The Karnaugh Map

Boolean Function Minimization

* Complexity of a Boolean function is directly related to the complexity of the algebraic expression
* The truth table of a function is unique
* However, the algebraic expression is not unique
* Boolean function can be simplified by algebraic manipulation
* However, algebraic manipulation depends on experience
* Algebraic manipulation does not guarantee that the simplified Boolean expression is minimal

Example: Sum of Minterms

Truth Table

$x y z$	f	Minterm	Focus on the '1' entries
000	0		
001	1	$m_{1}=x^{\prime} y^{\prime} z$	$f=m_{1}+m_{2}+m_{3}+m_{5}+m_{7}$
010	1	$m_{2}=x^{\prime} y z^{\prime}$	
011	1	$m_{3}=x^{\prime} y z$	$f=\sum(1,2,3,5,7)$
100	0		
101	1	$m_{5}=x y^{\prime} z$	$\begin{gathered} f=x^{\prime} y^{\prime} z+x^{\prime} y z^{\prime}+ \\ x^{\prime} y z+x y^{\prime} z+x y z \end{gathered}$
110	0		
111	1	$m_{7}=x y z$	

* Sum-of-Minterms has 15 literals \rightarrow Can be simplified

Algebraic Manipulation

* Simplify: $f=x^{\prime} y^{\prime} z+x^{\prime} y z^{\prime}+x^{\prime} y z+x y^{\prime} z+x y z$ (15 literals)
$f=x^{\prime} y^{\prime} z+x^{\prime} y z^{\prime}+x^{\prime} y z+x y^{\prime} z+x y z \quad$ (Sum-of-Minterms)
$f=x^{\prime} y^{\prime} z+x^{\prime} y z+x^{\prime} y z^{\prime}+x y^{\prime} z+x y z \quad$ Reorder
$f=x^{\prime} z\left(y^{\prime}+y\right)+x^{\prime} y z^{\prime}+x z\left(y^{\prime}+y\right) \quad$ Distributive \cdot over +
$f=x^{\prime} z+x^{\prime} y z^{\prime}+x z$
Simplify (7 literals)
$f=x^{\prime} z+\widehat{x z+x^{\prime} y} z^{\prime}$
Reorder
$f=\left(x^{\prime}+x\right) z+x^{\prime} y z^{\prime} \quad$ Distributive • over +
$f=z+x^{\prime} y z^{\prime} \quad$ Simplify (4 literals)
$f=\left(z+x^{\prime} y\right)\left(z+z^{\prime}\right) \quad$ Distributive + over \cdot
$f=z+x^{\prime} y \quad$ Simplify (3 literals)

Drawback of Algebraic Manipulation

* No clear steps in the manipulation process
\triangleleft Not clear which terms should be grouped together
\triangleleft Not clear which property of Boolean algebra should be used next
* Does not always guarantee a minimal expression
\triangleleft Simplified expression may or may not be minimal
\checkmark Different steps might lead to different non-minimal expressions
* However, the goal is to minimize a Boolean function
* Minimize the number of literals in the Boolean expression
\diamond The literal count is a good measure of the cost of logic implementation
\diamond Proportional to the number of transistors in the circuit implementation

Karnaugh Map

* Called also K-map for short
* The Karnaugh map is a diagram made up of squares
* It is a reorganized version of the truth table
* Each square in the Karnaugh map represents a minterm
* Adjacent squares differ in the value of one variable
* Simplified expressions can be derived from the Karnaugh map
\triangleleft By recognizing patterns of squares
* Simplified sum-of-products expression (AND-OR circuits)
* Simplified product-of-sums expression (OR-AND circuits)

Two-Variable Karnaugh Map

* Minterms m_{0} and m_{1} are adjacent (also, m_{2} and m_{3})
\triangleleft They differ in the value of variable y
* Minterms m_{0} and m_{2} are adjacent (also, m_{1} and m_{3})
\triangleleft They differ in the value of variable x

Two-variable K-map

From a Truth Table to Karnaugh Map

* Given a truth table, construct the corresponding K-map
* Copy the function values from the truth table into the K-map
* Make sure to copy each value into the proper K-map square

K-Map Function Minimization

* Two adjacent cells containing 1's can be combined
* $f=m_{0}+m_{2}+m_{3}$

K-map

* $f=x^{\prime} y^{\prime}+x y^{\prime}+x y$
(6 literals)
$m_{0}+m_{2}=x^{\prime} y^{\prime}+x y^{\prime}=\left(x^{\prime}+x\right) y^{\prime}=y^{\prime}$

