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Boolean Algebra and 

Logic Gates 

Boolean Algebra 

 Two-valued Boolean algebra is also called switching algebra 

 A set of two values: B = {0, 1} 

 Three basic operations: AND, OR, and NOT 

 The AND operator is denoted by a dot (·) 

 𝑥 · 𝑦 or 𝑥𝑦 is read: 𝑥 AND 𝑦 

 The OR operator is denoted by a plus (+) 

 𝑥 + 𝑦 is read: 𝑥 OR 𝑦 

 The NOT operator is denoted by (') or an overbar (¯). 

 𝑥′ or 𝑥 is the complement of 𝑥 
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Importance of Boolean Algebra 

 Our objective is to learn how to design digital circuits 

 These circuits use signals with two possible values 

 Logic 0 is a low voltage signal (around 0 volts) 

 Logic 1 is a high voltage signal (e.g. 5 or 3.3 volts) 

 Having only two logic values (0 and 1) simplifies the 

implementation of the digital circuit 

Postulates of Boolean Algebra 

1. Closure: the result of any Boolean operation is in B = {0, 1} 

2. Identity element with respect to + is 0: 𝑥 + 0 = 0 + 𝑥 = 𝑥 

 Identity element with respect to · is 1: 𝑥 · 1 = 1 · 𝑥 = 𝑥 

3. Commutative with respect to +: 𝑥 + 𝑦 = 𝑦 + 𝑥 

 Commutative with respect to ·: 𝑥 · 𝑦 =  𝑦 · 𝑥 

4. · is distributive over +: 𝑥 · (𝑦 + 𝑧) = (𝑥 · 𝑦) + (𝑥 · 𝑧) 

 + is distributive over ·: 𝑥 + (𝑦 · 𝑧) = (𝑥 + 𝑦) · (𝑥 + 𝑧) 

5. For every 𝑥 in B, there exists 𝑥′ in B (called complement of 𝑥) 

such that: 𝑥 + 𝑥′ = 1 and 𝑥 · 𝑥′ = 0 
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AND, OR, and NOT Operators 

 The following tables define 𝑥 · 𝑦, 𝑥 + 𝑦, and 𝑥′ 

 𝑥 · 𝑦 is the AND operator 

 𝑥 + 𝑦 is the OR operator 

 𝑥′ is the NOT operator 

x y x·y 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

x y x+y 

0 0 0 

0 1 1 

1 0 1 

1 1 1 

x x' 

0 1 

1 0 

Boolean Functions 

 Boolean functions are described by expressions that consist of: 

 Boolean variables, such as: 𝑥, 𝑦, etc. 

 Boolean constants: 0 and 1 

 Boolean operators: AND (·), OR (+), NOT (') 

 Parentheses, which can be nested 

 Example: 𝑓 = 𝑥 𝑦 + 𝑤′𝑧  

 The dot operator is implicit and need not be written 

 Operator precedence: to avoid ambiguity in expressions 

 Expressions within parentheses should be evaluated first 

 The NOT (') operator should be evaluated second 

 The AND (·) operator should be evaluated third 

 The OR (+) operator should be evaluated last 
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Truth Table 

 A truth table can represent a Boolean function 

 List all possible combinations of 0's and 1's assigned to variables 

 If n variables then 2n rows 

 Example: Truth table for 𝑓 = 𝑥𝑦′ + 𝑥′𝑧 

x  y  z  y'  xy'  x' x'z f = xy'+ x'z 

0  0  0 1 0 1 0 0 

0  0  1 1 0 1 1 1 

0  1  0 0 0 1 0 0 

0  1  1 0 0 1 1 1 

1  0  0 1 1 0 0 1 

1  0  1 1 1 0 0 1 

1  1  0 0 0 0 0 0 

1  1  1 0 0 0 0 0 

DeMorgan's Theorem 

 (𝑥 + 𝑦)′ =  𝑥′ 𝑦′ 

 (𝑥 𝑦)′ =  𝑥′ +  𝑦′ 

x y x' y' x+y (x+y)' x'y' x y (x y)' x'+ y' 

