
1

Introduction to Computer

Organization and MIPS

Assembly Language

- Part 1 -

Textbook

 Computer Organization & Design:

 The Hardware/Software Interface

 Fifth Edition, 2013

 David Patterson and John Hennessy

 Morgan Kaufmann

2

Some Important Questions to Ask

What is Assembly Language?

What is Machine Language?

 How is Assembly related to a high-level language?

Why Learn Assembly Language?

What is an Assembler, Linker, and Debugger?

A Hierarchy of Languages

Application Programs

High-Level Languages

Assembly Language

Machine Language

Hardware

High-Level Language

Low-Level Language

Machine independent

Machine specific

3

Assembly and Machine Language

Machine language

 Native to a processor: executed directly by hardware

 Instructions consist of binary code: 1s and 0s

 Assembly language

 Slightly higher-level language

 Readability of instructions is better than machine language

 One-to-one correspondence with machine language instructions

 Assemblers translate assembly to machine code

 Compilers translate high-level programs to machine code

Compiler and Assembler

4

MIPS Assembly Language:

sll $2,$5, 2

add $2,$4,$2

lw $15,0($2)

lw $16,4($2)

sw $16,0($2)

sw $15,4($2)

jr $31

Compiler

Translating Languages

Program (C Language):

swap(int v[], int k) {

 int temp;

 temp = v[k];

 v[k] = v[k+1];

 v[k+1] = temp;

}

A statement in a high-level

language is translated

typically into several

machine-level instructions

MIPS Machine Language:

00051080

00821020

8C620000

8CF20004

ACF20000

AC620004

03E00008

Assembler

Advantages of High-Level Languages

 Program development is faster

 High-level statements: fewer instructions to code

 Program maintenance is easier

 For the same above reasons

 Programs are portable

 Contain few machine-dependent details

 Compiler translates to the target machine language

5

Why Learn Assembly Language?

Many reasons:

 Accessibility to system hardware

 Space and time efficiency

 Writing a compiler for a high-level language

 Accessibility to system hardware

 Assembly Language is useful for implementing system software

 Also useful for small embedded system applications

 Programming in Assembly Language is harder

 Requires deep understanding of the processor architecture

 However, it is very rewarding to system software designers

 Adds a new perspective on how programs run on real processors

What is Assembly Language?

 Low-level programming language for a computer

 One-to-one correspondence with the machine instructions

 Assembly language is specific to a given processor

 Assembler: converts assembly program into machine code

 Assembly language uses:

 Mnemonics: to represent the names of low-level machine instructions

 Labels: to represent the names of variables or memory addresses

 Directives: to define data and constants

 Macros: to facilitate the inline expansion of text into other code

6

Assembly Language Programming Tools

 Editor

 Allows you to create and edit assembly language source files

 Assembler

 Converts assembly language programs into object files

 Object files contain the machine instructions

 Linker

 Combines object files created by the assembler with link libraries

 Produces a single executable program

 Debugger

 Allows you to trace the execution of a program

 Allows you to view machine instructions, memory, and registers

Assemble and Link Process

Source

File

Source

File

Source

File

Assembler
Object

File

Assembler
Object

File

Assembler
Object

File

Linker
Executable

File

Link

Libraries

 A program may consist of multiple source files

 Assembler translates each source file into an object file

 Linker links all object files together and with link libraries

 The result executable file can run directly on the processor

7

Classes of Computers

 Personal computers

 General purpose, variety of software, subject to cost/performance

 Server computers

 Network based, high capacity, performance, and reliability

 Range from small servers to building sized

 Supercomputers

 High-end scientific and engineering calculations

 Highest capability but only a small fraction of the computer market

 Embedded computers

 Hidden as components of systems

 Stringent power/performance/cost constraints

Classes of Computers (cont'd)

 Personal Mobile Device (PMD)

 Battery operated

 Connects to the Internet

 Low price: hundreds of dollars

 Smart phones, tablets, electronic glasses

 Cloud Computing

 Warehouse Scale Computers (WSC)

 Software, Platform, and Infrastructure as a Service

 However, security concerns of storing "sensitive data" in "the cloud"

