\mathbf{f}=\mathbf{x y} \mathbf{'}^{\prime}+\mathbf{x}^{\prime} \mathbf{z}$
0	0	0	1	0	1	0	0
0	0	1	1	0	1	1	1
0	1	0	0	0	1	0	0
0	1	1	0	0	1	1	1
1	0	0	1	1	0	0	1
1	0	1	1	1	0	0	1
1	1	0	0	0	0	0	0
1	1	1	0	0	0	0	0

DeMorgan's Theorem

$*(x+y)^{\prime}=x^{\prime} y^{\prime}$	Can be verified
$*(x y)^{\prime}=x^{\prime}+y^{\prime}$	Using a Truth Table

x	y	x'	y^{\prime}	$x+y$	$(x+y)^{\prime}$	$\mathrm{x}^{\prime} \mathrm{y}^{\prime}$	x y	(x y $)^{\prime}$	$x^{\prime}+y^{\prime}$
0	0	1	1	0	1	1	0	1	1
0	1	1	0	1	0	0	0	1	1
1	0	0	1	1	0	0	0	1	1
1	1	0	0	1	0	0	1	0	0

* Generalized DeMorgan's Theorem:
* $\left(x_{1}+x_{2}+\cdots+x_{n}\right)^{\prime}=x_{1}^{\prime} \cdot x_{2}^{\prime} \cdot \cdots \cdot x_{n}^{\prime}$
$*\left(x_{1} \cdot x_{2} \cdot \cdots \cdot x_{n}\right)^{\prime}=x_{1}^{\prime}+x_{2}^{\prime}+\cdots+x_{n}^{\prime}$

Complementing Boolean Functions

*What is the complement of $f=x^{\prime} y z^{\prime}+x y^{\prime} z^{\prime}$?

* Use DeMorgan's Theorem:
\triangleleft Complement each variable and constant
\triangleleft Interchange AND and OR operators
* So, what is the complement of $f=x^{\prime} y z^{\prime}+x y^{\prime} z^{\prime}$?

Answer: $f^{\prime}=\left(x+y^{\prime}+z\right)\left(x^{\prime}+y+z\right)$
Example 2: Complement $g=\left(a^{\prime}+b c\right) d^{\prime}+e$
Answer: $g^{\prime}=\left(a\left(b^{\prime}+c^{\prime}\right)+d\right) e^{\prime}$

Algebraic Manipulation of Expressions

* The objective is to acquire skills in manipulating Boolean expressions, to transform them into simpler form.
* Example 1: prove $x+x y=x \quad$ (absorption theorem)

Proof: $x+x y=x \cdot 1+x y$ $x \cdot 1=x$

$$
\begin{array}{ll}
=x \cdot(1+y) & \text { Distributive } \cdot \text { over }+ \\
=x \cdot 1=x & (1+y)=1
\end{array}
$$

* Example 2: prove $x+x^{\prime} y=x+y$ (simplification theorem)
* Proof: $x+x^{\prime} y=\left(x+x^{\prime}\right)(x+y) \quad$ Distributive + over -

$$
=1 \cdot(x+y) \quad\left(x+x^{\prime}\right)=1
$$

$$
=x+y
$$

Duality Principle

* The dual of a Boolean expression can be obtained by:
\diamond Interchanging AND (\cdot) and OR (+) operators
\diamond Interchanging 0's and 1's
* Example: the dual of $x\left(y+z^{\prime}\right)$ is $x+y z^{\prime}$
\diamond The complement operator does not change
* The properties of Boolean algebra appear in dual pairs
\diamond If a property is proven to be true then its dual is also true

	Property	Dual Property
Identity	$x+0=x$	$x \cdot 1=x$
Complement	$x+x^{\prime}=1$	$x \cdot x^{\prime}=0$
Distributive	$x(y+z)=x y+x z$	$x+y z=(x+y)(x+z)$