0 0 1 1 0 1 1 0 1 1 

0 1 1 0 1 0 0 0 1 1 

1 0 0 1 1 0 0 0 1 1 

1 1 0 0 1 0 0 1 0 0 

Can be verified 

Using a Truth Table 

Identical Identical 

 Generalized DeMorgan's Theorem: 

 𝑥1 + 𝑥2 +⋯+ 𝑥𝑛
′ = 𝑥1
′ ∙ 𝑥2
′ ∙  ⋯ ∙  𝑥𝑛

′  

 𝑥1 ∙ 𝑥2 ∙ ⋯ ∙ 𝑥𝑛
′ = 𝑥1
′ + 𝑥2
′ + ⋯+ 𝑥𝑛

′  
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Complementing Boolean Functions 

What is the complement of 𝑓 = 𝑥′𝑦𝑧′ + 𝑥𝑦′𝑧′ ? 

 Use DeMorgan's Theorem: 

 Complement each variable and constant 

 Interchange AND and OR operators 

 So, what is the complement of 𝑓 = 𝑥′𝑦𝑧′ + 𝑥𝑦′𝑧′ ? 

 Answer: 𝑓′ = (𝑥 + 𝑦′ + 𝑧)(𝑥′ + 𝑦 + 𝑧) 

 Example 2: Complement 𝑔 = (𝑎′ + 𝑏𝑐)𝑑′ + 𝑒 

 Answer: 𝑔′ = (𝑎(𝑏′ + 𝑐′) + 𝑑)𝑒′ 

Algebraic Manipulation of Expressions 

 The objective is to acquire skills in manipulating Boolean 

expressions, to transform them into simpler form. 

 Example 1: prove 𝑥 + 𝑥𝑦 = 𝑥 (absorption theorem) 

 Proof: 𝑥 + 𝑥𝑦 = 𝑥 · 1 + 𝑥𝑦 𝑥 · 1 = 𝑥 

 = 𝑥 · (1 + 𝑦) Distributive · over + 

 = 𝑥 · 1 = 𝑥 (1 + 𝑦) = 1 

 Example 2: prove 𝑥 + 𝑥′𝑦 = 𝑥 + 𝑦  (simplification theorem) 

 Proof: 𝑥 + 𝑥′𝑦 = (𝑥 + 𝑥′)(𝑥 + 𝑦) Distributive + over · 

 = 1 · (𝑥 + 𝑦) (𝑥 + 𝑥′) = 1 

 = 𝑥 + 𝑦 
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Duality Principle 

 The dual of a Boolean expression can be obtained by: 

 Interchanging AND (·) and OR (+) operators 

 Interchanging 0's and 1's 

 Example: the dual of 𝑥(𝑦 + 𝑧′) is 𝑥 + 𝑦𝑧′ 

 The complement operator does not change 

 The properties of Boolean algebra appear in dual pairs 

 If a property is proven to be true then its dual is also true 

Property Dual Property 

Identity 𝑥 + 0 = 𝑥 𝑥 · 1 = 𝑥 

Complement 𝑥 + 𝑥′ = 1 𝑥 · 𝑥′ = 0 

Distributive 𝑥 (𝑦 + 𝑧)  = 𝑥𝑦 + 𝑥𝑧 𝑥 + 𝑦𝑧 = (𝑥 + 𝑦)(𝑥 + 𝑧) 

Summary of Boolean Algebra 

Property Dual Property 

Identity 𝑥 + 0 = 𝑥 𝑥 · 1 = 𝑥 

Complement 𝑥 + 𝑥′ = 1 𝑥 · 𝑥′ = 0 

Null 𝑥 + 1 = 1 𝑥 · 0 = 0 

Idempotence 𝑥 + 𝑥 = 𝑥 𝑥 · 𝑥 = 𝑥 

Involution (𝑥′)′ = 𝑥 

Commutative 𝑥 + 𝑦 =  𝑦 + 𝑥 𝑥 𝑦 =  𝑦 𝑥 

Associative (𝑥 + 𝑦) + 𝑧 = 𝑥 + (𝑦 + 𝑧) 𝑥 𝑦  𝑧 = 𝑥 (𝑦 𝑧) 