 Examples: Amazon and Google

8

Components of a Computer System

 Processor

 Datapath and Control

Memory & Storage

 Main Memory

 Disk Storage

 Input / Output devices

 User-interface devices

 Network adapters

 For communicating with other computers

 Bus: Interconnects processor to memory and I/O

 Essentially the same components for all kinds of computers

Computer

Memory

I/O Devices

Input

Output
B
U
S

Control

Datapath

 Processor

Disk

Network

Fetch instruction

Compute address of next instruction

Generate control signals for instruction

Read operands from registers

Compute result value

Writeback result in a register

Fetch - Execute Cycle

Instruction Decode

Instruction Fetch

Execute

Writeback Result

In
fi

n
it

e
 C

y
c

le
 i

m
p

le
m

e
n

te
d

 i
n

 H
a
rd

w
a

re

Memory Access Read or write memory

9

 Critical Interface between software and hardware

 An ISA includes the following …

 Instructions and Instruction Formats

 Data Types, Encodings, and Representations

 Programmable Storage: Registers and Memory

 Addressing Modes: to address Instructions and Data

 Handling Exceptional Conditions (like overflow)

 Examples (Versions) Introduced in

 Intel (8086, 80386, Pentium, Core, ...) 1978

 MIPS (MIPS I, II, …, MIPS32, MIPS64) 1986

 ARM (version 1, 2, …) 1985

Instruction Set Architecture (ISA)

Instructions

 Instructions are the language of the machine

We will study the MIPS instruction set architecture

 Known as Reduced Instruction Set Computer (RISC)

 Elegant and relatively simple design

 Similar to RISC architectures developed in mid-1980’s and 90’s

 Popular, used in many products

 Silicon Graphics, ATI, Cisco, Sony, etc.

 Alternative to: Intel x86 architecture

 Known as Complex Instruction Set Computer (CISC)

10

Overview of the MIPS Architecture

Memory

Up to 232 bytes = 230 words

 4 bytes per word

$0

$1

$2

$31

Hi Lo

ALU

F0

F1

F2

F31
FP

Arith

EPC

Cause

BadVaddr

Status

EIU FPU

TMU

Execution &

Integer Unit

(Main proc)

 Floating

Point Unit

(Coproc 1)

Trap &

Memory Unit

(Coproc 0)

. . .

. . .

Integer
mul/div

Arithmetic &

Logic Unit

32 General

Purpose

Registers

Integer

Multiplier/Divider

32 Floating-Point

Registers

Floating-Point

Arithmetic Unit

MIPS General-Purpose Registers

 32 General Purpose Registers (GPRs)

 All registers are 32-bit wide in the MIPS 32-bit architecture

 Software defines names for registers to standardize their use

 Assembler can refer to registers by name or by number ($ notation)

Name Register Usage

$zero $0 Always 0 (forced by hardware)

$at $1 Reserved for assembler use

$v0 – $v1 $2 – $3 Result values of a function

$a0 – $a3 $4 – $7 Arguments of a function

$t0 – $t7 $8 – $15 Temporary Values

$s0 – $s7 $16 – $23 Saved registers (preserved across call)

$t8 – $t9 $24 – $25 More temporaries

$k0 – $k1 $26 – $27 Reserved for OS kernel

$gp $28 Global pointer (points to global data)

$sp $29 Stack pointer (points to top of stack)

$fp $30 Frame pointer (points to stack frame)

$ra $31 Return address (used by jal for function call)

11

Instruction Formats

 All instructions are 32-bit wide, Three instruction formats:

 Register (R-Type)

 Register-to-register instructions

 Op: operation code specifies the format of the instruction

 Immediate (I-Type)

 16-bit immediate constant is part in the instruction

 Jump (J-Type)

 Used by jump instructions

Op6 Rs5 Rt5 Rd5 funct6 sa5

Op6 Rs5 Rt5 immediate16

Op6 immediate26

Assembly Language Instructions

 Assembly language instructions have the format:

 [label:] mnemonic [operands] [#comment]

 Label: (optional)

 Marks the address of a memory location, must have a colon

 Typically appear in data and text segments

Mnemonic

 Identifies the operation (e.g. add, sub, etc.)

