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Some Important Questions to Ask 

What is Assembly Language? 

What is Machine Language? 

 How is Assembly related to a high-level language? 

Why Learn Assembly Language? 

What is an Assembler, Linker, and Debugger? 

A Hierarchy of Languages 

Application Programs 

High-Level Languages 

Assembly Language 

Machine Language 

Hardware 

High-Level Language 

Low-Level Language 

Machine independent 

Machine specific 
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Assembly and Machine Language 

Machine language 

 Native to a processor: executed directly by hardware 

 Instructions consist of binary code: 1s and 0s 

 Assembly language 

 Slightly higher-level language 

 Readability of instructions is better than machine language 

 One-to-one correspondence with machine language instructions 

 Assemblers translate assembly to machine code 

 Compilers translate high-level programs to machine code 

Compiler and Assembler 
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MIPS Assembly Language: 

sll $2,$5, 2 

add $2,$4,$2 

lw  $15,0($2) 

lw  $16,4($2) 

sw  $16,0($2) 

sw  $15,4($2) 

jr  $31 

Compiler 

Translating Languages 

Program (C Language): 

swap(int v[], int k) { 

 int temp; 

 temp = v[k]; 

 v[k] = v[k+1]; 

 v[k+1] = temp; 

} 

A statement in a high-level 

language is translated 

typically into several 

machine-level instructions 

  
  
  
  
  
  
  

MIPS Machine Language: 

00051080 

00821020 

8C620000 

8CF20004 

ACF20000 

AC620004 

03E00008 

Assembler 

Advantages of High-Level Languages 

 Program development is faster 

 High-level statements: fewer instructions to code 

 Program maintenance is easier 

 For the same above reasons 

 Programs are portable 

 Contain few machine-dependent details 

 Compiler translates to the target machine language 
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Why Learn Assembly Language? 

Many reasons: 

 Accessibility to system hardware 

 Space and time efficiency 

 Writing a compiler for a high-level language 

 Accessibility to system hardware 

 Assembly Language is useful for implementing system software 

 Also useful for small embedded system applications 

 Programming in Assembly Language is harder 

 Requires deep understanding of the processor architecture 

 However, it is very rewarding to system software designers 

 Adds a new perspective on how programs run on real processors 

What is Assembly Language? 

 Low-level programming language for a computer 

 One-to-one correspondence with the machine instructions 

 Assembly language is specific to a given processor 

 Assembler: converts assembly program into machine code 

 Assembly language uses: 

 Mnemonics: to represent the names of low-level machine instructions 

 Labels: to represent the names of variables or memory addresses 

 Directives: to define data and constants 

 Macros: to facilitate the inline expansion of text into other code 
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Assembly Language Programming Tools 

 Editor 

 Allows you to create and edit assembly language source files  

 Assembler 

 Converts assembly language programs into object files 

 Object files contain the machine instructions 

 Linker 

 Combines object files created by the assembler with link libraries 

 Produces a single executable program 

 Debugger 

 Allows you to trace the execution of a program 

 Allows you to view machine instructions, memory, and registers 

Assemble and Link Process 

Source 

File 

Source 

File 

Source 

File 

Assembler 
Object 

File 

Assembler 
Object 

File 

Assembler 
Object 

File 

Linker 
Executable 

File 

Link 

Libraries 

 A program may consist of multiple source files 

 Assembler translates each source file into an object file 

 Linker links all object files together and with link libraries 

 The result executable file can run directly on the processor 
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Classes of Computers 

 Personal computers 

 General purpose, variety of software, subject to cost/performance 

 Server computers 

 Network based, high capacity, performance, and reliability 

 Range from small servers to building sized 

 Supercomputers 

 High-end scientific and engineering calculations 

 Highest capability but only a small fraction of the computer market 

 Embedded computers 

 Hidden as components of systems 

 Stringent power/performance/cost constraints 

 

 

Classes of Computers (cont'd) 

 Personal Mobile Device (PMD) 

 Battery operated 

 Connects to the Internet 

 Low price: hundreds of dollars 

 Smart phones, tablets, electronic glasses 

 Cloud Computing 

 Warehouse Scale Computers (WSC) 

 Software, Platform, and Infrastructure as a Service 

 However, security concerns of storing "sensitive data" in "the cloud" 

 Examples: Amazon and Google 
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Components of a Computer System 