Distributive 𝑥 (𝑦 + 𝑧)  = 𝑥𝑦 + 𝑥𝑧 𝑥 + 𝑦𝑧 = (𝑥 + 𝑦)(𝑥 + 𝑧) 

Absorption 𝑥 + 𝑥𝑦 =  𝑥 𝑥(𝑥 + 𝑦)  =  𝑥 

Simplification 𝑥 + 𝑥′𝑦 =  𝑥 + 𝑦 𝑥(𝑥′ + 𝑦)  =  𝑥𝑦 

De Morgan (𝑥 + 𝑦)′ =  𝑥′ 𝑦′ 𝑥 𝑦 ′ = 𝑥′ + 𝑦′ 
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Logic Gates and Symbols 

𝑥 

𝑦 
𝑥 · 𝑦 

AND gate 

𝑥 

𝑦 
𝑥 + 𝑦 

OR gate 

𝑥′ 𝑥 

NOT gate (inverter) 

 In the earliest computers, relays were used as mechanical 

switches controlled by electricity (coils) 

 Today, tiny transistors are used as electronic switches that 

implement the logic gates (CMOS technology) 

AND: Switches in series 

logic 0 is open switch 

OR: Switches in parallel 

logic 0 is open switch 

NOT: Switch is normally 

closed when x is 0 

𝑥 𝑦 
𝑥 

𝑦 

𝑥′ 

Truth Table and Logic Diagram 

 Given the following logic function: 𝑓 = 𝑥(𝑦′ + 𝑧) 

 Draw the corresponding truth table and logic diagram 

Truth Table 

x y z y'+ z f = x(y'+ z) 

0 0 0 1 0 

0 0 1 1 0 

0 1 0 0 0 

0 1 1 1 0 

1 0 0 1 1 

1 0 1 1 1 

1 1 0 0 0 

1 1 1 1 1 

Truth Table and Logic Diagram 

describe the same function 𝑓. 

Truth table is unique, but logic 

expression and logic diagram 

are not. This gives flexibility in 

implementing logic functions. 

𝑥 

𝑦 

𝑓 = 𝑥(𝑦′ + 𝑧) 

𝑧 

Logic Diagram 
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Combinational Circuit 

 A combinational circuit is a block of logic gates having: 

 𝑛 inputs: 𝑥1, 𝑥2, … , 𝑥𝑛 

 𝑚 outputs: 𝑓1, 𝑓2, … , 𝑓𝑚 

 Each output is a function of the input variables  

 Each output is determined from present combination of inputs 

 Combination circuit performs operation specified by logic gates 


 Combinational 

Circuit 


 

𝑛 inputs 𝑚 outputs 

Example of a Simple Combinational Circuit 

 The above circuit has: 

 Three inputs: 𝑥, 𝑦, and 𝑧 

 Two outputs: 𝑓 and 𝑔 

What are the logic expressions of 𝑓 and 𝑔 ? 

 Answer: 𝑓 = 𝑥𝑦 + 𝑧′ 

 𝑔 = 𝑥𝑦 + 𝑦𝑧 

𝑥 

𝑦 𝑓 

𝑔 

𝑧 
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From Truth Tables to Gate Implementation 

 Given the truth table of a Boolean function 𝑓, how do we 

implement the truth table using logic gates? 

Truth Table 

x y z f 

0 0 0 0 

0 0 1 0 

0 1 0 1 

0 1 1 1 

1 0 0 0 

1 0 1 1 

1 1 0 0 

1 1 1 1 

What is the logic expression of 𝑓? 

What is the gate implementation of 𝑓? 