Summary of Boolean Algebra

	Property	Dual Property
Identity	$x+0=x$	$x \cdot 1=x$
Complement	$x+x^{\prime}=1$	$x \cdot x^{\prime}=0$
Null	$x+1=1$	$x \cdot 0=0$
Idempotence	$x+x=x$	$x \cdot x=x$
Involution	$\left(x^{\prime}\right)^{\prime}=x$	
Commutative	$x+y=y+x$	$x y=y x$
Associative	$(x+y)+z=x+(y+z)$	$(x y) z=x(y z)$
Distributive	$x(y+z)=x y+x z$	$x+y z=(x+y)(x+z)$
Absorption	$x+x y=x$	$x(x+y)=x$
Simplification	$x+x^{\prime} y=x+y$	$x\left(x^{\prime}+y\right)=x y$
De Morgan	$(x+y)^{\prime}=x^{\prime} y^{\prime}$	$(x y)^{\prime}=x^{\prime}+y^{\prime}$

Logic Gates and Symbols

AND: Switches in series logic 0 is open switch

OR: Switches in parallel logic 0 is open switch

NOT gate (inverter)

NOT: Switch is normally closed when x is 0

* In the earliest computers, relays were used as mechanical switches controlled by electricity (coils)
* Today, tiny transistors are used as electronic switches that implement the logic gates (CMOS technology)

Truth Table and Logic Diagram

* Given the following logic function: $f=x\left(y^{\prime}+z\right)$

Draw the corresponding truth table and logic diagram

Truth Table

	y		$y^{\prime}+\mathrm{z}$	$f=x\left(y^{\prime}+z\right)$
0	0	0	1	0
0	0	1	1	0
0	1	0	0	0
0	1	1	1	0
1	0	0	1	1
1	0	1	1	1
1	1	0	0	0
1	1	1	1	1

Logic Diagram

Truth Table and Logic Diagram describe the same function f. Truth table is unique, but logic expression and logic diagram are not. This gives flexibility in implementing logic functions.

Combinational Circuit

* A combinational circuit is a block of logic gates having:
n inputs: $x_{1}, x_{2}, \ldots, x_{n}$ m outputs: $f_{1}, f_{2}, \ldots, f_{m}$
* Each output is a function of the input variables
* Each output is determined from present combination of inputs
* Combination circuit performs operation specified by logic gates

Example of a Simple Combinational Circuit

* The above circuit has:
\triangleleft Three inputs: x, y, and z
\diamond Two outputs: f and g
* What are the logic expressions of f and g ?
* Answer: $\quad f=x y+z^{\prime}$

$$
g=x y+y z
$$

From Truth Tables to Gate Implementation

* Given the truth table of a Boolean function f, how do we implement the truth table using logic gates?

Truth Table

$x y z \quad f$
$000 \quad 0$
0010
What is the logic expression of f ?

0101
0111
What is the gate implementation of f ?
$100 \quad 0$
$101 \quad 1$
1100
1111

To answer these questions, we need to define Minterms and Maxterms

Minterms and Maxterms

Minterms are AND terms with every variable present in either true or complement form

* Maxterms are OR terms with every variable present in either true or complement form

Minterms and Maxterms for 2 variables x and y

\mathbf{x}	\mathbf{y}	index	Minterm	Maxterm
0	0	0	$m_{0}=x^{\prime} y^{\prime}$	$M_{0}=x+y$
0	1	1	$m_{1}=x^{\prime} y$	$M_{1}=x+y^{\prime}$
1	0	2	$m_{2}=x y^{\prime}$	$M_{2}=x^{\prime}+y$
1	1	3	$m_{3}=x y$	$M_{3}=x^{\prime}+y^{\prime}$

* For n variables, there are 2^{n} Minterms and Maxterms

Minterms and Maxterms for 3 Variables

\mathbf{x}	\mathbf{y}	\mathbf{z}	index	Minterm	Maxterm
0	0	0	0	$m_{0}=x^{\prime} y^{\prime} z^{\prime}$	$M_{0}=x+y+z$
0	0	1	1	$m_{1}=x^{\prime} y^{\prime} z$	$M_{1}=x+y+z^{\prime}$
0	1	0	2	$m_{2}=x^{\prime} y z^{\prime}$	$M_{2}=x+y^{\prime}+z$
0	1	1	3	$m_{3}=x^{\prime} y z$	$M_{3}=x+y^{\prime}+z^{\prime}$
1	0	0	4	$m_{4}=x y^{\prime} z^{\prime}$	$M_{4}=x^{\prime}+y+z$
1	0	1	5	$m_{5}=x y^{\prime} z$	$M_{5}=x^{\prime}+y+z^{\prime}$
1	1	0	6	$m_{6}=x y z^{\prime}$	$M_{6}=x^{\prime}+y^{\prime}+z$
1	1	1	7	$m_{7}=x y z$	$M_{7}=x^{\prime}+y^{\prime}+z^{\prime}$

