Boolean Algebra and

Logic Gates

Boolean Algebra

- Two-valued Boolean algebra is also called switching algebra
- A set of two values: $B = \{0, 1\}$
- Three basic operations: AND, OR, and NOT
- The AND operator is denoted by a dot (•)
 - $\diamond x \cdot y \text{ or } xy \text{ is read: } x \text{ AND } y$
- The OR operator is denoted by a plus (+)
 - $\Rightarrow x + y$ is read: x **OR** y
- ✤ The NOT operator is denoted by (') or an overbar (⁻).
 - $\Rightarrow x' \text{ or } \overline{x} \text{ is the complement of } x$

Importance of Boolean Algebra

- Our objective is to learn how to design digital circuits
- These circuits use signals with two possible values
- Logic 0 is a low voltage signal (around 0 volts)
- Logic 1 is a high voltage signal (e.g. 5 or 3.3 volts)
- Having only two logic values (0 and 1) simplifies the implementation of the digital circuit

Postulates of Boolean Algebra

- 1. Closure: the result of any Boolean operation is in $B = \{0, 1\}$
- 2. Identity element with respect to + is 0: x + 0 = 0 + x = xIdentity element with respect to • is 1: $x \cdot 1 = 1 \cdot x = x$
- 3. Commutative with respect to +: x + y = y + x

Commutative with respect to $\cdot : x \cdot y = y \cdot x$

4. • is distributive over +: $x \cdot (y + z) = (x \cdot y) + (x \cdot z)$

+ is distributive over \cdot : $x + (y \cdot z) = (x + y) \cdot (x + z)$

5. For every *x* in B, there exists *x'* in B (called complement of *x*) such that: x + x' = 1 and $x \cdot x' = 0$

AND, OR, and NOT Operators

- ✤ The following tables define $x \cdot y$, x + y, and x'
- $x \cdot y$ is the **AND** operator
- x + y is the **OR** operator
- x' is the **NOT** operator

ху	х∙у	ху	x+y
00	0	00	0
0 1	0	0 1	1
10	0	1 0	1
1 1	1	1 1	1

•
L
)

Boolean Functions

- Boolean functions are described by expressions that consist of:
 - \diamond Boolean variables, such as: *x*, *y*, etc.
 - ♦ Boolean constants: 0 and 1
 - ♦ Boolean operators: AND (•), OR (+), NOT (')
 - ♦ Parentheses, which can be nested
- ***** Example: f = x(y + w'z)
 - \diamond The dot operator is implicit and need not be written
- Operator precedence: to avoid ambiguity in expressions
 - ♦ Expressions within parentheses should be evaluated first
 - \diamond The NOT (') operator should be evaluated second
 - \diamond The AND (\cdot) operator should be evaluated third
 - ♦ The OR (+) operator should be evaluated last

Truth Table

- ✤ A truth table can represent a Boolean function
- ✤ List all possible combinations of 0's and 1's assigned to variables
- If *n* variables then 2^n rows
- ***** Example: Truth table for f = xy' + x'z

х	у	z	у'	xy'	х'	x'z	f = xy'+ x'z
0	0	0	1	0	1	0	0
0	0	1	1	0	1	1	1
0	1	0	0	0	1	0	0
0	1	1	0	0	1	1	1
1	0	0	1	1	0	0	1
1	0	1	1	1	0	0	1
1	1	0	0	0	0	0	0
1	1	1	0	0	0	0	0

	DeMorgan's Theorem								
	(x + y)' = x' y'Can be verified $(x y)' = x' + y'$ Using a Truth Table								
х	у	x'	у'	x+y	(x+y)'	x'y'	ху	(x y)'	x'+ y'
0	0	1	1	0	1	1	0	1	1
0	1	1	0	1	0	0	0	1	1
1	0	0	1	1	0	0	0	1	1
1	1	0	0	1	0	0	1	0	0
				Iden	tical		Ident	ical	