 Processor 

 Datapath and Control 

Memory & Storage 

 Main Memory 

 Disk Storage 

 Input / Output devices 

 User-interface devices 

 Network adapters 

 For communicating with other computers 

 Bus: Interconnects processor to memory and I/O 

 Essentially the same components for all kinds of computers 

Computer 

Memory 

I/O Devices 

Input 

Output 
B
U
S 

Control 

Datapath 

 Processor 

Disk 

Network 

Fetch instruction 

Compute address of next instruction 

Generate control signals for instruction 

Read operands from registers 

Compute result value 

Writeback result in a register 

Fetch - Execute Cycle 

Instruction Decode 

Instruction Fetch 

Execute 

Writeback Result 
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Memory Access Read or write memory 
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 Critical Interface between software and hardware 

 An ISA includes the following … 

 Instructions and Instruction Formats 

 Data Types, Encodings, and Representations 

 Programmable Storage: Registers and Memory 

 Addressing Modes: to address Instructions and Data 

 Handling Exceptional Conditions (like overflow) 

 Examples (Versions) Introduced in 

 Intel (8086, 80386, Pentium, Core, ...) 1978  

 MIPS (MIPS I, II, …, MIPS32, MIPS64) 1986 

 ARM (version 1, 2, …) 1985 

Instruction Set Architecture (ISA) 

Instructions 

 Instructions are the language of the machine 

We will study the MIPS instruction set architecture 

 Known as Reduced Instruction Set Computer (RISC) 

 Elegant and relatively simple design 

 Similar to RISC architectures developed in mid-1980’s and 90’s 

 Popular, used in many products 

 Silicon Graphics, ATI, Cisco, Sony, etc. 

 Alternative to: Intel x86 architecture 

 Known as Complex Instruction Set Computer (CISC)  
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Overview of the MIPS Architecture 

Memory 
  

Up to 232 bytes = 230 words     

      4 bytes per word 
  

$0   

$1 

$2 

$31 

Hi Lo 

ALU     

F0 

F1 

F2 

F31 
FP   

Arith   

EPC 

Cause 

BadVaddr 

Status 

EIU   FPU   

TMU 

Execution & 

Integer Unit 

(Main proc) 

  Floating 

Point Unit 

(Coproc 1)   

Trap &  

Memory Unit 

(Coproc 0)  

. . .   

. . . 

    

Integer   
mul/div   

Arithmetic & 

Logic Unit 

32 General 

Purpose 

Registers 

Integer 

Multiplier/Divider 

32 Floating-Point 

Registers 

Floating-Point 

Arithmetic Unit 

MIPS General-Purpose Registers 

 32 General Purpose Registers (GPRs) 

 All registers are 32-bit wide in the MIPS 32-bit architecture 

 Software defines names for registers to standardize their use 

 Assembler can refer to registers by name or by number ($ notation) 

Name Register Usage 

$zero $0 Always 0 (forced by hardware) 

$at $1 Reserved for assembler use 

$v0 – $v1 $2 – $3 Result values of a function 

$a0 – $a3 $4 – $7 Arguments of a function 

$t0 – $t7  $8 – $15 Temporary Values 

$s0 – $s7 $16 – $23 Saved registers (preserved across call) 

$t8 – $t9 $24 – $25 More temporaries 

$k0 – $k1 $26 – $27 Reserved for OS kernel 

$gp $28 Global pointer (points to global data) 

$sp $29 Stack pointer (points to top of stack) 

$fp $30 Frame pointer (points to stack frame) 

$ra $31 Return address (used by jal for function call) 
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Instruction Formats 

 All instructions are 32-bit wide, Three instruction formats: 

 Register (R-Type) 

 Register-to-register instructions 

 Op: operation code specifies the format of the instruction 

 Immediate (I-Type) 

 16-bit immediate constant is part in the instruction 

 Jump (J-Type) 

 Used by jump instructions 

Op6 Rs5 Rt5 Rd5 funct6 sa5 

Op6 Rs5 Rt5 immediate16 

Op6 immediate26 

Assembly Language Instructions 

 Assembly language instructions have the format: 

 [label:]   mnemonic   [operands]    [#comment] 

 Label: (optional) 

 Marks the address of a memory location, must have a colon 

 Typically appear in data and text segments  

Mnemonic 

 Identifies the operation (e.g. add, sub, etc.) 

