
1

1

Repetitive Structure

Chapter 04

CMPE-112 Programming Fundamentals

2

General Idea

while Loop

Infinite loop

do-while Loop

for Loop

Nested Loops

Loop Interruption

Statement break

Statement continue

Null Statement

Comma Operator

Sample Programs

Lecture Plan

1

2

2

3

General Idea (I)

The repetitive structure allows a sequence of program
statements to be executed several times even though those
statements appear only once in the program

It consists of

an entry point that may include initialization of certain variables

a loop continuation condition, which tests once for each execution of the
loop body

a loop body may consist of statements that are normally executed
several times

an exit point is the first statement following the loop body

With pre-test loops the continuation condition is tested before
the loop body

With post-test loops - after the loop body

4

General Idea (II)

Pre-test loop Post-test loop

Entry

Condition

Loop body

true

false

Exit

Entry

Condition

Loop body

true

false

Exit

3

4

3

5

while Loop

The while loop is a pre-test loop, whose general form is

loop initialization

while (expression)

statement_1

statement_2

Here the expression is evaluated. If it is a

nonzero value (true), then the statement_1 is

executed. Then the expression is evaluated

again, and if its result is true, the statement_1

is executed again. The process continues until

the result of the expression becomes zero

(false). After that the program continues with

executing the statement_2 and so on.

NOTE: In the while loop the statement_1 may not be executed at all

6

/* The program enters, displays */

/* and counts characters */

#include <stdio.h>

int main()

{

int ch, count;

count = 0;

ch = getchar();

while (ch != EOF) {

putchar(ch);

count++;

ch=getchar();

}

printf(“\nEntered %d characters\n”, count);

return 0;

}

Sample Program (I)

/* The program enters, displays */

/* and counts characters */

#include <stdio.h>

int main()

{

int ch, count;

count = 0;

while ((ch = getchar()) != EOF) {

putchar(ch);

count++;

}

printf(“\nEntered %d characters\n”, count);

return 0;

}

ctrl-d for UNIX

ctrl-z for DOS

5

6

4

7

Infinite Loop

If the continuation condition is always true, the loop can
never terminate - it is an infinite loop

For instance, a programmer forgets to change the value of a
variable within continuation condition

int i = 0, n, sum = 0;

while (i < 25) {

scanf(“%d”, &n);

sum += n;

}

printf(“This statement is never executed ! ”);

while (1)

statement_1

8

do-while Loop

The do-while loop is a post-test loop, whose general form is

loop initialization

do

statement_1

while (expression);

statement_2

Here the statement_1 is executed and then

the expression is evaluated. If it is a nonzero

value (true), then the statement_1 is

executed again. The process continues until

the result of the expression becomes zero

(false). After that the program continues with

executing the statement_2 and so on.

NOTE: In the do-while loop the statement_1 is executed at least once

7

8

5

9

/* The program enters a number and computes the sum of its digits */

#include <stdio.h>

int main()

{

int number, sum = 0;

printf(“\nEnter a number = ”);

scanf(“%d”, &number);

do {

sum += number % 10;

number /= 10;

}

while (number > 0);

printf(“\nThe sum of the digits is %d\n”, sum);

return 0;

}

Sample Program (II)

10

for Loop (I)

The for loop is a pre-test loop, whose general form is

for (expression_1 ; expression_2 ; expression_3)

statement_1

statement_2

Here the expression_1 is used to perform loop initialization.

Expression_2 is the loop continuation condition. First, statement_1 is

executed and then expression_3 known as re-initialization expression,

is evaluated before the next iteration begins. Statement_2 is the exit

point for the loop

9

10

6

11

for Loop (II)

A for loop is equivalent to

the following while loop:

expression_1;

while (expression_2) {

statement_1;

expression_3;

}

int i, sum = 0;

for (i = 1; i <= n; i++)
sum += i;

printf(“\n%d”, sum);

int i, sum = 0;

i = 1;
while (i <= n) {

sum += i;
i++;

}

printf(“\n%d”, sum);

12

for Loop (III)

All three expressions within parentheses is the for loop are
optional and may be omitted. However, the semicolons
separating them are to be provided. For example,

int i, sum = 0;

i = 1;
for (; i <= n ;) {

sum += i;
i++;

}

printf(“\n%d”, sum);

The for loop can be used to set up an infinite loop:

for (; ;)
statement

11

12

7

13

Nested Loops

Loops may be nested, i.e. one loop may contain other loops
within its body

When nesting one loop within another, the inner loop must
be entirely contained within the body of the outer loop