To answer these questions, we need 

to define Minterms and Maxterms 

Minterms and Maxterms 

Minterms are AND terms with every variable present in either 

true or complement form 

Maxterms are OR terms with every variable present in either 

true or complement form 

Minterms and Maxterms for 2 variables 𝑥 and 𝑦  

 

 

 

 

 For n variables, there are 2n Minterms and Maxterms 

x y index Minterm Maxterm 

0 0 0 𝑚0 = 𝑥′𝑦′ 𝑀0 = 𝑥 + 𝑦 

0 1 1 𝑚1 = 𝑥′𝑦 𝑀1 = 𝑥 + 𝑦′ 

1 0 2 𝑚2 = 𝑥𝑦′ 𝑀2 = 𝑥′ + 𝑦 

1 1 3 𝑚3 = 𝑥𝑦 𝑀3 = 𝑥′ + 𝑦′ 
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Minterms and Maxterms for 3 Variables 

Maxterm 𝑀𝑖 is the complement of Minterm 𝑚𝑖 

𝑀𝑖 = 𝑚𝑖′  and  𝑚𝑖 = 𝑀𝑖′ 

x y z index Minterm Maxterm 

0 0 0 0 𝑚0 = 𝑥
′𝑦′𝑧′ 𝑀0 = 𝑥 + 𝑦 + 𝑧 

0 0 1 1 𝑚1 = 𝑥
′𝑦′𝑧 𝑀1 = 𝑥 + 𝑦 + 𝑧′ 

0 1 0 2 𝑚2 = 𝑥′𝑦𝑧′ 𝑀2 = 𝑥 + 𝑦′ + 𝑧 

0 1 1 3 𝑚3 = 𝑥′𝑦𝑧 𝑀3 = 𝑥 + 𝑦
′ + 𝑧′ 

1 0 0 4 𝑚4 = 𝑥𝑦
′𝑧′ 𝑀4 = 𝑥′ + 𝑦 + 𝑧 

1 0 1 5 𝑚5 = 𝑥𝑦
′𝑧 𝑀5 = 𝑥′ + 𝑦 + 𝑧′ 

1 1 0 6 𝑚6 = 𝑥𝑦𝑧′ 𝑀6 = 𝑥′ + 𝑦′ + 𝑧 

1 1 1 7 𝑚7 = 𝑥𝑦𝑧 𝑀7 = 𝑥′ + 𝑦
′ + 𝑧′ 

Purpose of the Index 

Minterms and Maxterms are designated with an index  

 The index for the Minterm or Maxterm, expressed as a 

binary number, is used to determine whether the variable 

is shown in the true or complemented form 

 For Minterms: 

 ‘1’ means the variable is Not Complemented 

 ‘0’ means  the variable is Complemented 

 For Maxterms: 

 ‘0’ means  the variable is Not Complemented 

 ‘1’ means the variable is Complemented  
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Sum-Of-Minterms (SOM) Canonical Form 

Sum of Minterm entries 

that evaluate to ‘1’ 

Truth Table 

x y z f Minterm 

0 0 0 0 

0 0 1 0 

0 1 0 1 𝑚2 = 𝑥′𝑦𝑧′ 

0 1 1 1 𝑚3 = 𝑥′𝑦𝑧 

1 0 0 0 

1 0 1 1 𝑚5 = 𝑥𝑦′𝑧 

1 1 0 0 

1 1 1 1 𝑚7 = 𝑥𝑦𝑧 

Focus on the ‘1’ entries  

𝑓 = 𝑚2 +𝑚3 +𝑚5 +𝑚7 

𝑓 = 2, 3, 5, 7  

𝑓 = 𝑥′𝑦𝑧′ + 𝑥′𝑦𝑧 + 𝑥𝑦′𝑧 + 𝑥𝑦𝑧 

Examples of Sum-Of-Minterms 

 𝑓 𝑎, 𝑏, 𝑐, 𝑑 =  (2, 3, 6, 10, 11) 

 𝑓 𝑎, 𝑏, 𝑐, 𝑑 = 𝑚2 +𝑚3 +𝑚6 +𝑚10 +𝑚11 

 𝑓 𝑎, 𝑏, 𝑐, 𝑑 = 𝑎′𝑏′𝑐𝑑′ + 𝑎′𝑏′𝑐𝑑 + 𝑎′𝑏𝑐𝑑′ + 𝑎𝑏′𝑐𝑑′ + 𝑎𝑏′𝑐𝑑 

 𝑔 𝑎, 𝑏, 𝑐, 𝑑 =  (0, 1, 12, 15) 

