The Karnaugh Map

Boolean Function Minimization

- Complexity of a Boolean function is directly related to the complexity of the algebraic expression
- The truth table of a function is unique
- However, the algebraic expression is not unique
- Boolean function can be simplified by algebraic manipulation
- However, algebraic manipulation depends on experience
- Algebraic manipulation does not guarantee that the simplified Boolean expression is minimal

Example: Sum of Minterms

Truth Table

хуz	f	Minterm	
000	0		Focus on the '1' entries
001	1	$m_1 = x'y'z$	$f = m_1 + m_2 + m_3 + m_5 + m_7$
010	1	$m_2 = x'yz'$	$j = m_1 + m_2 + m_3 + m_5 + m_7$
011	1	$m_3 = x'yz$	$f = \sum_{i=1}^{n} (1, 2, 3, 5, 7)$
100	0		$J = \sum_{i=1}^{n} (1, 2, 3, 5, 7)$
101	1	$m_5 = xy'z$	
110	0		f = x'y'z + x'yz' +
111	1	$m_7 = xyz$	x'yz + xy'z + xyz

Sum-of-Minterms has 15 literals → Can be simplified

Algebraic Manipulation

Simplify: $f = x'y'z + x'yz' + x'yz + xy'z$	x + xyz (15 literals)
f = x'y'z + x'yz' + x'yz + xy'z + xyz	(Sum-of-Minterms)
f = x'y'z + x'yz + x'yz' + xy'z + xyz	Reorder
f = x'z(y' + y) + x'yz' + xz(y' + y)	Distributive \cdot over +
f = x'z + x'yz' + xz	Simplify (7 literals)
$f = x'z + x\overline{z + x'yz'}$	Reorder
f = (x' + x)z + x'yz'	Distributive \cdot over +
f = z + x'yz'	Simplify (4 literals)
f = (z + x'y)(z + z')	Distributive + over \cdot
f = z + x'y	Simplify (3 literals)

Drawback of Algebraic Manipulation

No clear steps in the manipulation process

- \diamond Not clear which terms should be grouped together
- $\diamond\,$ Not clear which property of Boolean algebra should be used next
- Does not always guarantee a minimal expression
 - ♦ Simplified expression may or may not be minimal
 - Different steps might lead to different non-minimal expressions
- However, the goal is to minimize a Boolean function
- Minimize the number of literals in the Boolean expression
 - ♦ The literal count is a good measure of the cost of logic implementation
 - Proportional to the number of transistors in the circuit implementation

Karnaugh Map

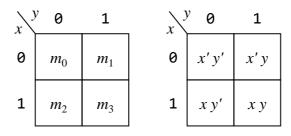
- Called also K-map for short
- The Karnaugh map is a diagram made up of squares
- It is a reorganized version of the truth table
- Each square in the Karnaugh map represents a minterm
- Adjacent squares differ in the value of one variable
- Simplified expressions can be derived from the Karnaugh map
 - \diamond By recognizing patterns of squares
- Simplified sum-of-products expression (AND-OR circuits)
- Simplified product-of-sums expression (OR-AND circuits)

Two-Variable Karnaugh Map

• Minterms m_0 and m_1 are adjacent (also, m_2 and m_3)

- \diamond They differ in the value of variable y
- Minterms m_0 and m_2 are adjacent (also, m_1 and m_3)
 - \diamond They differ in the value of variable *x*

Two-variable K-map

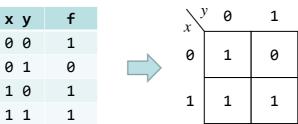


From a Truth Table to Karnaugh Map

- Given a truth table, construct the corresponding K-map
- Copy the function values from the truth table into the K-map
- Make sure to copy each value into the proper K-map square

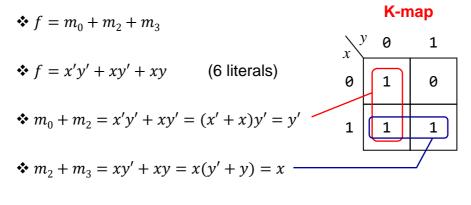
Truth Table f ху

K-map



K-Map Function Minimization

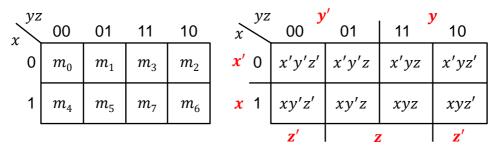
Two adjacent cells containing 1's can be combined



✤ Therefore, *f* can be simplified as: f = x + y' (2 literals)