Maxterm M_{i} is the complement of Minterm m_{i}

$$
M_{i}=m_{i}^{\prime} \text { and } m_{i}=M_{i}^{\prime}
$$

Purpose of the Index

* Minterms and Maxterms are designated with an index
* The index for the Minterm or Maxterm, expressed as a binary number, is used to determine whether the variable is shown in the true or complemented form
* For Minterms:
\diamond '1' means the variable is Not Complemented
\triangleleft ' 0 ' means the variable is Complemented
* For Maxterms:
\& ' 0 ' means the variable is Not Complemented
» '1' means the variable is Complemented

Sum-Of-Minterms (SOM) Canonical Form

Truth Table

x y z	f	Minterm	Sum of Minterm entries that evaluate to ' 1 '
000	0		
001	0		
010	1	$m_{2}=x^{\prime} y z^{\prime}$	Focus on the '1' entries
011	1	$m_{3}=x^{\prime} y z$	
100	0		$f=m_{2}+m_{3}+m_{5}+m_{7}$
101	1	$m_{5}=x y^{\prime} z$	
110	0		$f=\sum(2,3,5,7)$
111	1	$m_{7}=x y z$	
$f=x^{\prime} y z^{\prime}+x^{\prime} y z+x y^{\prime} z+x y z$			

Examples of Sum-Of-Minterms

* $f(a, b, c, d)=\sum(2,3,6,10,11)$
* $f(a, b, c, d)=m_{2}+m_{3}+m_{6}+m_{10}+m_{11}$
\& $f(a, b, c, d)=a^{\prime} b^{\prime} c d^{\prime}+a^{\prime} b^{\prime} c d+a^{\prime} b c d^{\prime}+a b^{\prime} c d^{\prime}+a b^{\prime} c d$
* $g(a, b, c, d)=\sum(0,1,12,15)$
* $g(a, b, c, d)=m_{0}+m_{1}+m_{12}+m_{15}$
\& $g(a, b, c, d)=a^{\prime} b^{\prime} c^{\prime} d^{\prime}+a^{\prime} b^{\prime} c^{\prime} d+a b c^{\prime} d^{\prime}+a b c d$

Product-Of-Maxterms (POM) Canonical Form

Truth Table

$x y z$	f	Maxterm	Product of Maxterm entries that evaluate to ' 0 '
000	0	$M_{0}=x+y+z$	
001	0	$M_{1}=x+y+z^{\prime}$	
010	1		Focus on the '0' entries
011	1		
100	0	$M_{4}=x^{\prime}+y+z$	$f=M_{0} \cdot M_{1} \cdot M_{4} \cdot M_{6}$
101	1		
110	0	$M_{6}=x^{\prime}+y^{\prime}+z$	$f=\prod(0,1,4,6)$
111	1		
$f=(x+y+z)\left(x+y+z^{\prime}\right)\left(x^{\prime}+y+z\right)\left(x^{\prime}+y^{\prime}+z\right)$			

Examples of Product-Of-Maxterms

$$
\begin{aligned}
& * f(a, b, c, d)=\Pi(1,3,11) \\
& * f(a, b, c, d)=M_{1} \cdot M_{3} \cdot M_{11} \\
& * f(a, b, c, d)=\left(a+b+c+d^{\prime}\right)\left(a+b+c^{\prime}+d^{\prime}\right)\left(a^{\prime}+b+c^{\prime}+d^{\prime}\right) \\
& * g(a, b, c, d)=\Pi(0,5,13) \\
& * g(a, b, c, d)=M_{0} \cdot M_{5} \cdot M_{13} \\
& * f(a, b, c, d)=(a+b+c+d)\left(a+b^{\prime}+c+d^{\prime}\right)\left(a^{\prime}+b^{\prime}+c+d^{\prime}\right)
\end{aligned}
$$

Conversions between Canonical Forms

* The same Boolean function f can be expressed in two ways:
\diamond Sum-of-Minterms $\quad f=m_{0}+m_{2}+m_{3}+m_{5}+m_{7}=\sum(0,2,3,5,7)$
\triangleleft Product-of-Maxterms $\quad f=M_{1} \cdot M_{4} \cdot M_{6}=\Pi(1,4,6)$