* Therefore, f can be simplified as: $f=x+y^{\prime} \quad$ (2 literals)

Three-Variable Karnaugh Map

* Have eight squares (for the 8 minterms), numbered 0 to 7
* The last two columns are not in numeric order: 11, 10
\triangleleft Remember the numbering of the squares in the K-map
* Each square is adjacent to three other squares
* Minterms in adjacent squares can always be combined
\triangleleft This is the key idea that makes the K-map work
* Labeling of rows and columns is also useful

Simplifying a Three-Variable Function

Simplify the Boolean function: $f(x, y, z)=\sum(3,4,5,7)$
$f=x^{\prime} y z+x y^{\prime} z^{\prime}+x y^{\prime} z+x y z \quad$ (12 literals)

1. Mark ' 1 ' all the K-map squares that represent function f
2. Find possible adjacent squares
Therefore, $f=x y^{\prime}+y z \quad$ (4 literals)

	00	01	11	10
$x^{\prime} 0$	0	0	1	0
x 1	1	1	1	0
	z^{\prime}			z'

Simplifying a Three-Variable Function (2)

Here is a second example: $f(x, y, z)=\sum(3,4,6,7)$
$f=x^{\prime} y z+x y^{\prime} z^{\prime}+x y z^{\prime}+x y z \quad$ (12 literals)

Learn the locations of the 8 indices based on the variable order
$x^{\prime} y z+x y z=\left(x^{\prime}+x\right) y z=y z$

Corner squares can be combined
$x y^{\prime} z^{\prime}+x y z^{\prime}=x z^{\prime}\left(y^{\prime}+y\right)=x z^{\prime}$

Therefore, $f=x z^{\prime}+y z \quad$ (4 literals)

x	00	01	11	10
$x^{\prime} 0$	0	0	1	0
x 1	1	0	1	1
	z^{\prime}			z'

Combining Squares on a 3-Variable K-Map

By combining squares, we reduce number of literals in a product term, thereby reducing the cost

On a 3-variable K-Map:

\diamond One square represents a minterm with 3 variables
\diamond Two adjacent squares represent a term with 2 variables
\diamond Four adjacent squares represent a term with 1 variable
\diamond Eight adjacent square is the constant '1’ (no variables)

Example of Combining Squares

* Consider the Boolean function: $f(x, y, z)=\sum(2,3,5,6,7)$
* $f=x^{\prime} y z^{\prime}+x^{\prime} y z+x y^{\prime} z+x y z^{\prime}+x y z$
* The four minterms that form the 2×2 red square are reduced to the term y
ψ The two minterms that form the blue rectangle are reduced to the term $x z$
* Therefore: $f=y+x z$

	y^{\prime}		y	
	00	01	11	10
$x^{\prime} 0$	0	0	1	1
$x 1$	0	1	1	1
	z^{\prime}		1	z^{\prime}
	$z+$	z^{\prime}	$x y z$ $x y(z)$ $+x)$	$x y z^{\prime}$ $\left.z^{\prime}\right)$ $=y$

Minimal Sum-of-Products Expression

Consider the function: $f(x, y, z)=\sum(0,1,2,4,6,7)$

Find a minimal sum-of-products (SOP) expression

Solution:

Red block: term $=z^{\prime}$

Green block: term $=x^{\prime} y^{\prime}$

Blue block: term = $x y$

Minimal sum-of-products: $f=z^{\prime}+x^{\prime} y^{\prime}+x y \quad$ (5 literals)

Four-Variable Karnaugh Map

4 variables $\rightarrow 16$ squares
Remember the numbering of the squares in the K-map

Each square is adjacent to four other squares

$$
\begin{array}{ll}
m_{0}=w^{\prime} x^{\prime} y^{\prime} z^{\prime} & m_{1}=w^{\prime} x^{\prime} y^{\prime} z \\
m_{2}=w^{\prime} x^{\prime} y z^{\prime} & m_{3}=w^{\prime} x^{\prime} y z \\
m_{4}=w^{\prime} x y^{\prime} z^{\prime} & m_{5}=w^{\prime} x y^{\prime} z \\
m_{6}=w^{\prime} x y z^{\prime} & m_{7}=w^{\prime} x y z \\
m_{8}=w x^{\prime} y^{\prime} z^{\prime} & m_{9}=w x^{\prime} y^{\prime} z \\
m_{10}=w x^{\prime} y z^{\prime} & m_{11}=w x^{\prime} y z \\
m_{12}=w x y^{\prime} z^{\prime} & m_{13}=w x y^{\prime} z \\
m_{14}=w x y z^{\prime} & m_{15}=w x y z
\end{array}
$$