 Operands

 Specify the data required by the operation

 Operands can be registers, memory variables, or constants

 Most instructions have three operands

 L1: addiu $t0, $t0, 1 #increment $t0

12

Assembly Language Statements

 Three types of statements in assembly language

 Typically, one statement should appear on a line

1. Executable Instructions

 Generate machine code for the processor to execute at runtime

 Instructions tell the processor what to do

2. Pseudo-Instructions and Macros

 Translated by the assembler into real instructions

 Simplify the programmer task

3. Assembler Directives

 Provide information to the assembler while translating a program

 Used to define segments, allocate memory variables, etc.

 Non-executable: directives are not part of the instruction set

Comments

 Single-line comment

 Begins with a hash symbol # and terminates at end of line

 Comments are very important!

 Explain the program's purpose

 When it was written, revised, and by whom

 Explain data used in the program, input, and output

 Explain instruction sequences and algorithms used

 Comments are also required at the beginning of every procedure

 Indicate input parameters and results of a procedure

 Describe what the procedure does

13

Memory is viewed as an addressable array of bytes

 Byte Addressing: address points to a byte in memory

 However, words occupy 4 consecutive bytes in memory

 MIPS instructions and integers occupy 4 bytes

Memory Alignment:

 Address must be multiple of size

 Word address should be a multiple of 4

 Double-word address should be a multiple of 8

Memory Alignment

0

4

8

12

a
d

d
re

s
s

not aligned

. . .

aligned word

not aligned

Memory

 Processors can order bytes within a word in two ways

 Little Endian Byte Ordering

 Memory address = Address of least significant byte

 Example: Intel IA-32

 Big Endian Byte Ordering

 Memory address = Address of most significant byte

 Example: SPARC architecture

MIPS can operate with both byte orderings

Byte Ordering (Endianness)

Byte 0 Byte 1 Byte 2 Byte 3

32-bit Register

MSB LSB

. Byte 0 Byte 1 Byte 2 Byte 3

a a+3 a+2 a+1

Memory

address

Byte 3 Byte 0 Byte 1 Byte 2 Byte 3

32-bit Register

MSB LSB

. Byte 0 Byte 1 Byte 2

a a+3 a+2 a+1

Memory

address

14

Instruction Categories

 Integer Arithmetic

 Arithmetic, logic, and shift instructions

 Data Transfer

 Load and store instructions that access memory

 Data movement and conversions

 Jump and Branch

 Flow-control instructions that alter the sequential sequence

R-Type Instruction Format

 Op: operation code (opcode)

 Specifies the operation of the instruction

 Also specifies the format of the instruction

 funct: function code – extends the opcode

 Up to 26 = 64 functions can be defined for the same opcode

 MIPS uses opcode 0 to define many R-type instructions

 Three Register Operands (common to many instructions)

 Rs, Rt: first and second source operands

 Rd: destination operand

 sa: the shift amount used by shift instructions

Op6 Rs5 Rt5 Rd5 funct6 sa5

15

R-Type Integer Add and Subtract

Instruction Meaning Op Rs Rt Rd sa func

add $t1, $t2, $t3 $t1 = $t2 + $t3 0 $t2 $t3 $t1 0 0x20

addu $t1, $t2, $t3 $t1 = $t2 + $t3 0 $t2 $t3 $t1 0 0x21

sub $t1, $t2, $t3 $t1 = $t2 – $t3 0 $t2 $t3 $t1 0 0x22

subu $t1, $t2, $t3 $t1 = $t2 – $t3 0 $t2 $t3 $t1 0 0x23

 add, sub: arithmetic overflow causes an exception

 In case of overflow, result is not written to destination register

 addu, subu: arithmetic overflow is ignored

 addu, subu: compute the same result as add, sub

Many programming languages ignore overflow

 The + operator is translated into addu

 The – operator is translated into subu

Using Add / Subtract Instructions

 Consider the translation of: f = (g+h)–(i+j)

 Programmer / Compiler allocates registers to variables

 Given that: $t0=f, $t1=g, $t2=h, $t3=i, and $t4=j

 Called temporary registers: $t0=$8, $t1=$9, …

 Translation of: f = (g+h)–(i+j)

 addu $t5, $t1, $t2 # $t5 = g + h

 addu $t6, $t3, $t4 # $t6 = i + j

 subu $t0, $t5, $t6 # f = (g+h)–(i+j)