 Operands 

 Specify the data required by the operation 

 Operands can be registers, memory variables, or constants 

 Most instructions have three operands 

 L1: addiu $t0, $t0, 1 #increment $t0 
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Assembly Language Statements 

 Three types of statements in assembly language 

 Typically, one statement should appear on a line 

1. Executable Instructions 

 Generate machine code for the processor to execute at runtime 

 Instructions tell the processor what to do 

2. Pseudo-Instructions and Macros 

 Translated by the assembler into real instructions 

 Simplify the programmer task  

3. Assembler Directives 

 Provide information to the assembler while translating a program 

 Used to define segments, allocate memory variables, etc. 

 Non-executable: directives are not part of the instruction set 

Comments 

 Single-line comment 

 Begins with a hash symbol # and terminates at end of line 

 Comments are very important! 

 Explain the program's purpose 

 When it was written, revised, and by whom 

 Explain data used in the program, input, and output 

 Explain instruction sequences and algorithms used 

 Comments are also required at the beginning of every procedure 

 Indicate input parameters and results of a procedure 

 Describe what the procedure does 
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Memory is viewed as an addressable array of bytes 

 Byte Addressing: address points to a byte in memory 

 However, words occupy 4 consecutive bytes in memory 

 MIPS instructions and integers occupy 4 bytes 

Memory Alignment: 

 Address must be multiple of size 

 Word address should be a multiple of 4 

 Double-word address should be a multiple of 8 

Memory Alignment 

0 

4 

8 

12 

a
d

d
re

s
s
 

not aligned 

. . . 

aligned word 

not aligned 

Memory 

 Processors can order bytes within a word in two ways 

 Little Endian Byte Ordering 

 Memory address = Address of least significant  byte 

 Example: Intel IA-32 

 

 

 Big Endian Byte Ordering 

 Memory address = Address of most significant byte 

 Example: SPARC architecture 

 

 

MIPS can operate with both byte orderings  

Byte Ordering (Endianness) 

Byte 0 Byte 1 Byte 2 Byte 3 

32-bit Register 

MSB LSB 

. . . . . . Byte 0 Byte 1 Byte 2 Byte 3 

a a+3 a+2 a+1 

Memory 

address 

Byte 3 Byte 0 Byte 1 Byte 2 Byte 3 

32-bit Register 

MSB LSB 

. . . . . . Byte 0 Byte 1 Byte 2 

a a+3 a+2 a+1 

Memory 

address 
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Instruction Categories 

 Integer Arithmetic 

 Arithmetic, logic, and shift instructions 

 Data Transfer 

 Load and store instructions that access memory 

 Data movement and conversions 

 Jump and Branch 

 Flow-control instructions that alter the sequential sequence 

R-Type Instruction Format 

 Op: operation code (opcode) 

 Specifies the operation of the instruction 

 Also specifies the format of the instruction 

 funct: function code – extends the opcode 

 Up to 26 = 64 functions can be defined for the same opcode 

 MIPS uses opcode 0 to define many R-type instructions 

 Three Register Operands (common to many instructions) 

 Rs, Rt: first and second source operands 

 Rd: destination operand 

 sa: the shift amount used by shift instructions 

Op6 Rs5 Rt5 Rd5 funct6 sa5 
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R-Type Integer Add and Subtract 

Instruction Meaning Op Rs Rt Rd sa func 

add  $t1, $t2, $t3 $t1 = $t2 + $t3 0 $t2 $t3 $t1 0 0x20 

addu $t1, $t2, $t3 $t1 = $t2 + $t3 0 $t2 $t3 $t1 0 0x21 

sub  $t1, $t2, $t3 $t1 = $t2 – $t3 0 $t2 $t3 $t1 0 0x22 

subu $t1, $t2, $t3 $t1 = $t2 – $t3 0 $t2 $t3 $t1 0 0x23 

 add, sub: arithmetic overflow causes an exception 

 In case of overflow, result is not written to destination register 

 addu, subu: arithmetic overflow is ignored 

 addu, subu: compute the same result as add, sub 

Many programming languages ignore overflow 

 The + operator is translated into addu 

 The – operator is translated into subu 

Using Add / Subtract Instructions 

 Consider the translation of: f = (g+h)–(i+j) 

 Programmer / Compiler allocates registers to variables 

 Given that: $t0=f, $t1=g, $t2=h, $t3=i, and $t4=j 

 Called temporary registers: $t0=$8, $t1=$9, … 

 Translation of: f = (g+h)–(i+j) 

 addu $t5, $t1, $t2 # $t5 = g + h 

 addu $t6, $t3, $t4 # $t6 = i + j 

 subu $t0, $t5, $t6 # f = (g+h)–(i+j) 

