
1

1

Pointers

Chapter 07

CMPE-112 Programming Fundamentals

2

Sample program

Basics of Pointers

Address and Dereferencing Operators

Pointer Type Declaration

Pointer Assignment

Pointer Initialization

Pointer Arithmetic

Functions and Pointers

Arrays and Pointers

Strings. Library String Functions

Sample Program

Lecture Plan

1

2

2

3

/* The program works with pointers */

#include <stdio.h>

int main()

{

char *cp2;

char c1, c2;

puts("\nEnter a character:");

c1 = getchar();

cp2 = &c2; // The pointer now has the address of the variable c2

*cp2 = c1; // Copying from c1 to the location pointed by cp2

puts("The character is as follows:");

putchar(c2);

return 0;

}

Sample Program (I)

4

Basics of Pointers

Let’s declare an integer variable

int d;

and denote its address in the RAM as dp

The diagram below depicts the relationship between d and dp

contents: … x100c 10 …

address: x1000 x1004 x1008 x100c x1010 x1014

variable name: dp d

&d d dp *dp

x100c 10 x100c 10

3

4

3

5

Address and Dereferencing Operators

C provides two unary operators, & and *, for manipulating
data using pointers

The operator &, when applied to a variable, results in the
address of the variable. This is the address operator

The operator *, when applied to a pointer, returns the value
stored at the address specified by the pointer. This is the
dereferencing or indirection operator

Examples:

j = *ip + 10; j = i + 10;

k = ++(*ip); k = ++i;

x = sqrt((double) *ip); x = sqrt((double) i);

printf(“%d”, *ip); printf(“%d”, i);

Equivalent

6

Pointer Type Declaration

The operator & can only be applied to a variable, so the
following expressions are incorrect

&10 &’C’ &(x+3)

If the type of an operand is T, the result is of type
“pointer to T”

The operator * can only be applied to a pointer. If the type
of an operand is “pointer to T”, the result is of type T

To indicate that a variable contains a pointer to type, an
asterisk is included before the variable name:

type *identifier;

char *cp; double *mp; int *kp;

5

6

4

7

Pointer Assignment

A pointer value may be assigned to another pointer of the
same type, for example

int i = 1, j, *ip;

ip = &i;

j = *ip;

(*ip)++;

An exception to this rule is the constant zero (the NULL
pointer, declared in stdio.h) that can be assigned to a pointer
of any type

ip = NULL;

8

Pointer Initialization

An initial value may be assigned to a pointer at the
declaration. The general form is

type *identifier = initial_value;

Examples

int m;

int *mp = &m;

double d[10];

double *d5p = &d[4];

char s[] = “A string”;

char *s3p = &s[2];

7

8

5

9

Pointer Arithmetic

Arithmetic operators “+”, “-”, “++” and “--” can be applied to
pointers. The result depends on the data type of the pointer

… vark-n … vark-1 vark vark+1 … vark+n …

p-n p-1 p p+1 q

The result of subtraction of two pointers is undefined if the
pointers do not point to the elements within the same array.
Otherwise, the result is the number of elements between the
two pointers:

q - p is equal to n

10

Precedence of Operators & and *

c = *++cp; c = *(++cp);

c = *cp++; c = *(cp++);

c = ++*cp; c = ++(*cp);

c = (*cp)++; ? ? ?

The unary operators & and * have the same precedence as
any other unary operators, with the associativity is from right
to left

Special care is required when mixing * with ++ or -- in a
pointer expression, so

Equivalent

9

10

6

11

Pointer Comparison

The relational operators ==, !=, <, <=, > and >= are
permitted between pointers (mainly, of the same type)

Examples:

int a[10], *ap;

ap = &a[7];

ap < &a[8] is true

ap < &a[4] is false

The following comparisons may be abbreviated:

if (ip != NULL) j += *ip; if (ip) j += *ip;

if (ip == NULL) puts(“Warning”); if (! ip) puts(“Warning”);

Equivalent

12

Pointer Conversion

A pointer of one type can be converted to a pointer of
another type by using an explicit cast:

int *ip;

double *dp;

dp = (double *) ip; OR

ip = (int *) dp;

Generic pointers (void *) are used to define functions whose
formal parameters can accept pointers of any type

Any pointer may be converted to type void * and back
without loss of information

prototype: void free(void *);

call: free(cp);

11

12

7

13

Functions and Pointers

A function can take a pointer to any data type as argument
and can return a pointer to any data type

Using pointers the programs in C can implement call by
reference

/* The function finds a maximum */

double *maxp(double *xp, double *yp)

{

return *xp >= *yp ? xp : yp;

}

…………..

