
1

1

Functions

Chapter 05

CMPE-112 Programming Fundamentals

2

Two sample programs

Function Definition

return Statement

Function Call

Call by value

Call by reference

Function Prototypes

Scope of Variables

External Variables

Storage Classes

Recursion

Lecture Plan

1

2

2

3

/* The program computes n! / m! */

#include <stdio.h>

int main()

{

int i, n, m, fact_n, fact_m;

puts(“\nEnter two numbers”);

scanf(“%d %d”, &n, &m);

for (fact_n = 1, i=1; i<=n; i++) /* n! */

fact_n *= i;

for (fact_m = 1, i=1; i<=m; i++) /* m! */

fact_m *= i;

printf(“\nResult = %f\n”, (float)fact_n / fact_m);

return 0;

}

Sample Program (I)

/* The program computes n! / m! */

#include <stdio.h>

int fact(int a)

{

int i, fff;

for (fff = 1, i=1; i<=a; i++) /* a! */

fff *= i;

return fff;

}

int main()

{

int n, m;

puts(“\nEnter two numbers”);

scanf(“%d %d”, &n, &m);

printf(“\nResult = %d\n”, (float)fact(n) / fact(m));

return 0;

}

4

Function Definition (I)

A function definition introduces a new function. The
following declarations are made in the function definition:

the type of value that the function returns

the order and the type of its parameters

the statements to be executed when the function is called

function_type function_name (parameter_declarations)

{

variable_declarations

function_statements

}

A function that does not return any value, is declared to be of
the type void. The default type is taken to be int.

3

4

3

5

Function Definition (II)

Function_name is the name of the function being defined

Parameter_declarations specify the types and names of the
parameters (also called formal parameters) of the function,
separated by commas

If a function does not have any parameters, the keyword void
is used in place of parameter declarations

double pow(double x, double y)

void terminating_message(void)

6

Function Definition (III)

The function body consists of variable_declarations followed
by function_statements, enclosed in braces

Variable_declarations specify types and names of the
variables that are local to the function

Function_statements are executed when the function is
called

int check_range(int v1, int v2, int x)
{

int result;

result = x >= v1 && x <= v2;

return result;
}

5

6

4

7

Function Definition (IV)

A local variable is one whose value can be accessed only by
the function in which it is declared

Parameters are declared at the top of the function body

Variable declared local supersede any identically named
variables outside the function

int abc(int v1, int v2)
{

int result;

…
}

int def(int v1, int v2)
{

int result;

…
}

8

return Statement (I)

A return statement can be of the two following forms

return expression;

return;

The type of the expression is converted to the type of the
function

int truncate(double x)
{

return x;
}

int truncate(double x)
{

return (int)x;
}

equivalent

The second form is used when the function is of type void;
otherwise, the value returned is unpredictable

If there is no return statement, the second form is assumed

7

8

5

9

return Statement (II)

More than one return statement can be used in a function.
Each of them terminates the execution of the function, and
the rest of the function body is not executed

/* The function computes a! */

int fact(int a)

{

int i, result;

if (a < 0) return -1;

if (a = = 0) return 1;

for (result = 1, i=1; i<=a; i++) /* a! */

result *= i;

return result;

}

10

Function Call (I)

A function call is an expression of the form

function_name (argument_list)

where function_name is the name of the function called, and
argument_list is a comma-separated list of expressions
(actual arguments) to the function

A function call is an expression, its value is the one returned
by the function

z = sqrt(sin(x));

Parenthesis must be present in the function call even when
the argument list is empty

initialize();

9

10

6

11

Function Call (II)

The function in which the function call is contained is the
calling function, and the other is a called one, e.g. main()
is a calling function and sin(x) is a called one

The called function is executed until a return or its closing
brace is encountered, and the control passes back to the
point after the function call

The calling function may ignore the valued returned by a
called function. So, the following two statements are both
valid

z = sin(x);

sin(y);

but the sine of y is lost, since it is not stored in a variable

12

Parameter Passing

Parameters can be passed from a calling function to a called
one in one of the two ways:

the called function is provided with the current values of the actual
argument, and the corresponding formal parameters are assigned
these values - call by value. So, any change in the value of the
parameter does not cause a change in the corresponding argument
since these are two different locations in the memory

the called function is provided with the addresses of the actual
arguments – call by reference. Here any change in the value of the
parameter automatically means a change in the corresponding
argument since they refer to the same cell in the memory

C language provides call by value parameter passing only,
although it allows to pass the address of a variable (called
the pointer to the variable) as a parameter

11

12

7

13

Function Prototypes

Before calling a function, it must be declared with a prototype
of its parameters. The general form of a function declaration
is as follows

function_type function_name (parameter_type_list);

The parameter_list is the comma-separated list of pairs of
type and name of the parameters of the function

Parameter names in the prototype may be omitted

The prototype of a function must agree with the function
definition and its use

A function definition serves as a prototype for any
subsequent call to the function in the same source file

14

Scope of Variables

A block is a sequence of variable declarations and
statements enclosed in braces

C does not allow a function to be defined inside another
function, but it permits nested blocks

At the beginning of a block some variables may be declared
and initialized. The scope of a variable declared in a block
extends from its point of declaration to the end of the block

Scope is the part of a code within which a name can be used

Such a declaration hides any identically named variables in
the outer blocks. So, a variable name addresses the latest
declared location in the memory – all previously declared
cells are not accessible

13

14

8

15

Example

Note the scope of the variable tmp used for swapping the
values of two variables in the following code

if (m < n) // Swap them

{

int tmp = m;

m = n;

n = tmp;

}

The variable tmp exists only within this if statement and is
not accessible from any outer block

16

External Variables

Sometimes passing values to a function via parameters is
difficult is a large number of variables has to be shared

Variables defined outside any function at the same level as
function definitions are available to all the functions defined
below in the same source file, and they are called external
variables (or global variables)

If a local variable and a global one have identical names, all
references to the name within the function will refer to the
local variable

External variables are useful when

many arguments are to be passed to a function

a function needs to return more than one result

15

16

9

17

Storage Classes

A variable is of automatic storage class if a cell is allocated
to it upon entry to a segment of code and deallocated upon
exit from this segment

A variable is of static storage class if a cell is allocated to it
at the beginning of the program execution and remains
allocated until the program execution terminates

By default, all variables declared within a block are taken to
be auto, while those declared outside all blocks at the same
level as function definitions are always static

For the explicit declaration a storage class specifier can be
used as follows:

auto type variable1;

static type variable2;

18

Recursion

When a function calls itself (directly, or indirectly) it is called
a recursive function

/* The recursive function computing n! */

int factorial(int a)

{

if (a = = 0)

return 1; /* Termination condition */

else

return a * factorial(a-1); /* Recurse */

}

/* The recursive function computing n! */

int factorial(int a)

{

return a = = 0 ? 1 : a * factorial(a-1);

}

/* The function computes n! */

int fact(int a)

{

int i, fff;

for (fff = 1, i=1; i<=a; i++) /* a! */

fff *= i;

return fff;

}

17

18