 Assembler translates addu $t5,$t1,$t2 into binary code 

000000 

Op 

01001 

$t1 

01010 

$t2 

01101 

$t5 

00000 

sa 

100001 

addu 
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Logic Bitwise Operations 

 Logic bitwise operations: and, or, xor, nor 

 

 

 

 AND instruction is used to clear bits: x and 0  0 

 OR instruction is used to set bits: x or 1  1 

 XOR instruction is used to toggle bits: x xor 1  not x 

 NOT instruction is not needed, why? 

not $t1, $t2 is equivalent to: nor $t1, $t2, $t2  

x 

0 

0 

1 

1 

y 

0 

1 

0 

1 

x and y 

0 

0 

0 

1 

x 

0 

0 

1 

1 

y 

0 

1 

0 

1 

x or y 

0 

1 

1 

1 

x 

0 

0 

1 

1 

y 

0 

1 

0 

1 

x xor y 

0 

1 

1 

0 

x 

0 

0 

1 

1 

y 

0 

1 

0 

1 

x nor y 

1 

0 

0 

0 

Logic Bitwise Instructions 

Instruction Meaning Op Rs Rt Rd sa func 

and $t1, $t2, $t3 $t1 = $t2 & $t3 0 $t2 $t3 $t1 0 0x24 

or  $t1, $t2, $t3 $t1 = $t2 | $t3 0 $t2 $t3 $t1 0 0x25 

xor $t1, $t2, $t3 $t1 = $t2 ^ $t3 0 $t2 $t3 $t1 0 0x26 

nor $t1, $t2, $t3 $t1 = ~($t2|$t3) 0 $t2 $t3 $t1 0 0x27 

 Examples: 

 Given: $t1 = 0xabcd1234 and $t2 = 0xffff0000 

and $t0, $t1, $t2 # $t0 = 0xabcd0000 

or  $t0, $t1, $t2 # $t0 = 0xffff1234 

xor $t0, $t1, $t2 # $t0 = 0x54321234 

nor $t0, $t1, $t2 # $t0 = 0x0000edcb 
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Shift Operations 

 Shifting is to move the 32 bits of a number left or right 

 sll means shift left logical (insert zero from the right) 

 srl means shift right logical (insert zero from the left) 

 sra means shift right arithmetic (insert sign-bit) 

 The 5-bit shift amount field is used by these instructions 

shift-in 0 . . . shift-out 

sll 32-bit value 

. . . shift-in 0 shift-out 
srl 

. . . shift-in sign-bit shift-out 
sra 

Shift Instructions 

 sll, srl, sra: shift by a constant amount 

 The shift amount (sa) field specifies a number between 0 and 31 

 sllv, srlv, srav: shift by a variable amount 

 A source register specifies the variable shift amount between 0 and 31 

 Only the lower 5 bits of the source register is used as the shift amount 

 

 

Instruction Meaning Op Rs Rt Rd sa func 

sll  $t1,$t2,10  $t1 = $t2 <<  10 0 0 $t2 $t1 10 0 

srl  $t1,$t2,10  $t1 = $t2 >>> 10 0 0 $t2 $t1 10 2 

sra  $t1,$t2,10  $t1 = $t2 >>  10 0 0 $t2 $t1 10 3 

sllv $t1,$t2,$t3  $t1 = $t2 << $t3 0 $t3 $t2 $t1 0 4 

srlv $t1,$t2,$t3  $t1 = $t2 >>>$t3 0 $t3 $t2 $t1 0 6 

srav $t1,$t2,$t3  $t1 = $t2 >> $t3 0 $t3 $t2 $t1 0 7 
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$t1 = 0x0000abcd 

$t1 = 0xcd123400 

Shift Instruction Examples 

 Given that: $t2 = 0xabcd1234 and $t3 = 16 

sll  $t1, $t2, 8 

sra  $t1, $t2, 4 $t1 = 0xfabcd123 

srlv $t1, $t2, $t3 

Rt = $t2 Op Rs = $t3 Rd = $t1 sa srlv 

01010 000000 01011 01001 00000 000110 

srl  $t1, $t2, 4 $t1 = 0x0abcd123 

Binary Multiplication 

 Shift Left Instruction (sll) can perform multiplication 

 When the multiplier is a power of 2  

 You can factor any binary number into powers of 2  

 Example: multiply $t0 by 36  

$t0*36 = $t0*(4 + 32) = $t0*4 + $t0*32 

sll  $t1, $t0, 2 # $t1 = $t0 * 4 

sll  $t2, $t0, 5 # $t2 = $t0 * 32 

addu $t3, $t1, $t2 # $t3 = $t0 * 36 
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Your Turn . . . 