Each loop must have its own unique loop continuation
expression

Nested loops may have the same exit point

The inner loop is indented with respect to the outer loop for
better readability

14

Sample Program (III)

/* The values a, b and c, such that a<b<c, form a Pythagorean triplet */

/* if a^2 + b^2 = c^2. This program finds all triplets for a, b <=25 */

#include <stdio.h>

#include <math.h>

#define LIMIT 25

int main()

{

int a, b, c, c_sqr;

for (a = 1; a <= LIMIT; a++)

for (b = a+1; b <= LIMIT; b++) {

c_sqr = a * a + b * b;

c = sqrt(c_sqr); /* This is to truncate fraction */

if (c * c = = c_sqr)

printf(“\nAnother triplet is %4d %4d %4d”, a, b, c);

}

return 0;

}

13

14

8

15

Loop Interruption (I)

On a special occasion loop can be interrupted within the loop
body. This causes all statements following the interruption
point, to be skipped and the control given either to the exit
point or back to the beginning of the loop body

Accordingly, C provides two statements for implementing loop
interruptions

break Statement

continue Statement

When a break statement is encountered within a loop body, the
execution of the loop body is interrupted, and the program
control transfers to the exit point of the loop

Within a nested loop, break statement results in interruption of
the innermost loop whose body contains the break statement

16

Sample Program (IV)

/* This program computes the sum of square roots for */

/* non-negative values. Zero value is to finish calculations */

#include <stdio.h>

#include <math.h>

int main()

{

float a, sum = 0;

printf(“\nEnter numbers: ”);

do {

scanf(“%f”, &a);

if (a < 0) break;

sum += sqrt(a);

}

while (a != 0);

if (a >= 0) printf(“\nThe sum is %.3f\n”, sum);

else printf(“\nError: a negative number is not allowed.\n”);

return 0;

}

15

16

9

17

Loop Interruption (II)

The continue statement does not terminate the loop; it only
interrupts a particular iteration

When a continue statement is encountered within a loop body
of a while or do-while loop, all the remaining statements in the
loop body are skipped and the loop continuation condition is
evaluated next

Within the for loop, any statements in the loop body are
skipped, and the re-initialization expression (the third one) is
evaluated next

Then the execution of the repetition continues as normal

18

Sample Program (V)

/* This program computes the sum of all integer values */

/* from 1 to n excluded those divisible by 5 */

#include <stdio.h>

int main()

{

int value, number, sum = 0;

printf(“\nEnter the limit: ”);

scanf(“%d”, &number);

for (value = 1; value <= number; value++) {

if (value % 5 = = 0) continue; /* Skip a value divisible by 5 */

sum += value;

}

printf(“\nThe sum is %1d\n”, sum);

return 0;

}

17

18

10

19

Loop Interruption (III)

The continue statements are used mainly to avoid excessive
nesting within a loop

However, it is possible to replace a continue statement by an
appropriate if statement, and thus make the program easy to
understand

for (i = 1; i <= n; i++) {

if (i % 5 = = 0) continue;

sum += i;

}

for (i = 1; i <= n; i++)

if (i % 5 != 0)

sum += i;

20

Null Statement

C permits a statement consisting of a semicolon only. It is
known as the null statement and its general form is

;

Execution of the null statement has no affect, but it is
necessary in case the syntax requires a statement, e.g.

The following statement just counts the number of characters
in the input, and the null statement is the only one in the
loop body

for (count = 0; getchar() != EOF; count++)

;

19

20

11

21

Comma Operator

The comma operator (,) is used to combine two related
expressions into one, making programs more compact

The compound expression so formed is evaluated from left
to right, and the type and the value of the result are those
of the right operand

The comma operator has the lowest precedence of any
other operator

Example: the following code interchanges the values of x
and y

t = x;

x = y;  t = x, x = y, y = t;

y = t;

22

Sample Program (VI)

/* This program enters two integer values and prints */

/* all values between them in the descending order */

#include <stdio.h>

int main()

{

int v1, v2, tmp, i;

puts(“\nEnter two integer : ”);

scanf(“%d,%d”, &v1, &v2);

if (v1 < v2) /* Interchange the values of v1 and v2 */

tmp = v1, v1 = v2, v2 = tmp;

for (i = v1; i >= v2; i--) /* Print out the values from the range */

printf(“%4d”, i);

return 0;

}

21

22