 Assembler translates addu $t5,$t1,$t2 into binary code

000000

Op

01001

$t1

01010

$t2

01101

$t5

00000

sa

100001

addu

16

Logic Bitwise Operations

 Logic bitwise operations: and, or, xor, nor

 AND instruction is used to clear bits: x and 0 0

 OR instruction is used to set bits: x or 1 1

 XOR instruction is used to toggle bits: x xor 1 not x

 NOT instruction is not needed, why?

not $t1, $t2 is equivalent to: nor $t1, $t2, $t2

x

0

0

1

1

y

0

1

0

1

x and y

0

0

0

1

x

0

0

1

1

y

0

1

0

1

x or y

0

1

1

1

x

0

0

1

1

y

0

1

0

1

x xor y

0

1

1

0

x

0

0

1

1

y

0

1

0

1

x nor y

1

0

0

0

Logic Bitwise Instructions

Instruction Meaning Op Rs Rt Rd sa func

and $t1, $t2, $t3 $t1 = $t2 & $t3 0 $t2 $t3 $t1 0 0x24

or $t1, $t2, $t3 $t1 = $t2 | $t3 0 $t2 $t3 $t1 0 0x25

xor $t1, $t2, $t3 $t1 = $t2 ^ $t3 0 $t2 $t3 $t1 0 0x26

nor $t1, $t2, $t3 $t1 = ~($t2|$t3) 0 $t2 $t3 $t1 0 0x27

 Examples:

 Given: $t1 = 0xabcd1234 and $t2 = 0xffff0000

and $t0, $t1, $t2 # $t0 = 0xabcd0000

or $t0, $t1, $t2 # $t0 = 0xffff1234

xor $t0, $t1, $t2 # $t0 = 0x54321234

nor $t0, $t1, $t2 # $t0 = 0x0000edcb

17

Shift Operations

 Shifting is to move the 32 bits of a number left or right

 sll means shift left logical (insert zero from the right)

 srl means shift right logical (insert zero from the left)

 sra means shift right arithmetic (insert sign-bit)

 The 5-bit shift amount field is used by these instructions

shift-in 0 . . . shift-out

sll 32-bit value

. . . shift-in 0 shift-out
srl

. . . shift-in sign-bit shift-out
sra

Shift Instructions

 sll, srl, sra: shift by a constant amount

 The shift amount (sa) field specifies a number between 0 and 31

 sllv, srlv, srav: shift by a variable amount

 A source register specifies the variable shift amount between 0 and 31

 Only the lower 5 bits of the source register is used as the shift amount

Instruction Meaning Op Rs Rt Rd sa func

sll $t1,$t2,10 $t1 = $t2 << 10 0 0 $t2 $t1 10 0

srl $t1,$t2,10 $t1 = $t2 >>> 10 0 0 $t2 $t1 10 2

sra $t1,$t2,10 $t1 = $t2 >> 10 0 0 $t2 $t1 10 3

sllv $t1,$t2,$t3 $t1 = $t2 << $t3 0 $t3 $t2 $t1 0 4

srlv $t1,$t2,$t3 $t1 = $t2 >>>$t3 0 $t3 $t2 $t1 0 6

srav $t1,$t2,$t3 $t1 = $t2 >> $t3 0 $t3 $t2 $t1 0 7

18

$t1 = 0x0000abcd

$t1 = 0xcd123400

Shift Instruction Examples

 Given that: $t2 = 0xabcd1234 and $t3 = 16

sll $t1, $t2, 8

sra $t1, $t2, 4 $t1 = 0xfabcd123

srlv $t1, $t2, $t3

Rt = $t2 Op Rs = $t3 Rd = $t1 sa srlv

01010 000000 01011 01001 00000 000110

srl $t1, $t2, 4 $t1 = 0x0abcd123

Binary Multiplication

 Shift Left Instruction (sll) can perform multiplication

 When the multiplier is a power of 2

 You can factor any binary number into powers of 2

 Example: multiply $t0 by 36

$t0*36 = $t0*(4 + 32) = $t0*4 + $t0*32

sll $t1, $t0, 2 # $t1 = $t0 * 4

sll $t2, $t0, 5 # $t2 = $t0 * 32

addu $t3, $t1, $t2 # $t3 = $t0 * 36

19

Your Turn . . .