Notice the order of Rows 11 and 10 and the order of columns 11 and 10

$y z$	y				
	00	01	11	10	
00	m_{0}	m_{1}	m_{3}	m_{2}	x^{\prime}
01	m_{4}	m_{5}	m_{7}	m_{6}	
11	m_{12}	m_{13}	m_{15}	m_{14}	
10	m_{8}	m_{9}	m_{11}	m_{10}	x^{\prime}
	z^{\prime}			z^{\prime}	

Combining Squares on a 4-Variable K-Map

On a 4-variable K-Map:

\diamond One square represents a minterm with 4 variables
\diamond Two adjacent squares represent a term with 3 variables
\diamond Four adjacent squares represent a term with 2 variables
\diamond Eight adjacent squares represent a term with 1 variable
\diamond Combining all 16 squares is the constant ‘1’ (no variables)

Combining Eight Squares

Combining Four Squares

Combining Two Squares

Simplifying a 4-Variable Function

Given $f(w, x, y, z)=\sum(0,2,4,5,6,7,8,12)$
Draw the K-map for function f
Minimize f as sum-of-products
Solution:
$f=w^{\prime} x+y^{\prime} z^{\prime}+w^{\prime} z^{\prime}$

Term $=w^{\prime} x$

$$
\text { Term }=y^{\prime} z^{\prime}
$$

Prime Implicants

* Prime Implicant: a product term obtained by combining the maximum number of adjacent squares in the K-map
* The number of combined squares must be a power of 2
* Essential Prime Implicant: is a prime implicant that covers at least one minterm not covered by the other prime implicants
* The prime implicants and essential prime implicants can be determined by inspecting the K-map

Example of Prime Implicants

Find all the prime implicants and essential prime implicants for:

$$
f(a, b, c, d)=\sum(0,2,3,5,7,8,9,10,11,13,15)
$$

K-Map

Six Prime Implicants $b d, b^{\prime} d^{\prime}, a b^{\prime}, a d, c d, b^{\prime} c$

Only Two Prime Implicants are essential $b d$ and $b^{\prime} d^{\prime}$

Simplification Procedure Using the K-Map

1. Find all the essential prime implicants
\triangleleft Covering maximum number (power of 2) of 1's in the K-map
\diamond Mark the minterm(s) that make the prime implicants essential
2. Add prime implicants to cover the function
\diamond Choose a minimal subset of prime implicants that cover all remaining 1 's
\triangleleft Make sure to cover all 1's not covered by the essential prime implicants
« Minimize the overlap among the additional prime implicants

* Sometimes, a function has multiple simplified expressions
\triangleleft You may be asked to list all the simplified sum-of-product expressions

Obtaining All Minimal SOP Expressions

Consider again: $f(a, b, c, d)=\sum(0,2,3,5,7,8,9,10,11,13,15)$
Obtain all minimal sum-of-products (SOP) expressions

Two essential Prime Implicants: $b d$ and $b^{\prime} d^{\prime}$

> Four possible solutions:
> $f=b d+b^{\prime} d^{\prime}+c d+a d$
> $f=b d+b^{\prime} d^{\prime}+c d+a b^{\prime}$
> $f=b d+b^{\prime} d^{\prime}+b^{\prime} c+a b^{\prime}$
> $f=b d+b^{\prime} d^{\prime}+b^{\prime} c+a d$

Product-of-Sums (POS) Simplification

* All previous examples were expressed in Sum-of-Products form
* With a minor modification, the Product-of-Sums can be obtained
* Example: $f(a, b, c, d)=\sum(1,2,3,9,10,11,13,14,15)$

$\checkmark c^{\text {K-Map of } \boldsymbol{f}}$				K-Map of \boldsymbol{f}^{\prime}					
00	1	1	1		00	1			
01				All prime					
				implicants	01	1	1	1	
11	1	1	1	are essential	11	1			
10	1	1	1		10	1			
$f=a d+a c+b^{\prime} d+b^{\prime}$									
Minimal Sum-of-Products $=8$ literals					$f=(c+d)\left(a+b^{\prime}\right) \rightarrow \sum^{\text {L }}$				