Truth Table

\mathbf{x}	\mathbf{y}	\mathbf{z}	\mathbf{f}	Minterms	Maxterms
0	0	0	1	$m_{0}=x^{\prime} y^{\prime} z^{\prime}$	
0	0	1	0		$M_{1}=x+y+z^{\prime}$
0	1	0	1	$m_{2}=x^{\prime} y z^{\prime}$	
0	1	1	1	$m_{3}=x^{\prime} y z$	
1	0	0	0		$M_{4}=x^{\prime}+y+z$
1	0	1	1	$m_{5}=x y^{\prime} z$	
1	1	0	0		$M_{6}=x^{\prime}+y^{\prime}+z$
1	1	1	1	$m_{7}=x y z$	

To convert from one canonical
form to another, interchange
the symbols Σ and Π and list
those numbers missing from
the original form.

Function Complement

Truth Table

\mathbf{x}	y	z	f	f^{\prime}
0	0	0	1	0
0	0	1	0	1
0	1	0	1	0
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	0	1
1	1	1	1	0

Given a Boolean function f
$f(x, y, z)=\sum(0,2,3,5,7)=\prod(1,4,6)$
Then, the complement f^{\prime} of function f
$f^{\prime}(x, y, z)=\prod(0,2,3,5,7)=\sum(1,4,6)$

The complement of a function expressed by a Sum of Minterms is the Product of Maxterms with the same indices. Interchange the symbols Σ and Π, but keep the same list of indices.

Summary of Minterms and Maxterms

There are 2^{n} Minterms and Maxterms for Boolean functions with n variables, indexed from 0 to $2^{n}-1$

* Minterms correspond to the 1-entries of the function
* Maxterms correspond to the 0-entries of the function
* Any Boolean function can be expressed as a Sum-of-Minterms and as a Product-of-Maxterms
* For a Boolean function, given the list of Minterm indices one can determine the list of Maxterms indices (and vice versa)
* The complement of a Sum-of-Minterms is a Product-of-Maxterms with the same indices (and vice versa)

Sum-of-Products and Products-of-Sums

* Canonical forms contain a larger number of literals
\diamond Because the Minterms (and Maxterms) must contain, by definition, all the variables either complemented or not
* Another way to express Boolean functions is in standard form
* Two standard forms: Sum-of-Products and Product-of -Sums
* Sum of Products (SOP)
\diamond Boolean expression is the ORing (sum) of AND terms (products)
\diamond Examples: $f_{1}=x y^{\prime}+x z \quad f_{2}=y+x y^{\prime} z$
* Products of Sums (POS)
\diamond Boolean expression is the ANDing (product) of OR terms (sums)
\diamond Examples: $f_{3}=(x+z)\left(x^{\prime}+y^{\prime}\right) \quad f_{4}=x\left(x^{\prime}+y^{\prime}+z\right)$

Two-Level Gate Implementation

AND-OR implementations

OR-AND
plementations
$f_{4}=x\left(x^{\prime}+y^{\prime}+z\right)$

Two-Level vs. Three-Level Implementation

* $h=a b+c d+c e$ (6 literals) is a sum-of-products
* h may also be written as: $h=a b+c(d+e)$ (5 literals)
* However, $h=a b+c(d+e)$ is a non-standard form
$\diamond h=a b+c(d+e)$ is not a sum-of-products nor a product-of-sums

2-level implementation
$h=a b+c d+c e$

3-level implementation

$$
h=a b+c(d+e)
$$

Additional Logic Gates and Symbols

* Why?

২ Low cost implementation
\triangleleft Useful in implementing Boolean functions

NAND gate

NAND Gate

* The NAND gate has the following symbol and truth table
* NAND represents NOT AND
* The small bubble circle represents the invert function

NAND gate

\mathbf{x}	\mathbf{y}	NAND
$\mathbf{0}$	0	1
0	1	1
1	0	1
1	1	0

NOR Gate

* The NOR gate has the following symbol and truth table
* NOR represents NOT OR
* The small bubble circle represents the invert function

\mathbf{x}	\mathbf{y}	NOR
$\mathbf{0}$	0	1
0	1	0
1	0	0
1	1	0

The NAND Gate is Universal

* NAND gates can implement any Boolean function
* NAND gates can be used as inverters, or to implement AND/OR
* A single-input NAND gate is an inverter

$$
x \text { NAND } x=(x \cdot x)^{\prime}=x^{\prime}
$$

AND is equivalent to NAND with inverted output

$$
(x \text { NAND } y)^{\prime}=\left((x \cdot y)^{\prime}\right)^{\prime}=x \cdot y(\mathrm{AND})
$$