sll $t1, $t0, 1 # $t1 = $t0 * 2 

sll $t2, $t0, 3 # $t2 = $t0 * 8 

sll $t3, $t0, 4 # $t3 = $t0 * 16 

addu $t4, $t1, $t2 # $t4 = $t0 * 10 

addu $t5, $t4, $t3 # $t5 = $t0 * 26 

Multiply $t0 by 26, using shift and add instructions  

Hint: 26 = 2 + 8 + 16 

Multiply $t0 by 31, Hint: 31 = 32 – 1 

sll $t1, $t0, 5 # $t1 = $t0 * 32 

subu $t2, $t1, $t0 # $t2 = $t0 * 31 

I-Type Instruction Format 

 Constants are used quite frequently in programs 

 The R-type shift instructions have a 5-bit shift amount constant  

What about other instructions that need a constant? 

 I-Type: Instructions with Immediate Operands 

 

 16-bit immediate constant is stored inside the instruction 

Rs is the source register number 

Rt is now the destination register number (for R-type it was Rd) 

 Examples of I-Type ALU Instructions: 

 Add immediate: addi $t1, $t2, 5   # $t1 = $t2 + 5 

OR immediate: ori  $t1, $t2, 5   # $t1 = $t2 | 5 

Op6 Rs5 Rt5 immediate16 
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I-Type ALU Instructions 

Instruction Meaning Op Rs Rt Immediate 

addi  $t1, $t2, 25  $t1 = $t2 + 25 0x8 $t2 $t1 25 

addiu $t1, $t2, 25  $t1 = $t2 + 25 0x9 $t2 $t1 25 

andi  $t1, $t2, 25  $t1 = $t2 & 25 0xc $t2 $t1 25 

ori  $t1, $t2, 25  $t1 = $t2 | 25 0xd $t2 $t1 25 

xori  $t1, $t2, 25  $t1 = $t2 ^ 25 0xe $t2 $t1 25 

lui   $t1, 25  $t1 = 25 << 16 0xf 0 $t1 25 

 addi: overflow causes an arithmetic exception 

 In case of overflow, result is not written to destination register 

 addiu: same operation as addi but overflow is ignored 

 Immediate constant for addi and addiu is signed 

 No need for subi or subiu instructions 

 Immediate constant for andi, ori, xori is unsigned 

 Given that registers $t0, $t1, $t2 are used for A, B, C 

Examples of I-Type ALU Instructions 

Expression Equivalent MIPS Instruction 

A = B + 5; 

C = B – 1; 

A = B & 0xf; 

C = B | 0xf; 

C = 5; 

A = B; 

addiu $t0, $t1, 5 

addiu $t2, $t1, -1 

andi  $t0, $t1, 0xf 

ori   $t2, $t1, 0xf 

addiu $t2, $zero, 5 

addiu $t0, $t1, 0 

No need for subiu, because addiu has signed immediate 

Register $zero has always the value 0 

Rt = $t2 Op = addiu Rs = $t1 -1 = 0b1111111111111111 
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 I-Type instructions can have only 16-bit constants 

 

What if we want to load a 32-bit constant into a register? 

 Can’t have a 32-bit constant in I-Type instructions  

 The sizes of all instructions are fixed to 32 bits 

 Solution: use two instructions instead of one  

 Suppose we want: $t1 = 0xAC5165D9 (32-bit constant) 

lui: load upper immediate 

32-bit Constants 

Op6 Rs5 Rt5 immediate16 

lui $t1, 0xAC51 

ori $t1, $t1, 0x65D9 

0xAC51 $t1 

Upper 

16 bits 

0x0000 

Lower 

16 bits 

0xAC51 $t1 0x65D9 

Pseudo-Instructions 

 Introduced by the assembler as if they were real instructions 

 Facilitate assembly language programming 

Pseudo-Instruction Equivalent MIPS Instruction 

move $t1, $t2   

not  $t1, $t2 

neg  $t1, $t2 

li   $t1, -5 

li   $t1, 0xabcd1234 

The MARS tool has a long list of pseudo-instructions 

addu  $t1, $t2, $zero 

nor   $t1, $t2, $zero 

sub   $t1, $zero, $t2 

lui   $t1, 0xabcd 

ori   $t1, $t1, 0x1234 

addiu $t1, $zero, -5 
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Control Flow 

 High-level programming languages provide constructs: 