Product-of-Sums Simplification Procedure

1. Draw the K-map for the function f
\diamond Obtain a minimal Sum-of-Products (SOP) expression for f
2. Draw the K-map for f^{\prime}, replacing the 0 's of f with 1 's in f^{\prime}
3. Obtain a minimal Sum-of-Products (SOP) expression for f^{\prime}
4. Use DeMorgan's theorem to obtain $f=\left(f^{\prime}\right)^{\prime}$
\diamond The result is a minimal Product-of-Sums (POS) expression for f
5. Compare the cost of the minimal SOP and POS expressions
\diamond Count the number of literals to find which expression is minimal

Don't Cares

* Sometimes, a function table may contain entries for which:
\diamond The input values of the variables will never occur, or
\diamond The output value of the function is never used
* In this case, the output value of the function is not defined
* The output value of the function is called a don't care
* A don't care is an X value that appears in the function table
* The X value can be later chosen to be 0 or 1
\diamond To minimize the function implementation

Example of a Function with Don't Cares

* Consider a function f defined over BCD inputs
* The function input is a BCD digit from 0 to 9
* The function output is 0 if the BCD input is 0 to 4
* The function output is 1 if the BCD input is 5 to 9

Truth Table
abcd f $0000 \quad 0$ $\begin{array}{lllll}0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0\end{array}$ 00100 $\begin{array}{lllll}0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0\end{array}$ $0101 \quad 1$
$0110 \quad 1$
01111
$1000 \quad 1$
$1001 \quad 1$
$1010 \quad x$
$1011 \quad \mathrm{X}$
$1100 \quad \mathrm{X}$
$1101 \quad \mathrm{X}$
$1110 \quad \mathrm{X}$
1111 x

Minimizing Functions with Don't Cares

Consider: $f=\sum_{m}(5,6,7,8,9)+\sum_{d}(10,11,12,13,14,15)$
If the don't cares were treated as 0's we get:
$f=a^{\prime} b d+a^{\prime} b c+a b^{\prime} c^{\prime}$ (9 literals)
If the don't cares were treated as 1 's we get:
$f=a+b d+b c \quad$ (5 literals)
K-Map of \boldsymbol{f}

The don't care values can be selected to be either 0 or 1 , to produce a minimal expression

Simplification Procedure with Don'† Cares

1. Find all the essential prime implicants
\triangleleft Covering maximum number (power of 2) of 1 's and X 's (don't cares)
\diamond Mark the 1's that make the prime implicants essential
2. Add prime implicants to cover the function
\diamond Choose a minimal subset of prime implicants that cover all remaining 1's
\diamond Make sure to cover all 1 's not covered by the essential prime implicants
\triangleleft Minimize the overlap among the additional prime implicants
\triangleleft You need not cover all the don't cares (some can remain uncovered)

* Sometimes, a function has multiple simplified expressions

Minimizing Functions with Don't Cares (2)

Simplify: $g=\sum_{m}(1,3,7,11,15)+\sum_{d}(0,2,5)$

Solution 1: $g=c d+a^{\prime} b^{\prime} \quad$ (4 literals)
Solution 2: $g=c d+a^{\prime} d \quad$ (4 literals)

Prime
Implicant $c d$ is essential
K-Map of g

$a b{ }^{c d}$	K-Map of \boldsymbol{g}			
				10
00	X	1	1	X
01	0	X	1	0
11	0	0	1	0
10	0	0	1	0

Not all don't cares need be covered

Minimal Product-of-Sums with Don'† Cares

Simplify: $g=\sum_{m}(1,3,7,11,15)+\sum_{d}(0,2,5)$
Obtain a product-of-sums minimal expression
Solution: $g^{\prime}=\sum_{m}(4,6,8,9,10,12,13,14)+\sum_{d}(0,2,5)$
Minimal $g^{\prime}=d^{\prime}+a c^{\prime} \quad$ (3 literals)
K-Map of \boldsymbol{g}^{\prime}
Minimal product-of-sums:
$g=d\left(a^{\prime}+c\right)$
(3 literals)
The minimal sum-of-products expression for g had 4 literals

K-Map of $\boldsymbol{g}^{\boldsymbol{\prime}}$				
$a b{ }^{c d}$		01	11	10
00	X	0	0	X
01	1	X	0	1
11	1	1	0	1
10	1	1	0	1