Three-Variable Karnaugh Map

- Have eight squares (for the 8 minterms), numbered 0 to 7
- The last two columns are not in numeric order: 11, 10
 Remember the numbering of the squares in the K-map
- Each square is adjacent to three other squares
- Minterms in adjacent squares can always be combined
 This is the key idea that makes the K-map work
- Labeling of rows and columns is also useful

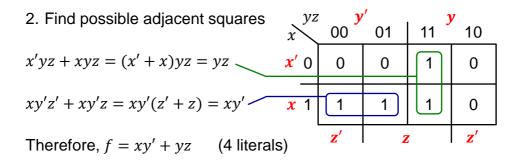


Simplifying a Three-Variable Function

Simplify the Boolean function: $f(x, y, z) = \sum (3, 4, 5, 7)$

f = x'yz + xy'z' + xy'z + xyz (12 literals)

1. Mark '1' all the K-map squares that represent function f

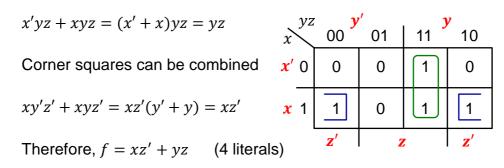


Simplifying a Three-Variable Function (2)

Here is a second example: $f(x, y, z) = \sum (3, 4, 6, 7)$

f = x'yz + xy'z' + xyz' + xyz (12 literals)

Learn the locations of the 8 indices based on the variable order

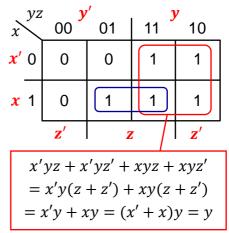


Combining Squares on a 3-Variable K-Map

- By combining squares, we reduce number of literals in a product term, thereby reducing the cost
- ✤ On a 3-variable K-Map:
 - One square represents a minterm with 3 variables
 - \diamond Two adjacent squares represent a term with 2 variables
 - \diamond Four adjacent squares represent a term with 1 variable
 - ♦ Eight adjacent square is the constant '1' (no variables)

Example of Combining Squares

- ♦ Consider the Boolean function: $f(x, y, z) = \sum (2, 3, 5, 6, 7)$
- f = x'yz' + x'yz + xy'z + xyz' + xyz
- The four minterms that form the 2×2 red square are reduced to the term y
- The two minterms that form the blue rectangle are reduced to the term xz
- ***** Therefore: f = y + xz



Minimal Sum-of-Products Expression

Consider the function: $f(x, y, z) = \sum (0, 1, 2, 4, 6, 7)$

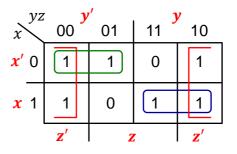
Find a minimal sum-of-products (SOP) expression

Solution:

Red block: term = z'

Green block: term = x'y'

Blue block: term = xy



Minimal sum-of-products: f = z' + x'y' + xy (5 literals)

Four-Variable Karnaugh Map

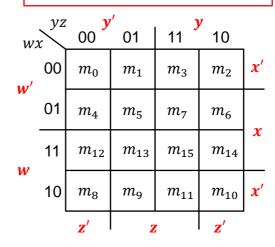
4 variables \rightarrow 16 squares

Remember the numbering of the squares in the K-map

Each square is adjacent to four other squares

$m_0 = w'x'y'z'$	$m_1 = w'x'y'z$
$m_2 = w'x'yz'$	$m_3 = w'x'yz$
$m_4 = w' x y' z'$	$m_5 = w'x y'z$
$m_6 = w' x y z'$	$m_7 = w'x y z$
$m_8 = w x' y' z'$	$m_9 = w x' y' z$
$m_{10} = w x' y z'$	$m_{11} = w x' y z$
$m_{12} = w x y' z'$	$m_{13} = w \ x \ y' z$
$m_{14} = w \ x \ y \ z'$	$m_{15} = w x y z$

Notice the order of Rows 11 and 10 and the order of columns 11 and 10

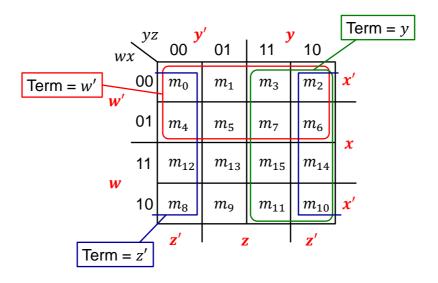


Combining Squares on a 4-Variable K-Map

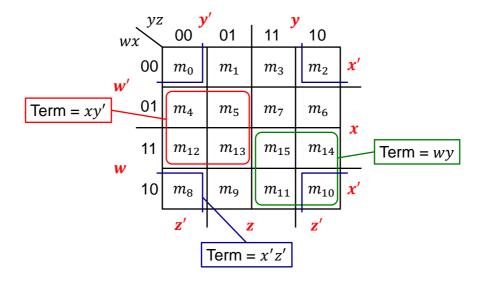
✤ On a 4-variable K-Map:

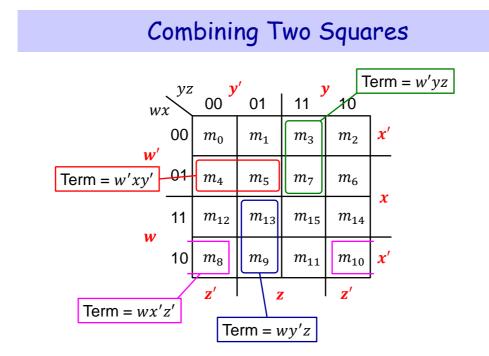
- ♦ One square represents a minterm with 4 variables
- ♦ Two adjacent squares represent a term with 3 variables
- \diamond Four adjacent squares represent a term with 2 variables
- ♦ Eight adjacent squares represent a term with 1 variable
- \diamond Combining all 16 squares is the constant '1' (no variables)

Combining Eight Squares

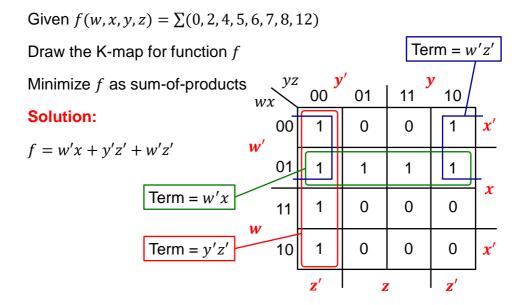


Combining Four Squares





Simplifying a 4-Variable Function



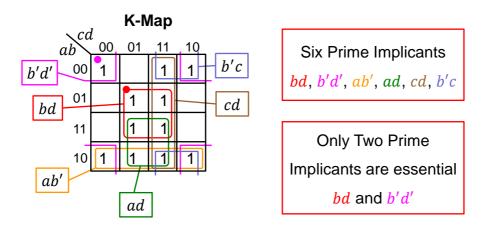
Prime Implicants

- Prime Implicant: a product term obtained by combining the maximum number of adjacent squares in the K-map
- The number of combined squares must be a power of 2
- Essential Prime Implicant: is a prime implicant that covers at least one minterm not covered by the other prime implicants
- The prime implicants and essential prime implicants can be determined by inspecting the K-map

Example of Prime Implicants

Find all the prime implicants and essential prime implicants for:

 $f(a, b, c, d) = \sum (0, 2, 3, 5, 7, 8, 9, 10, 11, 13, 15)$



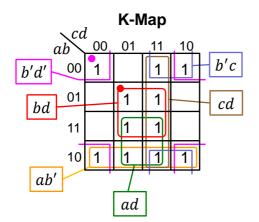
Simplification Procedure Using the K-Map

- 1. Find all the essential prime implicants
 - ♦ Covering maximum number (power of 2) of 1's in the K-map
 - ♦ Mark the minterm(s) that make the prime implicants essential
- 2. Add prime implicants to cover the function
 - \diamond Choose a minimal subset of prime implicants that cover all remaining 1's
 - $\diamond\,$ Make sure to cover all 1's not covered by the essential prime implicants
 - \diamond Minimize the overlap among the additional prime implicants
- Sometimes, a function has multiple simplified expressions
 - \diamond You may be asked to list all the simplified sum-of-product expressions

Obtaining All Minimal SOP Expressions

Consider again: $f(a, b, c, d) = \sum (0, 2, 3, 5, 7, 8, 9, 10, 11, 13, 15)$

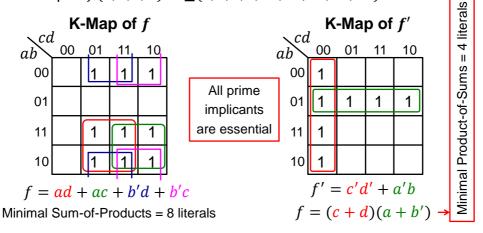
Obtain all minimal sum-of-products (SOP) expressions



Two essential Prime Implicants: bd and $b'd'$					
Four possible solutions:					
$f = \mathbf{bd} + \mathbf{b'd'} + \mathbf{cd} + \mathbf{ad}$					
f = bd + b'd' + cd + ab'					
f = bd + b'd' + b'c + ab'					
f = bd + b'd' + b'c + ad					