{

double u = 1, v = 2, s;

double *mp = &s;

mp = maxp(&u, &v);

printf(“Max = %lf”, *mp);

}

/* The function exchanges two values */

void swap(int *ap, int *bp)

{

int tmp;

tmp = *ap; *ap = *bp; *bp = tmp;

}

…………..

{

int m = 10, n = 20;

swap(&m, &n);

printf(“m = %d\nn = %d”, m, n);

}

14

Arrays and Pointers (I)

C language treats a variable of type “array of T” as
“pointer to T”, whose value is the address of the first element
of the array

char m[MAX], *cp;

cp = m; is equivalent to cp = &m[0];

Array subscripting is defined in terms of pointer arithmetic:

char *cp, c[MAX]; int i;

Array Notation Pointer Notation

&c[0] c

c[i] *(c+i)

&c[i] c+i

cp[i] *(cp + i)

13

14

8

15

Arrays and Pointers (II)

Consider an example:

char c[5] = {‘a’, ‘b’, ‘c’, ‘d’, ‘e’};

char *cp = c;

Array
Element

Pointer
Arithmetic

Pointer with a
Subscript

Value

c[0] *cp cp[0] ‘a’

c[1] *(cp+1) cp[1] ‘b’

c[2] *(cp+2) cp[2] ‘c’

c[3] *(cp+3) cp[3] ‘d’

c[4] *(cp+4) cp[4] ‘e’

These are incorrect
statements

c = cp; c++;

16

Array as Function Arguments

In a function, if an array is necessary to be a formal
parameter, it can be declared using pointers. Thus, the
following functions are equivalent:

/* The function uses an array */

int max(int a[], int length)

{

int i, maxv;

for (i=1, maxv = a[0]; i<length; i++)

if (a[i] > maxv) maxv = a[i];

return maxv;

}

/* The function uses a pointer */

int max(int *a, int length)

{

int i, maxv;

for (i=1, maxv = *a; i<length; i++)

if (*(a+i) > maxv) maxv = *(a+i);

return maxv;

}

15

16

9

17

Strings

A string is a null-terminated array of characters. The null
character ‘\0’ indicates the end of a string

Examples of string declarations and initializations:

char str1[5] = {‘a’, ‘b’, ‘c’, ‘d’, ‘\x0’}; OR

char str1[] = “abcd”;

char *str2; OR

str2 = “abcdef”;

Here, two versions of a function that copies one string to
another string, are presented

/* The string copying function #1 */

void strcpy(char *to, char *from)

{

while (*to = *from) to++, from++;

}

/* The string copying function #1 */

void strcpy(char *to, char *from)

{

while (*to++ = *from++) ;

}

18

Library String Functions

The standard header file <string.h> contains prototypes for a
number of functions for processing strings in C programs:

char s1[MAX], s2[MAX];

Statement Result

strlen(“abc”) 3

strcpy(s1, “string”) string

strncpy(s2, “temp”, 2) te

strcat(s1, s2) stringte

strcmp(s1, s2) -1

strncmp(s1+6, s2, 4) 0

strchr(s1, ‘t’) tringte

strrchr(s1, ‘t’) te

17

18

10

19

/* These functions determine if a given */

/* string is a palindrome. */

/* Example: Madam! I'm Adam */

#include <string.h>

#define MAXSIZE 80 // Max. # of characters

void transform(char *raw, char *std)

{

for(; *raw; raw++)

if(*raw >= 'a' && *raw <= 'z') // Convert

*std++ = *raw - 'a' + 'A'; // to uppercase

else

if((*raw >= 'A' && *raw <= 'Z') ||

(*raw >= '0' && *raw <= '9'))

*std++ = *raw; // Copy letters & digits

*std = *raw;

}

Sample Program (II)

int test(char *str)

{

char *left = str; // Beginning pointer

char *right = str + strlen(str) - 1; // Ending

for(; left < right; left++, right--)

if(*left != *right)

return 0; // False - not a palindrome

return 1; // True - yes! a palindrome

}

int palindrome(char *rawstr)

{

char stdstr[MAXSIZE];

transform(rawstr, stdstr);

return test(stdstr);

}

19