 𝑔 𝑎, 𝑏, 𝑐, 𝑑 = 𝑚0 +𝑚1 +𝑚12 +𝑚15 

 𝑔 𝑎, 𝑏, 𝑐, 𝑑 = 𝑎′𝑏′𝑐′𝑑′ + 𝑎′𝑏′𝑐′𝑑 + 𝑎𝑏𝑐′𝑑′ + 𝑎𝑏𝑐𝑑 
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Product-Of-Maxterms (POM) Canonical Form 

Truth Table 

x y z f Maxterm 

0 0 0 0 𝑀0 = 𝑥 + 𝑦 + 𝑧 

0 0 1 0 𝑀1 = 𝑥 + 𝑦 + 𝑧′ 

0 1 0 1 

0 1 1 1 

1 0 0 0 𝑀4 = 𝑥′ + 𝑦 + 𝑧 

1 0 1 1 

1 1 0 0 𝑀6 = 𝑥′ + 𝑦′ + 𝑧 

1 1 1 1 

Product of Maxterm entries 

that evaluate to ‘0’ 

Focus on the ‘0’ entries  

𝑓 = 𝑀0 · 𝑀1 · 𝑀4 · 𝑀6 

𝑓 = 0,1, 4, 6  

𝑓 = (𝑥 + 𝑦 + 𝑧)(𝑥 + 𝑦 + 𝑧′)(𝑥′ + 𝑦 + 𝑧)(𝑥′ + 𝑦′ + 𝑧) 

Examples of Product-Of-Maxterms 

 𝑓 𝑎, 𝑏, 𝑐, 𝑑 =  (1, 3, 11) 

 𝑓(𝑎, 𝑏, 𝑐, 𝑑) = 𝑀1 ∙ 𝑀3 ∙ 𝑀11 

 𝑓(𝑎, 𝑏, 𝑐, 𝑑) = 𝑎 + 𝑏 + 𝑐 + 𝑑′ 𝑎 + 𝑏 + 𝑐′ + 𝑑′  (𝑎′ + 𝑏 + 𝑐′ + 𝑑′) 

 𝑔 𝑎, 𝑏, 𝑐, 𝑑 =  (0, 5, 13) 

 𝑔(𝑎, 𝑏, 𝑐, 𝑑) = 𝑀0 ∙ 𝑀5 ∙ 𝑀13 

 𝑓(𝑎, 𝑏, 𝑐, 𝑑) = 𝑎 + 𝑏 + 𝑐 + 𝑑 𝑎 + 𝑏′ + 𝑐 + 𝑑′  (𝑎′ + 𝑏′ + 𝑐 + 𝑑′) 
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Conversions between Canonical Forms 

 The same Boolean function 𝑓 can be expressed in two ways: 

 Sum-of-Minterms 𝑓 = 𝑚0 +𝑚2 +𝑚3 +𝑚5 +𝑚7 =  (0, 2, 3, 5, 7) 

 Product-of-Maxterms 𝑓 = 𝑀1 ∙ 𝑀4 ∙ 𝑀6 =  (1, 4, 6) 

x y z f Minterms Maxterms 

0 0 0 1 𝑚0 = 𝑥
′𝑦′𝑧′ 

0 0 1 0 𝑀1 = 𝑥 + 𝑦 + 𝑧′ 

0 1 0 1 𝑚2 = 𝑥
′𝑦𝑧′ 

0 1 1 1 𝑚3 = 𝑥
′𝑦𝑧 

1 0 0 0 𝑀4 = 𝑥′ + 𝑦 + 𝑧 

1 0 1 1 𝑚5 = 𝑥𝑦′𝑧 

1 1 0 0 𝑀6 = 𝑥′ + 𝑦′ + 𝑧 

1 1 1 1 𝑚7 = 𝑥𝑦𝑧 

To convert from one canonical 

form to another, interchange 

the symbols  and  and list 

those numbers missing from 

the original form. 