sll $t1, $t0, 1 # $t1 = $t0 * 2

sll $t2, $t0, 3 # $t2 = $t0 * 8

sll $t3, $t0, 4 # $t3 = $t0 * 16

addu $t4, $t1, $t2 # $t4 = $t0 * 10

addu $t5, $t4, $t3 # $t5 = $t0 * 26

Multiply $t0 by 26, using shift and add instructions

Hint: 26 = 2 + 8 + 16

Multiply $t0 by 31, Hint: 31 = 32 – 1

sll $t1, $t0, 5 # $t1 = $t0 * 32

subu $t2, $t1, $t0 # $t2 = $t0 * 31

I-Type Instruction Format

 Constants are used quite frequently in programs

 The R-type shift instructions have a 5-bit shift amount constant

What about other instructions that need a constant?

 I-Type: Instructions with Immediate Operands

 16-bit immediate constant is stored inside the instruction

Rs is the source register number

Rt is now the destination register number (for R-type it was Rd)

 Examples of I-Type ALU Instructions:

 Add immediate: addi $t1, $t2, 5 # $t1 = $t2 + 5

OR immediate: ori $t1, $t2, 5 # $t1 = $t2 | 5

Op6 Rs5 Rt5 immediate16

20

I-Type ALU Instructions

Instruction Meaning Op Rs Rt Immediate

addi $t1, $t2, 25 $t1 = $t2 + 25 0x8 $t2 $t1 25

addiu $t1, $t2, 25 $t1 = $t2 + 25 0x9 $t2 $t1 25

andi $t1, $t2, 25 $t1 = $t2 & 25 0xc $t2 $t1 25

ori $t1, $t2, 25 $t1 = $t2 | 25 0xd $t2 $t1 25

xori $t1, $t2, 25 $t1 = $t2 ^ 25 0xe $t2 $t1 25

lui $t1, 25 $t1 = 25 << 16 0xf 0 $t1 25

 addi: overflow causes an arithmetic exception

 In case of overflow, result is not written to destination register

 addiu: same operation as addi but overflow is ignored

 Immediate constant for addi and addiu is signed

 No need for subi or subiu instructions

 Immediate constant for andi, ori, xori is unsigned

 Given that registers $t0, $t1, $t2 are used for A, B, C

Examples of I-Type ALU Instructions

Expression Equivalent MIPS Instruction

A = B + 5;

C = B – 1;

A = B & 0xf;

C = B | 0xf;

C = 5;

A = B;

addiu $t0, $t1, 5

addiu $t2, $t1, -1

andi $t0, $t1, 0xf

ori $t2, $t1, 0xf

addiu $t2, $zero, 5

addiu $t0, $t1, 0

No need for subiu, because addiu has signed immediate

Register $zero has always the value 0

Rt = $t2 Op = addiu Rs = $t1 -1 = 0b1111111111111111

21

 I-Type instructions can have only 16-bit constants

What if we want to load a 32-bit constant into a register?

 Can’t have a 32-bit constant in I-Type instructions

 The sizes of all instructions are fixed to 32 bits

 Solution: use two instructions instead of one

 Suppose we want: $t1 = 0xAC5165D9 (32-bit constant)

lui: load upper immediate

32-bit Constants

Op6 Rs5 Rt5 immediate16

lui $t1, 0xAC51

ori $t1, $t1, 0x65D9

0xAC51 $t1

Upper

16 bits

0x0000

Lower

16 bits

0xAC51 $t1 0x65D9

Pseudo-Instructions

 Introduced by the assembler as if they were real instructions

 Facilitate assembly language programming

Pseudo-Instruction Equivalent MIPS Instruction

move $t1, $t2

not $t1, $t2

neg $t1, $t2

li $t1, -5

li $t1, 0xabcd1234

The MARS tool has a long list of pseudo-instructions

addu $t1, $t2, $zero

nor $t1, $t2, $zero

sub $t1, $zero, $t2

lui $t1, 0xabcd

ori $t1, $t1, 0x1234

addiu $t1, $zero, -5

22

Control Flow

 High-level programming languages provide constructs:

 To make decisions in a program: IF-ELSE

 To repeat the execution of a sequence of instructions: LOOP

 The ability to make decisions and repeat a sequence of

instructions distinguishes a computer from a calculator

 All computer architectures provide control flow instructions

 Essential for making decisions and repetitions

 These are the conditional branch and jump instructions

 MIPS compare and branch instructions:

 beq Rs, Rt, label if (Rs == Rt) branch to label

 bne Rs, Rt, label if (Rs != Rt) branch to label

 MIPS compare to zero & branch instructions:

 Compare to zero is used frequently and implemented efficiently

 bltz Rs, label if (Rs < 0) branch to label

 bgtz Rs, label if (Rs > 0) branch to label

 blez Rs, label if (Rs <= 0) branch to label

 bgez Rs, label if (Rs >= 0) branch to label

 beqz and bnez are defined as pseudo-instructions.

MIPS Conditional Branch Instructions

23

Branch Instruction Format

 The branch instructions modify the PC register only

 PC-Relative addressing:

If (branch is taken) PC = PC + 4 + 4×offset else PC = PC+4

 Branch Instructions are of the I-type Format:

Op6 Rs5 Rt5 16-bit offset

Instruction I-Type Format

beq Rs, Rt, label Op = 4 Rs Rt 16-bit Offset

bne Rs, Rt, label Op = 5 Rs Rt 16-bit Offset

blez Rs, label Op = 6 Rs 0 16-bit Offset

bgtz Rs, label Op = 7 Rs 0 16-bit Offset

bltz Rs, label Op = 1 Rs 0 16-bit Offset

bgez Rs, label Op = 1 Rs 1 16-bit Offset

Unconditional Jump Instruction

 The unconditional Jump instruction has the following syntax:

 j label # jump to label

 . . .

 label:

 The jump instruction is always taken

 The Jump instruction is of the J-type format:

 The jump instruction modifies the program counter PC:

 The upper 4 bits of the PC are unchanged

Op6 = 2 26-bit address

26-bit address 00 PC4

multiple

of 4

24

Translating an IF Statement

 Consider the following IF statement:

 if (a == b) c = d + e; else c = d – e;

 Given that a, b, c, d, e are in $t0 … $t4 respectively

 How to translate the above IF statement?

 bne $t0, $t1, else

 addu $t2, $t3, $t4

 j next

 else: subu $t2, $t3, $t4

 next: . . .

Logical AND Expression

 Programming languages use short-circuit evaluation

 If first condition is false, second condition is skipped

if (($t1 > 0) && ($t2 < 0)) {$t3++;}

One Possible Translation ...

 bgtz $t1, L1 # first condition

 j next # skip if false

L1: bltz $t2, L2 # second condition

 j next # skip if false

L2: addiu $t3, $t3, 1 # both are true

next:

25

Better Translation of Logical AND

Allow the program to fall through to second condition

!($t1 > 0) is equivalent to ($t1 <= 0)

!($t2 < 0) is equivalent to ($t2 >= 0)

Number of instructions is reduced from 5 to 3

if (($t1 > 0) && ($t2 < 0)) {$t3++;}

Better Translation ...

 blez $t1, next # 1st condition false?

 bgez $t2, next # 2nd condition false?

 addiu $t3, $t3, 1 # both are true

next:

Logical OR Expression

 Short-circuit evaluation for logical OR

 If first condition is true, second condition is skipped

 Use fall-through to keep the code as short as possible

 bgtz $t1, L1 # 1st condition true?

 bgez $t2, next # 2nd condition false?