 To make decisions in a program: IF-ELSE 

 To repeat the execution of a sequence of instructions: LOOP 

 The ability to make decisions and repeat a sequence of 

instructions distinguishes a computer from a calculator 

 All computer architectures provide control flow instructions 

 Essential for making decisions and repetitions 

 These are the conditional branch and jump instructions 

 

 

 MIPS compare and branch instructions: 

 beq Rs, Rt, label if (Rs == Rt) branch to label  

 bne Rs, Rt, label if (Rs != Rt) branch to label  

 MIPS compare to zero & branch instructions: 

 Compare to zero is used frequently and implemented efficiently 

 bltz Rs, label if (Rs < 0) branch to label 

 bgtz Rs, label if (Rs > 0) branch to label 

 blez Rs, label if (Rs <= 0) branch to label 

 bgez Rs, label if (Rs >= 0) branch to label 

 beqz and bnez are defined as pseudo-instructions. 

MIPS Conditional Branch Instructions 
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Branch Instruction Format 

 The branch instructions modify the PC register only 

 PC-Relative addressing: 

If (branch is taken) PC = PC + 4 + 4×offset else PC = PC+4 

 Branch Instructions are of the I-type Format: 

Op6 Rs5 Rt5 16-bit offset 

Instruction I-Type Format 

beq  Rs, Rt, label Op = 4 Rs Rt 16-bit Offset 

bne  Rs, Rt, label Op = 5 Rs Rt 16-bit Offset 

blez Rs, label Op = 6 Rs 0 16-bit Offset 

bgtz Rs, label Op = 7 Rs 0 16-bit Offset 

bltz Rs, label Op = 1 Rs 0 16-bit Offset 

bgez Rs, label Op = 1 Rs 1 16-bit Offset 

Unconditional Jump Instruction 

 The unconditional Jump instruction has the following syntax: 

 j   label # jump to label 

   . . . 

 label: 

 The jump instruction is always taken 

 The Jump instruction is of the J-type format: 

 

 The jump instruction modifies the program counter PC: 

 

 The upper 4 bits of the PC are unchanged 

 

 

Op6 = 2 26-bit address 

26-bit address 00 PC4 

multiple 

of 4 
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Translating an IF Statement 

 Consider the following IF statement: 

 if (a == b) c = d + e; else c = d – e; 

 Given that a, b, c, d, e are in $t0 … $t4 respectively 

 How to translate the above IF statement? 

  bne   $t0, $t1, else 

  addu  $t2, $t3, $t4 

  j     next 

 else: subu  $t2, $t3, $t4 

 next: . . . 

Logical AND Expression 

 Programming languages use short-circuit evaluation 

 If first condition is false, second condition is skipped 

if (($t1 > 0) && ($t2 < 0)) {$t3++;} 

# One Possible Translation ... 

 bgtz $t1, L1 # first condition 

 j next # skip if false 

L1: bltz $t2, L2 # second condition 

 j next # skip if false 

L2: addiu $t3, $t3, 1  # both are true 

next: 
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Better Translation of Logical AND 

Allow the program to fall through to second condition 

!($t1 > 0) is equivalent to ($t1 <= 0) 

!($t2 < 0) is equivalent to ($t2 >= 0) 

Number of instructions is reduced from 5 to 3 

if (($t1 > 0) && ($t2 < 0)) {$t3++;} 

# Better Translation ... 

 blez $t1, next # 1st condition false? 

 bgez $t2, next # 2nd condition false? 

 addiu $t3, $t3, 1  # both are true 

next: 

Logical OR Expression 

 Short-circuit evaluation for logical OR 

 If first condition is true, second condition is skipped 

 

 

 Use fall-through to keep the code as short as possible 

 bgtz  $t1, L1 # 1st condition true? 

 bgez  $t2, next # 2nd condition false? 

L1: addiu $t3, $t3, 1 # increment $t3 

next: 

if (($t1 > 0) || ($t2 < 0)) {$t3++;} 
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Compare Instructions 