Truth Table 

Function Complement 

Given a Boolean function 𝑓 

𝑓(𝑥, 𝑦, 𝑧) = 0, 2, 3, 5, 7 = (1, 4, 6) 

Then, the complement 𝑓′ of function 𝑓 

𝑓′(𝑥, 𝑦, 𝑧) = 0, 2, 3, 5, 7 = (1, 4, 6)  

x y z f f' 

0 0 0 1 0 

0 0 1 0 1 

0 1 0 1 0 

0 1 1 1 0 

1 0 0 0 1 

1 0 1 1 0 

1 1 0 0 1 

1 1 1 1 0 

The complement of a function expressed by a 

Sum of Minterms is the Product of Maxterms 

with the same indices. Interchange the symbols 

 and , but keep the same list of indices. 

Truth Table 
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Summary of Minterms and Maxterms 

 There are 2n Minterms and Maxterms for Boolean functions with 

n variables, indexed from 0 to 2n – 1 

Minterms correspond to the 1-entries of the function 

Maxterms correspond to the 0-entries of the function 

 Any Boolean function can be expressed as a Sum-of-Minterms 

and as a Product-of-Maxterms 

 For a Boolean function, given the list of Minterm indices one can 

determine the list of Maxterms indices (and vice versa) 

 The complement of a Sum-of-Minterms is a Product-of-Maxterms 

with the same indices (and vice versa) 

Sum-of-Products and Products-of-Sums 

 Canonical forms contain a larger number of literals 

 Because the Minterms (and Maxterms) must contain, by definition, all 

the variables either complemented or not 

 Another way to express Boolean functions is in standard form 

 Two standard forms: Sum-of-Products and Product-of -Sums 

 Sum of Products (SOP) 

 Boolean expression is the ORing (sum) of AND terms (products) 

 Examples: 𝑓1 = 𝑥𝑦′ + 𝑥𝑧 𝑓2 = 𝑦 + 𝑥𝑦′𝑧 

 Products of Sums (POS) 

 Boolean expression is the ANDing (product) of OR terms (sums) 

 Examples: 𝑓3 = (𝑥 + 𝑧)(𝑥′ + 𝑦′) 𝑓4 = 𝑥(𝑥′ + 𝑦′ + 𝑧) 
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Two-Level Gate Implementation 

𝑓1 = 𝑥𝑦′ + 𝑥𝑧 

𝑥 

𝑦′ 
𝑓1 

𝑥 

𝑧 

𝑓2 = 𝑦 + 𝑥𝑦′𝑧 

𝑦 

𝑦′ 

𝑓2 𝑥 

𝑧 3-input AND gate AND-OR 

implementations 

𝑓3 = (𝑥 + 𝑧)(𝑥
′ + 𝑦′) 

𝑥 

𝑧 
𝑓3 

𝑥′ 

𝑦′ 

𝑓4 = 𝑥(𝑥
′ + 𝑦′ + 𝑧) 

𝑥 

𝑓4 𝑥′ 
𝑦′ 
𝑧 3-input OR gate OR-AND 

implementations 

Two-Level vs. Three-Level Implementation 

 ℎ = 𝑎𝑏 + 𝑐𝑑 + 𝑐𝑒 (6 literals) is a sum-of-products 

 ℎ may also be written as: ℎ = 𝑎𝑏 + 𝑐(𝑑 + 𝑒) (5 literals) 

 However, ℎ = 𝑎𝑏 + 𝑐(𝑑 + 𝑒) is a non-standard form 

 ℎ = 𝑎𝑏 + 𝑐(𝑑 + 𝑒) is not a sum-of-products nor a product-of-sums 

2-level implementation 

ℎ = 𝑎𝑏 + 𝑐𝑑 + 𝑐𝑒 

3-level implementation 

ℎ = 𝑎𝑏 + 𝑐(𝑑 + 𝑒) 

𝑎 

𝑏 

ℎ 
𝑐 

𝑑 

𝑐 

𝑒 3-input OR gate 

𝑎 

𝑏 

ℎ 𝑐 

𝑑 

𝑒 



16 

Additional Logic Gates and Symbols 

Why? 