L1: addiu $t3, $t3, 1 # increment $t3

next:

if (($t1 > 0) || ($t2 < 0)) {$t3++;}

26

Compare Instructions

MIPS also provides set less than instructions

 slt Rd, Rs, Rt if (Rs < Rt) Rd = 1 else Rd = 0

 sltu Rd, Rs, Rt unsigned <

 slti Rt, Rs, imm if (Rs < imm) Rt = 1 else Rt = 0

 sltiu Rt, Rs, imm unsigned <

 Signed / Unsigned comparisons compute different results

 Given that: $t0 = 1 and $t1 = -1 = 0xffffffff

 slt $t2, $t0, $t1 computes $t2 = 0

 sltu $t2, $t0, $t1 computes $t2 = 1

Compare Instruction Formats

 The other comparisons are defined as pseudo-instructions:

seq, sne, sgt, sgtu, sle, sleu, sge, sgeu

Instruction Meaning Format

slt Rd, Rs, Rt Rd=(Rs <s Rt)?1:0 Op=0 Rs Rt Rd 0 0x2a

sltu Rd, Rs, Rt Rd=(Rs <u Rt)?1:0 Op=0 Rs Rt Rd 0 0x2b

slti Rt, Rs, im Rt=(Rs <s im)?1:0 0xa Rs Rt 16-bit immediate

sltiu Rt, Rs, im Rt=(Rs <u im)?1:0 0xb Rs Rt 16-bit immediate

Pseudo-Instruction Equivalent MIPS Instructions

sgt $t2, $t0, $t1

seq $t2, $t0, $t1
subu $t2, $t0, $t1

sltiu $t2, $t2, 1

slt $t2, $t1, $t0

27

Pseudo-Branch Instructions

 MIPS hardware does NOT provide the following instructions:

 blt, bltu branch if less than (signed / unsigned)

 ble, bleu branch if less or equal (signed / unsigned)

 bgt, bgtu branch if greater than (signed / unsigned)

 bge, bgeu branch if greater or equal (signed / unsigned)

MIPS assembler defines them as pseudo-instructions:

Pseudo-Instruction Equivalent MIPS Instructions

blt $t0, $t1, label

ble $t0, $t1, label

$at ($1) is the assembler temporary register

 slt $at, $t0, $t1
 bne $at, $zero, label

 slt $at, $t1, $t0
 beq $at, $zero, label

Using Pseudo-Branch Instructions

 Translate the IF statement to assembly language

 $t1 and $t2 values are unsigned

 $t3, $t4, and $t5 values are signed

bgtu $t1, $t2, L1

move $t3, $t4

L1:

if($t1 <= $t2) {

 $t3 = $t4;

}

if (($t3 <= $t4) &&

 ($t4 >= $t5)) {

 $t3 = $t4 + $t5;

}

bgt $t3, $t4, L1

blt $t4, $t5, L1

addu $t3, $t4, $t5

L1:

28

Conditional Move Instructions

 Conditional move can eliminate branch & jump instructions

Instruction Meaning R-Type Format

movz Rd, Rs, Rt if (Rt==0) Rd=Rs Op=0 Rs Rt Rd 0 0xa

movn Rd, Rs, Rt if (Rt!=0) Rd=Rs Op=0 Rs Rt Rd 0 0xb

if ($t0 == 0) {$t1=$t2+$t3;} else {$t1=$t2-$t3;}

 bne $t0, $0, L1

 addu $t1, $t2, $t3

 j L2

L1: subu $t1, $t2, $t3

L2: . . .

addu $t1, $t2, $t3

subu $t4, $t2, $t3

movn $t1, $t4, $t0

. . .

Arrays

 In a high-level programming language, an array is a

homogeneous data structure with the following properties:

 All array elements are of the same type and size

 Once an array is allocated, its size cannot be modified

 The base address is the address of the first array element

 The array elements can be indexed

 The address of any array element can be computed

 In assembly language, an array is just a block of memory

 In fact, all objects are simply blocks of memory

 The memory block can be allocated statically or dynamically

29

Load and Store Instructions

 Instructions that transfer data between memory & registers

 Programs include variables such as arrays and objects

 These variables are stored in memory

 Load Instruction:

 Transfers data from memory to a register

 Store Instruction:

 Transfers data from a register to memory

Memory address must be specified by load and store

Memory Registers

load

store

 Load Word Instruction (Word = 4 bytes in MIPS)

 lw Rt, imm(Rs) # Rt MEMORY[Rs+imm]

 Store Word Instruction

 sw Rt, imm(Rs) # Rt MEMORY[Rs+imm]

 Base / Displacement addressing is used

Memory Address = Rs (base) + Immediate (displacement)

 Immediate16 is sign-extended to have a signed displacement

Load and Store Word

Op6 Rs5 Rt5 immediate16

Base or Displacement Addressing

Memory Word

Base address

+

30

Example on Load & Store

 Translate: A[1] = A[2] + 5 (A is an array of words)

 Given that the address of array A is stored in register $t0

lw $t1, 8($t0) # $t1 = A[2]

addiu $t2, $t1, 5 # $t2 = A[2] + 5

sw $t2, 4($t0) # A[1] = $t2

 Index of A[2] and A[1] should be multiplied by 4. Why?