Product-of-Sums (POS) Simplification

- All previous examples were expressed in Sum-of-Products form
- With a minor modification, the Product-of-Sums can be obtained
- ♦ Example: $f(a, b, c, d) = \sum (1, 2, 3, 9, 10, 11, 13, 14, 15)$



Product-of-Sums Simplification Procedure

- 1. Draw the K-map for the function f
 - \diamond Obtain a minimal Sum-of-Products (SOP) expression for f
- 2. Draw the K-map for f', replacing the 0's of f with 1's in f'
- 3. Obtain a minimal Sum-of-Products (SOP) expression for f'
- 4. Use DeMorgan's theorem to obtain f = (f')'
 - \diamond The result is a minimal Product-of-Sums (POS) expression for f
- 5. Compare the cost of the minimal SOP and POS expressions
 - \diamond Count the number of literals to find which expression is minimal

Don't Cares

- Sometimes, a function table may contain entries for which:
 - The input values of the variables will never occur, or
 - \diamond The output value of the function is never used
- In this case, the output value of the function is not defined
- The output value of the function is called a don't care
- A don't care is an X value that appears in the function table
- The X value can be later chosen to be 0 or 1
 - \diamond To minimize the function implementation

Example	ofa	Function	with	Don't	Cares
---------	-----	----------	------	-------	-------

	Truth Ta	able
• Consider a function f defined over BCD inputs	abcd	f
	0000	0
The function input is a BCD digit from 0 to 9	0001	0
	0010	0
The function output is 0 if the BCD input is 0 to 4	0011	0
	0100	0
	0101	1
The function output is 1 if the BCD input is 5 to 9	0110	1
	0111	1
The function output is X (don't care) if the input is	1000	1
	1001	1
10 to 15 (not BCD)	1010	Х
	1011	Х
\star \in ∇ (Γ (700) + ∇ (10.11.12.12.14.16)	1100	Х
★ $f = \sum_{m} (5, 6, 7, 8, 9) + \sum_{d} (10, 11, 12, 13, 14, 15)$	1101	Х
	1110	Х
Minterms Don't Cares	1111	Х

Minimizing Functions with Don't Cares

Consider: $f = \sum_{m} (5, 6, 7, 8, 9) + \sum_{d} (10, 11, 12, 13, 14, 15)$

If the don't cares were treated as 0's we get:

f = a'bd + a'bc + ab'c' (9 literals)

If the don't cares were treated as 1's we get:

f = a + bd + bc(5 literals)

The don't care values can be selected to be either 0 or 1, to produce a minimal expression

	K-Map of f							
ab	00	01	11	10				
00	0	0	0	0				
01	0	1	1	1				
11	X	X	X	X				
10	1	1	Х	Х				

1 1 1 1 Х Х Х Х Х Х

Simplification Procedure with Don't Cares

- 1. Find all the essential prime implicants
 - Covering maximum number (power of 2) of 1's and X's (don't cares)
 - \diamond Mark the 1's that make the prime implicants essential
- 2. Add prime implicants to cover the function
 - \diamond Choose a minimal subset of prime implicants that cover all remaining 1's
 - \diamond Make sure to cover all 1's not covered by the essential prime implicants
 - ♦ Minimize the overlap among the additional prime implicants
 - \diamond You need not cover all the don't cares (some can remain uncovered)
- Sometimes, a function has multiple simplified expressions

Minimizing Functions with Don't Cares (2)

Prime Implicant *cd*

is essential

Simplify: $g = \sum_{m} (1, 3, 7, 11, 15) + \sum_{d} (0, 2, 5)$

Solution 1: g = cd + a'b' (4 literals)

Solution 2: g = cd + a'd (4 literals)

	, K	-Ma	p of	<i>g</i>			-Ma	p of	g g	
ab 00	00	01	11	10	ab 00	00 X	01	11	10 X	٦
01	0	X	1	0	01	0	X	1	0	Not all don't
11	0	0	1	0	11	0	0	1	0	cares need be covered
10	0	0	1	0	10	0	0	1	0	

Minimal Product-of-Sums with Don't Cares

Simplify: $g = \sum_{m} (1, 3, 7, 11, 15) + \sum_{d} (0, 2, 5)$

Obtain a product-of-sums minimal expression

Solution: $g' = \sum_{m} (4, 6, 8, 9, 10, 12, 13, 14) + \sum_{d} (0, 2, 5)$

Minimal g' = d' + ac' (3 literals)

Minimal product-of-sums:

g = d(a' + c) (3 literals)

The minimal sum-of-products expression for g had 4 literals

K-Map of g'							
ab	00	01	11	10			
00	Х	0	0	Х			
01	1	Х	0	1			
11	1	1	0	1			
10	1	1	0	1			