✤ Generalized DeMorgan's Theorem:

★ $(x_1 + x_2 + \dots + x_n)' = x'_1 \cdot x'_2 \cdot \dots \cdot x'_n$ ★ $(x_1 \cdot x_2 \cdot \dots \cdot x_n)' = x'_1 + x'_2 + \dots + x'_n$

Complementing Boolean Functions

- What is the complement of f = x'yz' + xy'z'?
- Use DeMorgan's Theorem:
 - \diamond Complement each variable and constant
 - $\diamond\,$ Interchange AND and OR operators
- So, what is the complement of f = x'yz' + xy'z'?

Answer: f' = (x + y' + z)(x' + y + z)

- **Example 2:** Complement g = (a' + bc)d' + e
- *** Answer:** g' = (a(b' + c') + d)e'

= x + y

Algebraic Manipulation of Expressions

The objective is to acquire skills in manipulating Boolean expressions, to transform them into simpler form.

* Example 1: prove $x + xy = x$	(absorption theorem)
* Proof: $x + xy = x \cdot 1 + xy$	$x \cdot 1 = x$
$= x \cdot (1 + y)$	Distributive · over +
$= x \cdot 1 = x$	(1+y) = 1
The Example 2: prove $x + x'y = x + y$	(simplification theorem)
♦ Proof: $x + x'y = (x + x')(x + y)$	Distributive + over \cdot
$= 1 \cdot (x + y)$	(x+x')=1

Duality Principle

The dual of a Boolean expression can be obtained by:

- $\diamond\,$ Interchanging AND (\cdot) and OR (+) operators
- $\diamond\,$ Interchanging 0's and 1's
- ***** Example: the dual of x(y + z') is x + yz'
 - ♦ The complement operator does not change

The properties of Boolean algebra appear in dual pairs

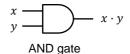
 \diamond If a property is proven to be true then its dual is also true

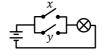
	Property	Dual Property
Identity	x + 0 = x	$x \cdot 1 = x$
Complement	x + x' = 1	$x \cdot x' = 0$
Distributive	x(y+z) = xy + xz	x + yz = (x + y)(x + z)

Summary of Boolean Algebra

	Property	Dual Property
Identity	x + 0 = x	$x \cdot 1 = x$
Complement	x + x' = 1	$x \cdot x' = 0$
Null	x + 1 = 1	$x \cdot 0 = 0$
Idempotence	x + x = x	$x \cdot x = x$
Involution	(x')' = x	
Commutative	x + y = y + x	x y = y x
Associative	(x+y)+z = x + (y+z)	(x y) z = x (y z)
Distributive	$x\left(y+z\right) = xy + xz$	x + yz = (x + y)(x + z)
Absorption	x + xy = x	x(x+y) = x
Simplification	x + x'y = x + y	x(x'+y) = xy
De Morgan	(x+y)' = x'y'	(x y)' = x' + y'

Logic Gates and Symbols





NOT gate (inverter)

AND: Switches in series logic 0 is open switch

OR: Switches in parallel logic 0 is open switch

NOT: Switch is normally closed when x is 0

- x'

- In the earliest computers, relays were used as mechanical switches controlled by electricity (coils)
- Today, tiny transistors are used as electronic switches that implement the logic gates (CMOS technology)

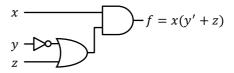
Truth Table and Logic Diagram

• Given the following logic function: f = x(y' + z)

Draw the corresponding truth table and logic diagram

Truth Table									
х	у	z	y'+ z	f = x(y'+z)					
0	0	0	1	0					
0	0	1	1	0					
0	1	0	0	0					
0	1	1	1	0					
1	0	0	1	1					
1	0	1	1	1					
1	1	0	0	0					
1	1	1	1	1					

Logic Diagram



Truth Table and Logic Diagram describe the same function f. Truth table is unique, but logic expression and logic diagram are not. This gives flexibility in implementing logic functions.