MIPS also provides set less than instructions 

 slt   Rd, Rs, Rt if (Rs < Rt) Rd = 1 else Rd = 0 

 sltu  Rd, Rs, Rt unsigned < 

 slti  Rt, Rs, imm if (Rs < imm) Rt = 1 else Rt = 0 

 sltiu Rt, Rs, imm unsigned < 

 Signed / Unsigned comparisons compute different results 

 Given that: $t0 = 1 and $t1 = -1 = 0xffffffff 

 slt   $t2, $t0, $t1 computes $t2 = 0 

 sltu  $t2, $t0, $t1 computes $t2 = 1 

Compare Instruction Formats 

 The other comparisons are defined as pseudo-instructions: 

seq, sne, sgt, sgtu, sle, sleu, sge, sgeu 

Instruction Meaning Format 

slt   Rd, Rs, Rt Rd=(Rs <s Rt)?1:0 Op=0 Rs Rt Rd 0 0x2a 

sltu  Rd, Rs, Rt Rd=(Rs <u Rt)?1:0 Op=0 Rs Rt Rd 0 0x2b 

slti  Rt, Rs, im Rt=(Rs <s im)?1:0 0xa Rs Rt 16-bit immediate 

sltiu Rt, Rs, im Rt=(Rs <u im)?1:0 0xb Rs Rt 16-bit immediate 

Pseudo-Instruction Equivalent MIPS Instructions 

sgt  $t2, $t0, $t1 

seq  $t2, $t0, $t1 
subu   $t2, $t0, $t1 

sltiu  $t2, $t2, 1 

slt    $t2, $t1, $t0 
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Pseudo-Branch Instructions 

 MIPS hardware does NOT provide the following instructions: 

 blt, bltu branch if less than (signed / unsigned) 

 ble, bleu branch if less or equal (signed / unsigned) 

 bgt, bgtu branch if greater than (signed / unsigned) 

 bge, bgeu branch if greater or equal (signed / unsigned) 

MIPS assembler defines them as pseudo-instructions: 

Pseudo-Instruction Equivalent MIPS Instructions 

blt  $t0, $t1, label 

ble  $t0, $t1, label 

$at ($1) is the assembler temporary register 

 slt  $at, $t0, $t1 
 bne  $at, $zero, label 

 slt  $at, $t1, $t0 
 beq  $at, $zero, label 

Using Pseudo-Branch Instructions 

 Translate the IF statement to assembly language 

 $t1 and $t2 values are unsigned 

 

 

 

 $t3, $t4, and $t5 values are signed 

bgtu  $t1, $t2, L1 

move  $t3, $t4 

L1:  

if($t1 <= $t2) { 

  $t3 = $t4; 

} 

if (($t3 <= $t4) &&  

  ($t4 >= $t5)) { 

  $t3 = $t4 + $t5; 

} 

bgt   $t3, $t4, L1 

blt   $t4, $t5, L1 

addu  $t3, $t4, $t5 

L1:  
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Conditional Move Instructions 

 Conditional move can eliminate branch & jump instructions 

Instruction Meaning R-Type Format 

movz  Rd, Rs, Rt if (Rt==0) Rd=Rs Op=0 Rs Rt Rd 0 0xa 

movn  Rd, Rs, Rt if (Rt!=0) Rd=Rs Op=0 Rs Rt Rd 0 0xb 

if ($t0 == 0) {$t1=$t2+$t3;} else {$t1=$t2-$t3;} 

 bne   $t0, $0, L1 

 addu  $t1, $t2, $t3 

 j     L2 

L1: subu  $t1, $t2, $t3 

L2: . . . 

addu  $t1, $t2, $t3 

subu  $t4, $t2, $t3 

movn  $t1, $t4, $t0 

. . . 
  

Arrays 

 In a high-level programming language, an array is a 

homogeneous data structure with the following properties: 

 All array elements are of the same type and size 

 Once an array is allocated, its size cannot be modified 

 The base address is the address of the first array element 

 The array elements can be indexed 

 The address of any array element can be computed 

 In assembly language, an array is just a block of memory 

 In fact, all objects are simply blocks of memory 

 The memory block can be allocated statically or dynamically 
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Load and Store Instructions 

 Instructions that transfer data between memory & registers 

 Programs include variables such as arrays and objects 

 These variables are stored in memory 

 Load Instruction: 

 Transfers data from memory to a register 

 Store Instruction: 

 Transfers data from a register to memory 

Memory address must be specified by load and store  

Memory Registers 

load 

store 

 Load Word Instruction (Word = 4 bytes in MIPS) 

 lw Rt, imm(Rs)    # Rt  MEMORY[Rs+imm] 

 Store Word Instruction 

 sw Rt, imm(Rs)    # Rt  MEMORY[Rs+imm] 

 Base / Displacement addressing is used 

Memory Address = Rs (base) + Immediate (displacement) 

 Immediate16 is sign-extended to have a signed displacement 

Load and Store Word 

Op6 Rs5 Rt5 immediate16 

Base or Displacement Addressing 

Memory Word 

Base address 

+ 
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Example on Load & Store 

 Translate:  A[1] = A[2] + 5   (A is an array of words) 

 Given that the address of array A is stored in register $t0 

lw $t1, 8($t0) # $t1 = A[2]  

addiu $t2, $t1, 5 # $t2 = A[2] + 5 

sw $t2, 4($t0) # A[1] = $t2 

 Index of A[2] and A[1] should be multiplied by 4. Why? 