* OR is equivalent to NAND with inverted inputs $\left(x^{\prime}\right.$ NAND $\left.y^{\prime}\right)=\left(x^{\prime} \cdot y^{\prime}\right)^{\prime}=x+y(\mathrm{OR})$

The NOR Gate is also Universal

* NOR gates can implement any Boolean function

NOR gates can be used as inverters, or to implement AND/OR

* A single-input NOR gate is an inverter

$$
x \operatorname{NOR} x=(x+x)^{\prime}=x^{\prime}
$$

* OR is equivalent to NOR with inverted output

$$
(x \mathrm{NOR} y)^{\prime}=\left((x+y)^{\prime}\right)^{\prime}=x+y(\mathrm{OR}) \quad \begin{array}{ll}
x \longrightarrow-\infty-x+y \\
y \longrightarrow-\infty-\infty
\end{array}
$$

* AND is equivalent to NOR with inverted inputs
$\left(x^{\prime} \operatorname{NOR} y^{\prime}\right)=\left(x^{\prime}+y^{\prime}\right)^{\prime}=x \cdot y(\mathrm{AND})$

Multiple-Input NAND / NOR Gates

NAND/NOR gates can have multiple inputs, similar to AND/OR gates

2-input NAND gate

2-input NOR gate

3-input NAND gate

3-input NOR gate

4-input NOR gate

[^0] The same can be said about other multiple-input NAND/NOR gates.

NAND - NAND Implementation

* Consider the following sum-of-products expression:

$$
f=b d+a^{\prime} c d^{\prime}
$$

* A 2-level AND-OR circuit can be converted easily to a 2-level NAND-NAND implementation

2-Level AND-OR

Inserting Bubbles

2-Level NAND-NAND

Two successive bubbles on same line cancel each other

NOR - NOR Implementation

* Consider the following product-of-sums expression:

$$
g=(a+d)\left(b+c+d^{\prime}\right)
$$

* A 2-level OR-AND circuit can be converted easily to a 2-level NOR-NOR implementation

2-Level NOR-NOR

Two successive bubbles on same line cancel each other

Exclusive OR / Exclusive NOR

* Exclusive OR (XOR) is an important Boolean operation used extensively in logic circuits
* Exclusive NOR (XNOR) is the complement of XOR

\mathbf{x}	y	XOR
0	0	0
0	1	1
1	0	1
1	1	0
	XOR	

x y	y	XNOR		
00	0	1	XNOR is also known as equivalence	
01	1	0		
10	0	0		
11	1	1		

XOR / XNOR Functions

* The XOR function is: $x \oplus y=x y^{\prime}+x^{\prime} y$
* The XNOR function is: $(x \oplus y)^{\prime}=x y+x^{\prime} y^{\prime}$
* XOR and XNOR gates are complex
\diamond Can be implemented as a true gate, or by
« Interconnecting other gate types
\& XOR and XNOR gates do not exist for more than two inputs
\diamond For 3 inputs, use two XOR gates
\diamond The cost of a 3-input XOR gate is greater than the cost of two XOR gates
Uses for XOR and XNOR gates include:
\triangleleft Adders, subtractors, multipliers, counters, incrementers, decrementers
\diamond Parity generators and checkers

XOR and XNOR Properties

$\begin{array}{ll}* x \oplus 0=x & x \oplus 1=x^{\prime} \\ * x \oplus x=0 & x \oplus x^{\prime}=1 \\ * x \oplus y=y \oplus x & \\ * x^{\prime} \oplus y^{\prime}=x \oplus y & \\ *(x \oplus y)^{\prime}=x^{\prime} \oplus y=x \oplus y^{\prime} & \end{array}$
XOR and XNOR are associative operations
$\star(x \oplus y) \oplus z=x \oplus(y \oplus z)=x \oplus y \oplus z$
$\left((x \oplus y)^{\prime} \oplus z\right)^{\prime}=\left(x \oplus(y \oplus z)^{\prime}\right)^{\prime}=x \oplus y \oplus z$

[^0]: Note: a 3-input NAND is a single gate, NOT a combination of two 2-input gates.