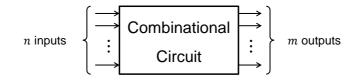
Combinational Circuit

✤ A combinational circuit is a block of logic gates having:

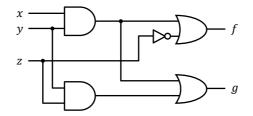
```
n inputs: x_1, x_2, \ldots, x_n
```

m outputs: f_1, f_2, \dots, f_m

- Each output is a function of the input variables
- Each output is determined from present combination of inputs
- Combination circuit performs operation specified by logic gates



Example of a Simple Combinational Circuit



- The above circuit has:
 - \diamond Three inputs: *x*, *y*, and *z*
 - \diamond Two outputs: f and g
- \clubsuit What are the logic expressions of *f* and *g* ?

• Answer:
$$f = xy + z'$$

g = xy + yz

From Truth Tables to Gate Implementation

Given the truth table of a Boolean function *f*, how do we implement the truth table using logic gates?

Truth Table

х	у	z	f
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

	What is the logic expression of f ?
V	Vhat is the gate implementation of <i>f</i> ?
-	To answer these questions, we need
	to define Minterms and Maxterms

Minterms and Maxterms

- Minterms are AND terms with every variable present in either true or complement form
- Maxterms are OR terms with every variable present in either true or complement form

х	у	index	Minterm	Maxterm
0	0	0	$m_0 = x'y'$	$M_0 = x + y$
0	1	1	$m_1 = x'y$	$M_1 = x + y'$
1	0	2	$m_2 = xy'$	$M_2 = x' + y$
1	1	3	$m_3 = xy$	$M_3 = x' + y'$

Minterms and Maxterms for 2 variables x and y

• For *n* variables, there are 2^n Minterms and Maxterms

Minterms and Maxterms for 3 Variables

х	у	z	index	Minterm	Maxterm
0	0	0	0	$m_0 = x'y'z'$	$M_0 = x + y + z$
0	0	1	1	$m_1 = x'y'z$	$M_1 = x + y + z'$
0	1	0	2	$m_2 = x'yz'$	$M_2 = x + y' + z$
0	1	1	3	$m_3 = x'yz$	$M_3 = x + y' + z'$
1	0	0	4	$m_4 = xy'z'$	$M_4 = x' + y + z$
1	0	1	5	$m_5 = xy'z$	$M_5 = x' + y + z'$
1	1	0	6	$m_6 = xyz'$	$M_6 = x' + y' + z$
1	1	1	7	$m_7 = xyz$	$M_7 = x' + y' + z'$

Maxterm M_i is the **complement** of Minterm m_i $M_i = m'_i$ and $m_i = M'_i$

Purpose of the Index

- Minterms and Maxterms are designated with an index
- The index for the Minterm or Maxterm, expressed as a binary number, is used to determine whether the variable is shown in the true or complemented form

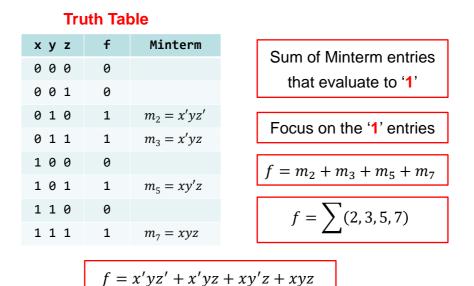
For Minterms:

- '1' means the variable is Not Complemented
- \diamond '0' means the variable is Complemented

For Maxterms:

- '0' means the variable is Not Complemented

Sum-Of-Minterms (SOM) Canonical Form



Examples of Sum-Of-Minterms

- ♦ $f(a, b, c, d) = \sum (2, 3, 6, 10, 11)$
- ♦ $f(a, b, c, d) = m_2 + m_3 + m_6 + m_{10} + m_{11}$
- f(a, b, c, d) = a'b'cd' + a'b'cd + a'bcd' + ab'cd' + ab'cd
- ♦ $g(a, b, c, d) = \sum (0, 1, 12, 15)$
- ♦ $g(a, b, c, d) = m_0 + m_1 + m_{12} + m_{15}$
- g(a,b,c,d) = a'b'c'd' + a'b'c'd + abc'd' + abcd

Product-Of-Maxterms (POM) Canonical Form

	Truth	n Table	
хуz	f	Maxterm	Product of Maxterm entries
000	0	$M_0 = x + y + z$	
001	0	$M_1 = x + y + z'$	that evaluate to '0 '
010	1		Focus on the (0) entries
011	1		Focus on the '0' entries
100	0	$M_4 = x' + y + z$	$f = M_0 \cdot M_1 \cdot M_4 \cdot M_6$
101	1		,
110	0	$M_6 = x' + y' + z$	$f = \prod (0, 1, 4, 6)$
111	1		
f = (x + y + z)(x + y + z')(x' + y + z)(x' + y' + z)			

Examples of Product-Of-Maxterms

♦
$$f(a, b, c, d) = \prod (1, 3, 11)$$

$$\bigstar f(a, b, c, d) = M_1 \cdot M_3 \cdot M_{11}$$

♦
$$f(a, b, c, d) = (a + b + c + d')(a + b + c' + d')(a' + b + c' + d')$$

♦
$$g(a, b, c, d) = \prod (0, 5, 13)$$

$$\bigstar g(a, b, c, d) = M_0 \cdot M_5 \cdot M_{13}$$

Conversions between Canonical Forms

\diamond The same Boolean function *f* can be expressed in two ways:

- ♦ Sum-of-Minterms $f = m_0 + m_2 + m_3 + m_5 + m_7 = \sum (0, 2, 3, 5, 7)$
- ♦ Product-of-Maxterms $f = M_1 \cdot M_4 \cdot M_6 = \prod (1, 4, 6)$

Truth Table

x	у	z	f	Minterms	Maxterms
0	0	0	1	$m_0 = x'y'z'$	
0	0	1	0		$M_1 = x + y + z'$
0	1	0	1	$m_2 = x'yz'$	
0	1	1	1	$m_3 = x'yz$	
1	0	0	0		$M_4 = x' + y + z$
1	0	1	1	$m_5 = xy'z$	
1	1	0	0		$M_6 = x' + y' + z$
1	1	1	1	$m_7 = xyz$	

To convert from one canonical form to another, interchange the symbols Σ and Π and list those numbers missing from the original form.

Function Complement

Truth Table

x	у	z	f	f'
0	0	0	1	0
0	0	1	0	1
0	1	0	1	0
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	0	1
1	1	1	1	0

Given a Boolean function
$$f$$

$$f(x, y, z) = \sum (0, 2, 3, 5, 7) = \prod (1, 4, 6)$$

Then, the complement f' of function f

$$f'(x, y, z) = \prod (0, 2, 3, 5, 7) = \sum (1, 4, 6)$$

The complement of a function expressed by a Sum of Minterms is the Product of Maxterms with the same indices. Interchange the symbols Σ and Π , but keep the same list of indices.

Summary of Minterms and Maxterms

- ✤ There are 2ⁿ Minterms and Maxterms for Boolean functions with n variables, indexed from 0 to 2ⁿ – 1
- Minterms correspond to the 1-entries of the function
- Maxterms correspond to the 0-entries of the function
- Any Boolean function can be expressed as a Sum-of-Minterms and as a Product-of-Maxterms
- For a Boolean function, given the list of Minterm indices one can determine the list of Maxterms indices (and vice versa)
- The complement of a Sum-of-Minterms is a Product-of-Maxterms with the same indices (and vice versa)