Registers 

sw 

lw 

Memory 

A[2] 

A[1] 

A[3] 

. . . 

. . . 

&A + 12 

&A + 8 

&A + 4 

&A 

$t0 

$t1 

$t2 

&A 

A[2] 

A[2] + 5 

. . . 

. . . A[0] 

Addressing Modes 

Op6 Rs5 Rt5 16-bit immediate 

Base / Displacement Addressing 

Word 

Memory Addressing (load/store) 

Register = Base address 

+ Halfword Byte 

Op6 Rs5 Rt5 16-bit immediate 

Immediate Addressing 

One Operand is a constant 

Op6 Rs5 Rt5 Rd5 funct6 sa5 

Register Addressing 

Register 

Operands are in registers 

Where are the operands? 

 How memory addresses are computed? 
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Branch / Jump Addressing Modes 

Used by branch (beq, bne, …) 

Word = Target Instruction 

Op6 Rs5 Rt5 16-bit Offset 

PC-Relative Addressing 

PC30 00 

+1 

Branch Target Address 

PC = PC + 4 × (1 + Offset) PC30 + Offset16 + 1 00 

26-bit address PC4 00 Jump Target Address 

Word = Target Instruction 

26-bit address Op6 

Pseudo-direct Addressing 

PC30 

: 

00 

Used by jump instruction 

Integer Multiplication in MIPS 

Multiply instructions 

 mult  Rs, Rt Signed multiplication  

 multu Rs, Rt Unsigned multiplication 

 32-bit multiplication produces a 64-bit Product 

 Separate pair of 32-bit registers 

 HI = high-order 32-bit of product 

 LO = low-order 32-bit of product 

MIPS also has a special mul instruction 

 mul  Rd, Rs, Rt Rd = Rs × Rt 

 Copy LO into destination register Rd 

 Useful when the product is small (32 bits) and HI is not needed 

Multiply 

Divide 

$0 

HI LO 

$1 

. 

. 

$31 
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Integer Division in MIPS 

 Divide instructions 

 div  Rs, Rt  Signed division  

 divu Rs, Rt  Unsigned division 

 Division produces quotient and remainder 

 Separate pair of 32-bit registers 

 HI = 32-bit remainder 

 LO = 32-bit quotient 

 If divisor is 0 then result is unpredictable 

Moving data from HI, LO to MIPS registers 

 mfhi Rd (Rd = HI) 

 mflo Rd (Rd = LO) 

Multiply 

Divide 

$0 

HI LO 

$1 

. 

. 

$31 

Integer Multiply and Divide Instructions 

Instruction Meaning Format 

mult   Rs, Rt HI, LO = Rs ×s Rt Op = 0 Rs Rt 0 0 0x18 

multu  Rs, Rt HI, LO = Rs ×u Rt Op = 0 Rs Rt 0 0 0x19 

mul   Rd, Rs, Rt Rd = Rs ×s Rt 0x1c Rs Rt Rd 0 2 

div   Rs, Rt HI, LO = Rs /s Rt Op = 0 Rs Rt 0 0 0x1a 

divu   Rs, Rt HI, LO = Rs /u Rt Op = 0 Rs Rt 0 0 0x1b 

mfhi   Rd Rd = HI Op = 0 0 0 Rd 0 0x10 

mflo   Rd Rd = LO Op = 0 0 0 Rd 0 0x12 

mthi   Rs HI = Rs Op = 0 Rs 0 0 0 0x11 

mtlo   Rs LO = Rs Op = 0 Rs 0 0 0 0x13 

×s = Signed multiplication, ×u = Unsigned multiplication 

/s = Signed division, /u = Unsigned division 
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Summary of RISC Design 

 All instructions are of the same size 

 Few instruction formats 

 All arithmetic and logic operations are register to register 

 Operands are read from registers 

 Result is stored in a register 

 General purpose registers for data and memory addresses 

Memory access only via load and store instructions 

 Load and store: bytes, half words, and words  

 Few simple addressing modes 