 Low cost implementation 

 Useful in implementing Boolean functions 

𝑥 

𝑦 
𝑥 · 𝑦 

AND gate 

𝑥 

𝑦 
𝑥 + 𝑦 

OR gate 

𝑥′ 𝑥 

NOT gate (inverter) 

𝑥 

𝑦 
𝑥 · 𝑦 ′ 

NAND gate 

𝑥 

𝑦 
(𝑥 + 𝑦)′ 

NOR gate 

𝑥 

𝑦 
𝑥 ⊕ 𝑦 

XOR gate 

𝑥 

𝑦 
(𝑥 ⊕ 𝑦)′ 

XNOR gate 

𝑥 𝑥 

Buffer 

NAND Gate 

 The NAND gate has the following symbol and truth table 

 NAND represents NOT AND 

 The small bubble circle represents the invert function 

 

 

 

 

 

x   y NAND 

0  0 1 

0  1 1 

1  0 1 

1  1 0 

𝑥 
𝑦 

𝑥 · 𝑦 ′ = 𝑥′ + 𝑦′ 

NAND gate 𝑥 
𝑦 

𝑥′ + 𝑦′ 

Another symbol for NAND 
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NOR Gate 

 The NOR gate has the following symbol and truth table 

 NOR represents NOT OR 

 The small bubble circle represents the invert function 

 

 

 

 

 

x   y NOR 

0  0 1 

0  1 0 

1  0 0 

1  1 0 

𝑥 
𝑦 

𝑥 + 𝑦 ′ = 𝑥′ · 𝑦′ 

NOR gate 𝑥 
𝑦 

𝑥′ · 𝑦′ 

Another symbol for NOR 

The NAND Gate is Universal 

 NAND gates can implement any Boolean function 

 NAND gates can be used as inverters, or to implement AND/OR 

 A single-input NAND gate is an inverter 

𝑥 NAND 𝑥 = (𝑥 · 𝑥)′ = 𝑥′ 

 AND is equivalent to NAND with inverted output 

(𝑥 NAND 𝑦)′ = ((𝑥 · 𝑦)′)′ = 𝑥 · 𝑦 (AND) 

 OR is equivalent to NAND with inverted inputs 

(𝑥′ NAND 𝑦′) = (𝑥′ · 𝑦′)′ = 𝑥 + 𝑦 (OR) 

𝑥 

𝑦 
𝑥 · 𝑦 

𝑥 

𝑦 
𝑥 + 𝑦 

𝑥′ 

𝑦′ 
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The NOR Gate is also Universal 

 NOR gates can implement any Boolean function 

 NOR gates can be used as inverters, or to implement AND/OR 

 A single-input NOR gate is an inverter 

𝑥 NOR 𝑥 = (𝑥 + 𝑥)′ = 𝑥′ 

 OR is equivalent to NOR with inverted output 

(𝑥 NOR 𝑦)′ = ((𝑥 + 𝑦)′)′ = 𝑥 + 𝑦 (OR) 

 AND is equivalent to NOR with inverted inputs 

(𝑥′ NOR 𝑦′) = (𝑥′ + 𝑦′)′ = 𝑥 · 𝑦 (AND) 

𝑥 

𝑦 
𝑥 + 𝑦 

𝑥 

𝑦 
𝑥 · 𝑦 

𝑥′ 

𝑦′ 

Multiple-Input NAND / NOR Gates 

NAND/NOR gates can have multiple inputs, similar to AND/OR gates 

𝑥 

𝑦 
𝑥 · 𝑦 ′ 

2-input NAND gate 

𝑥 

𝑧 
𝑥 · 𝑦 · 𝑧 ′ 

3-input NAND gate 

𝑦 

𝑤 

𝑧 
𝑤 · 𝑥 · 𝑦 · 𝑧 ′ 

4-input NAND gate 

𝑦 
𝑥 

𝑥 

𝑦 
𝑥 + 𝑦 ′ 

2-input NOR gate 

𝑥 

𝑧 
𝑥 + 𝑦 + 𝑧 ′ 

3-input NOR gate 

𝑦 

𝑤 

𝑧 
𝑤 + 𝑥 + 𝑦 + 𝑧 ′ 

4-input NOR gate 

𝑦 
𝑥 

Note: a 3-input NAND is a single gate, NOT a combination of two 2-input gates. 