Registers

sw

lw

Memory

A[2]

A[1]

A[3]

. . .

. . .

&A + 12

&A + 8

&A + 4

&A

$t0

$t1

$t2

&A

A[2]

A[2] + 5

. . .

. . . A[0]

Addressing Modes

Op6 Rs5 Rt5 16-bit immediate

Base / Displacement Addressing

Word

Memory Addressing (load/store)

Register = Base address

+ Halfword Byte

Op6 Rs5 Rt5 16-bit immediate

Immediate Addressing

One Operand is a constant

Op6 Rs5 Rt5 Rd5 funct6 sa5

Register Addressing

Register

Operands are in registers

Where are the operands?

 How memory addresses are computed?

31

Branch / Jump Addressing Modes

Used by branch (beq, bne, …)

Word = Target Instruction

Op6 Rs5 Rt5 16-bit Offset

PC-Relative Addressing

PC30 00

+1

Branch Target Address

PC = PC + 4 × (1 + Offset) PC30 + Offset16 + 1 00

26-bit address PC4 00 Jump Target Address

Word = Target Instruction

26-bit address Op6

Pseudo-direct Addressing

PC30

:

00

Used by jump instruction

Integer Multiplication in MIPS

Multiply instructions

 mult Rs, Rt Signed multiplication

 multu Rs, Rt Unsigned multiplication

 32-bit multiplication produces a 64-bit Product

 Separate pair of 32-bit registers

 HI = high-order 32-bit of product

 LO = low-order 32-bit of product

MIPS also has a special mul instruction

 mul Rd, Rs, Rt Rd = Rs × Rt

 Copy LO into destination register Rd

 Useful when the product is small (32 bits) and HI is not needed

Multiply

Divide

$0

HI LO

$1

.

.

$31

32

Integer Division in MIPS

 Divide instructions

 div Rs, Rt Signed division

 divu Rs, Rt Unsigned division

 Division produces quotient and remainder

 Separate pair of 32-bit registers

 HI = 32-bit remainder

 LO = 32-bit quotient

 If divisor is 0 then result is unpredictable

Moving data from HI, LO to MIPS registers

 mfhi Rd (Rd = HI)

 mflo Rd (Rd = LO)

Multiply

Divide

$0

HI LO

$1

.

.

$31

Integer Multiply and Divide Instructions

Instruction Meaning Format

mult Rs, Rt HI, LO = Rs ×s Rt Op = 0 Rs Rt 0 0 0x18

multu Rs, Rt HI, LO = Rs ×u Rt Op = 0 Rs Rt 0 0 0x19

mul Rd, Rs, Rt Rd = Rs ×s Rt 0x1c Rs Rt Rd 0 2

div Rs, Rt HI, LO = Rs /s Rt Op = 0 Rs Rt 0 0 0x1a

divu Rs, Rt HI, LO = Rs /u Rt Op = 0 Rs Rt 0 0 0x1b

mfhi Rd Rd = HI Op = 0 0 0 Rd 0 0x10

mflo Rd Rd = LO Op = 0 0 0 Rd 0 0x12

mthi Rs HI = Rs Op = 0 Rs 0 0 0 0x11

mtlo Rs LO = Rs Op = 0 Rs 0 0 0 0x13

×s = Signed multiplication, ×u = Unsigned multiplication

/s = Signed division, /u = Unsigned division

33

Summary of RISC Design

 All instructions are of the same size

 Few instruction formats

 All arithmetic and logic operations are register to register

 Operands are read from registers

 Result is stored in a register

 General purpose registers for data and memory addresses

Memory access only via load and store instructions

 Load and store: bytes, half words, and words

 Few simple addressing modes