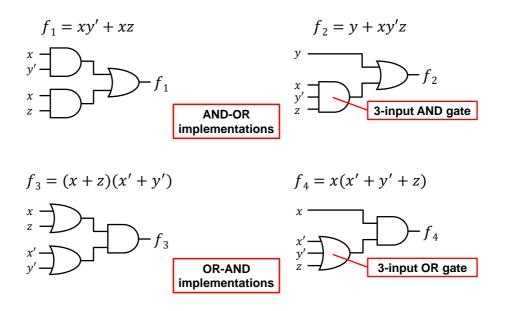
Sum-of-Products and Products-of-Sums

- Canonical forms contain a larger number of literals
 - Because the Minterms (and Maxterms) must contain, by definition, all the variables either complemented or not
- Another way to express Boolean functions is in standard form
- Two standard forms: Sum-of-Products and Product-of -Sums

Sum of Products (SOP)

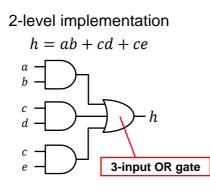
- ♦ Boolean expression is the ORing (sum) of AND terms (products)
- ♦ Examples: $f_1 = xy' + xz$ $f_2 = y + xy'z$
- Products of Sums (POS)
 - ♦ Boolean expression is the ANDing (product) of OR terms (sums)
 - ♦ Examples: $f_3 = (x + z)(x' + y')$ $f_4 = x(x' + y' + z)$

Two-Level Gate Implementation

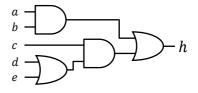


Two-Level vs. Three-Level Implementation

- ♦ h = ab + cd + ce (6 literals) is a sum-of-products
- ♦ *h* may also be written as: h = ab + c(d + e) (5 literals)
- ♦ However, h = ab + c(d + e) is a non-standard form
 - \Rightarrow h = ab + c(d + e) is not a sum-of-products nor a product-of-sums



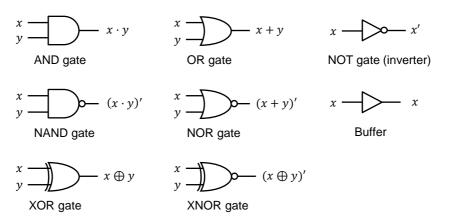
3-level implementation h = ab + c(d + e)



Additional Logic Gates and Symbols

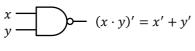
✤ Why?

- ♦ Low cost implementation
- ♦ Useful in implementing Boolean functions



NAND Gate

- The NAND gate has the following symbol and truth table
- ✤ NAND represents NOT AND
- The small bubble circle represents the invert function



NAND gate

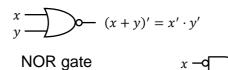
x -9	\searrow	-x'+y'
y – d_		x + y

х	у	NAND
0	0	1
0	1	1
1	0	1
1	1	0

Another symbol for NAND

NOR Gate

- The NOR gate has the following symbol and truth table
- NOR represents NOT OR
- The small bubble circle represents the invert function



х	у	NOR
0	0	1
0	1	0
1	0	0
1	1	0

Another symbol for NOR

 $-x' \cdot y'$

The NAND Gate is Universal

- NAND gates can implement any Boolean function
- NAND gates can be used as inverters, or to implement AND/OR
- A single-input NAND gate is an inverter

 $x \text{ NAND } x = (x \cdot x)' = x'$

AND is equivalent to NAND with inverted output

 $(x \text{ NAND } y)' = ((x \cdot y)')' = x \cdot y \text{ (AND)}$

OR is equivalent to NAND with inverted inputs

$$(x' \text{ NAND } y') = (x' \cdot y')' = x + y \text{ (OR)}$$

$$x \xrightarrow{x'} y \xrightarrow{y'} x + y$$

The NOR Gate is also Universal

- NOR gates can implement any Boolean function
- NOR gates can be used as inverters, or to implement AND/OR
- A single-input NOR gate is an inverter

x NOR x = (x + x)' = x'