The same can be said about other multiple-input NAND/NOR gates. 
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NAND – NAND Implementation 

 Consider the following sum-of-products expression: 

𝑓 = 𝑏𝑑 + 𝑎′𝑐𝑑′ 

 A 2-level AND-OR circuit can be converted easily to a 2-level 

NAND-NAND implementation 

𝑏 

𝑑 
𝑓 

𝑎′ 
𝑐 
𝑑′ 

2-Level AND-OR 

𝑏 

𝑑 
𝑓 

𝑎′ 
𝑐 
𝑑′ 

Inserting Bubbles 

Two successive bubbles on same line cancel each other 

𝑏 

𝑑 
𝑓 

𝑎′ 
𝑐 
𝑑′ 

2-Level NAND-NAND 

3-input 

NAND gate 

3-input 

AND gate 

NOR – NOR Implementation 

 Consider the following product-of-sums expression: 

𝑔 = (𝑎 + 𝑑)(𝑏 + 𝑐 + 𝑑′) 

 A 2-level OR-AND circuit can be converted easily to a 2-level 

NOR-NOR implementation 

Two successive bubbles on same line cancel each other 

2-Level OR-AND 

𝑎 

𝑑 
𝑔 

𝑏 
𝑐 
𝑑′ 

Inserting Bubbles 

𝑎 

𝑑 
𝑔 

𝑏 
𝑐 
𝑑′ 

2-Level NOR-NOR 

𝑎 

𝑑 
𝑔 

𝑏 
𝑐 
𝑑′ 3-input 

NOR gate 

3-input 

OR gate 
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Exclusive OR / Exclusive NOR 

 Exclusive OR (XOR) is an important Boolean operation used 

extensively in logic circuits 

 Exclusive NOR (XNOR) is the complement of XOR 

𝑥 
𝑦 

𝑥 ⨁ 𝑦 

XOR gate 

𝑥 
𝑦 

(𝑥 ⨁ 𝑦)′ 

XNOR gate 

x   y XOR 

0  0 0 

0  1 1 

1  0 1 

1  1 0 

x   y XNOR 

0  0 1 

0  1 0 

1  0 0 

1  1 1 

XNOR is also known 

as equivalence 

XOR / XNOR Functions 

 The XOR function is: 𝑥 ⨁ 𝑦 = 𝑥𝑦′ + 𝑥′𝑦 

 The XNOR function is: (𝑥 ⨁ 𝑦)′ = 𝑥𝑦 + 𝑥′𝑦′ 

 XOR and XNOR gates are complex 

 Can be implemented as a true gate, or by 

 Interconnecting other gate types 

 XOR and XNOR gates do not exist for more than two inputs 

 For 3 inputs, use two XOR gates 

 The cost of a 3-input XOR gate is greater than the cost of two XOR gates 

 Uses for XOR and XNOR gates include: 

 Adders, subtractors, multipliers, counters, incrementers, decrementers 

 Parity generators and checkers 
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XOR and XNOR Properties 

 𝑥 ⨁ 0 = 𝑥 𝑥 ⨁ 1 = 𝑥′ 

 𝑥 ⨁ 𝑥 = 0 𝑥 ⨁ 𝑥′ = 1 

 𝑥 ⨁ 𝑦 = 𝑦 ⨁ 𝑥 

 𝑥′ ⨁ 𝑦′ = 𝑥 ⨁ 𝑦 

 𝑥 ⨁ 𝑦 ′ = 𝑥′ ⨁ 𝑦 = 𝑥 ⨁ 𝑦′ 

XOR and XNOR are associative operations 

 𝑥 ⨁ 𝑦  ⨁ 𝑧 = 𝑥 ⨁ 𝑦 ⨁ 𝑧 = 𝑥 ⨁ 𝑦 ⨁ 𝑧 

 𝑥 ⨁ 𝑦 ′ ⨁ 𝑧
′
= 𝑥 ⨁ (𝑦 ⨁ 𝑧)′ ′ = 𝑥 ⨁ 𝑦 ⨁ 𝑧 