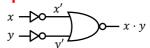
OR is equivalent to NOR with inverted output

(x NOR y)' = ((x + y)')' = x + y (OR)

$$f_{y} = \sum_{x + y} x + y$$

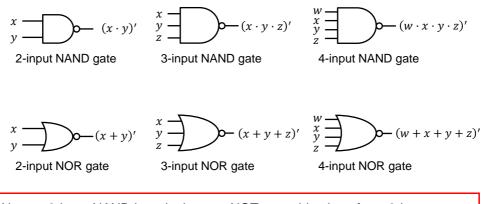
AND is equivalent to NOR with inverted inputs

 $(x' \text{ NOR } y') = (x' + y')' = x \cdot y \text{ (AND)}$



Multiple-Input NAND / NOR Gates

NAND/NOR gates can have multiple inputs, similar to AND/OR gates



Note: a 3-input NAND is a single gate, NOT a combination of two 2-input gates. The same can be said about other multiple-input NAND/NOR gates.

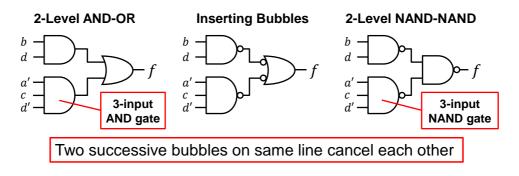
NAND - NAND Implementation

Consider the following sum-of-products expression:

f = bd + a'cd'

♦ A 2-level AND-OR circuit can be converted easily to a 2-level

NAND-NAND implementation

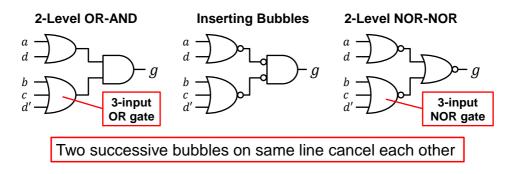


NOR - NOR Implementation

Consider the following product-of-sums expression:

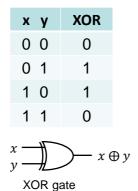
g = (a+d)(b+c+d')

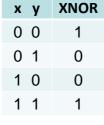
 A 2-level OR-AND circuit can be converted easily to a 2-level NOR-NOR implementation

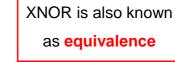


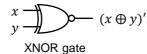
Exclusive OR / Exclusive NOR

- Exclusive OR (XOR) is an important Boolean operation used extensively in logic circuits
- Exclusive NOR (XNOR) is the complement of XOR









XOR / XNOR Functions

- ♦ The XOR function is: $x \oplus y = xy' + x'y$
- ♦ The XNOR function is: $(x \oplus y)' = xy + x'y'$
- XOR and XNOR gates are complex
 - \diamond Can be implemented as a true gate, or by
 - ♦ Interconnecting other gate types
- XOR and XNOR gates do not exist for more than two inputs
 - ♦ For 3 inputs, use two XOR gates
 - \diamond The cost of a 3-input XOR gate is greater than the cost of two XOR gates
- Uses for XOR and XNOR gates include:
 - \diamond Adders, subtractors, multipliers, counters, incrementers, decrementers
 - \diamond Parity generators and checkers

XOR and XNOR Properties

 $x \oplus 0 = x$ $x \oplus 1 = x'$ $x \oplus x = 0$ $x \oplus x' = 1$ $x \oplus y = y \oplus x$ $x' \oplus y' = x \oplus y$ $x' \oplus y' = x \oplus y$ $(x \oplus y)' = x' \oplus y = x \oplus y'$ XOR and XNOR are associative operations $(x \oplus y) \oplus z = x \oplus (y \oplus z) = x \oplus y \oplus z$ $((x \oplus y)' \oplus z)' = (x \oplus (y \oplus z)')' = x \oplus y \oplus z$