Introduction to Computer
Organization and MIPS
Assembly Language
- Part 1 -

Textbook

+«» Computer Organization & Design:

The Hardware/Software Interface

< Fifth Edition, 2013

< David Patterson and John Hennessy

< Morgan Kaufmann

Some Important Questions to Ask

+ What is Assembly Language?

+« What is Machine Language?

+ How is Assembly related to a high-level language?
« Why Learn Assembly Language?

«» What is an Assembler, Linker, and Debugger?

A Hierarchy of Languages

Application Programs

High-Level Languages

Machine independent High-Level Language

Machine specific Low-Level Language

Assembly Language

Machine Language

Hardware

Assembly and Machine Language

+ Machine language
<~ Native to a processor: executed directly by hardware
<~ Instructions consist of binary code: 1s and Os
« Assembly language
<~ Slightly higher-level language
<~ Readability of instructions is better than machine language

<~ One-to-one correspondence with machine language instructions
+ Assemblers translate assembly to machine code

«» Compilers translate high-level programs to machine code

Compiler and Assembler

High-level languages

Assembly language

Machine language

Translating Languages

Program (C Language):

swap (int v[], int k) {
int temp;
temp = v[k];
v[k] = v[k+1];
v[k+1l] = temp;

{} Compiler

MIPS Assembly Language:

sll $2,%5, 2
add $2,%4,82
1w $15,0(%$2)
1w $16,4(%2)
sw $16,0($2)
sw $15,4(%2)
jr $31

Assembler

E—

A statement in a high-level
language is translated
typically into several
machine-level instructions

MIPS Machine Language:

00051080
00821020
8C620000
8CF20004
ACF20000
AC620004
03E00008

Advantages of High-Level Languages

% Program development is faster

< High-level statements: fewer instructions to code

% Program maintenance is easier

< For the same above reasons

% Programs are portable

< Contain few machine-dependent details

< Compiler translates to the target machine language

Why Learn Assembly Language?

« Many reasons:
< Accessibility to system hardware

< Space and time efficiency

<> Writing a compiler for a high-level language

¢+ Accessibility to system hardware
< Assembly Language is useful for implementing system software

< Also useful for small embedded system applications

% Programming in Assembly Language is harder
< Requires deep understanding of the processor architecture
<~ However, it is very rewarding to system software designers

<~ Adds a new perspective on how programs run on real processors

What is Assembly Language?

« Low-level programming language for a computer
% One-to-one correspondence with the machine instructions
% Assembly language is specific to a given processor
« Assembler: converts assembly program into machine code
« Assembly language uses:
<> Mnemonics: to represent the names of low-level machine instructions
< Labels: to represent the names of variables or memory addresses

<> Directives: to define data and constants

< Macros: to facilitate the inline expansion of text into other code

Assembly Language Programming Tools

«» Editor
<~ Allows you to create and edit assembly language source files
s Assembler

<~ Converts assembly language programs into object files

<~ Object files contain the machine instructions

% Linker

<~ Combines object files created by the assembler with link libraries

< Produces a single executable program

+«» Debugger

< Allows you to trace the execution of a program

< Allows you to view machine instructions, memory, and registers

Assemble and Link Process

Source Object
File Assembler File
/X_/ /L
/__/ %
Source Object X Executable
File Assembler File Linker File
% /L
S P Link
Source Object .)
File Assembler File Libraries
/X_/ /L

% A program may consist of multiple source files

% Assembler translates each source file into an object file

% Linker links all object files together and with link libraries

% The result executable file can run directly on the processor

Classes of Computers

+» Personal computers
<~ General purpose, variety of software, subject to cost/performance
«» Server computers

<~ Network based, high capacity, performance, and reliability

<~ Range from small servers to building sized
*» Supercomputers

<~ High-end scientific and engineering calculations

< Highest capability but only a small fraction of the computer market

« Embedded computers
<> Hidden as components of systems

< Stringent power/performance/cost constraints

Classes of Computers (cont'd)

¢ Personal Mobile Device (PMD)
< Battery operated
< Connects to the Internet
< Low price: hundreds of dollars
< Smart phones, tablets, electronic glasses
+ Cloud Computing
<~ Warehouse Scale Computers (WSC)
< Software, Platform, and Infrastructure as a Service
<~ However, security concerns of storing "sensitive data" in "the cloud"

< Examples: Amazon and Google

Components of a Computer System

¢ Processor

<~ Datapath and Control
« Memory & Storage

< Main Memory

< Disk Storage
+ Input / Output devices

<> User-interface devices

< Network adapters

Computer

Memory

I 1/0 Devices

Control } Input
B

Processor U Output
S

Datapath % Disk

?
v

Network

= For communicating with other computers

¢+ Bus: Interconnects processor to memory and 1/0O

¢ Essentially the same components for all kinds of computers

Fetch - Execute Cycle

]

Instruction Fetch

l

Instruction Decode

l

Execute

l

Memory Access

l

Infinite Cycle implemented in Hardware

Writeback Result

L]

Fetch instruction
Compute address of next instruction

Generate control signals for instruction
Read operands from registers

Compute result value

Read or write memory

Writeback result in a register

Instruction Set Architecture (ISA)

+ Critical Interface between software and hardware
% An ISA includes the following ...

< Instructions and Instruction Formats

< Data Types, Encodings, and Representations

< Programmable Storage: Registers and Memory

< Addressing Modes: to address Instructions and Data

< Handling Exceptional Conditions (like overflow)

% Examples (Versions) Introduced in
< Intel (8086, 80386, Pentium, Core, ...) 1978
< MIPS (MIPS I, I, ..., MIPS32, MIPS64) 1986
< ARM (version 1, 2, ...) 1985
Instructions

+¢ Instructions are the language of the machine

s We will study the MIPS instruction set architecture
< Known as Reduced Instruction Set Computer (RISC)
< Elegant and relatively simple design
< Similar to RISC architectures developed in mid-1980’s and 90’s

<~ Popular, used in many products
= Silicon Graphics, ATI, Cisco, Sony, etc.

« Alternative to: Intel x86 architecture

< Known as Complex Instruction Set Computer (CISC)

Overview of the MIPS Architecture

32 General
Purpose -
Registers

Arithmetic &
Logic Unit

4 bytes per word Memory

Up to 232 bytes = 230 words

Multiplier/Divider

EIU $0 Execution & FPU Fo Floating
$1 Integer Unit F1 Point Unit
N - $2 (Main proc) F2 (Coproc 1) 32 Floating-Point
l l . l_ 7777777777777 -- Registers
31 integer | | | FP <
Ay A mulidiv pith =5 .
| 7 1 ~~----..| _Floating-Point
w] Arithmetic Unit
L. Hi Lo
‘ é TMU [BadVaddr Trap &
Status | Memory Unit
’ Cause (Coproc 0)
Integer EPC

MIPS General-Purpose Registers

+ 32 General Purpose Registers (GPRS)
< All registers are 32-bit wide in the MIPS 32-bit architecture

< Software defines names for registers to standardize their use

< Assembler can refer to registers by name or by number ($ notation)

Name \ Register \ Usage

$zero $0 Always 0 (forced by hardware)
$at $1 Reserved for assembler use

$vo - $vi $2 - $3 Result values of a function

$a0 - $a3 $4 - $7 Arguments of a function

$to - $t7 $8 - $15 Temporary Values

$s0 - $s7 $16 - $23 Saved registers (preserved across call)
$t8 - $t9 $24 - $25 More temporaries

$ko - $ki $26 - $27 Reserved for OS kernel

$gp $28 Global pointer (points to global data)
$sp $29 Stack pointer (points to top of stack)
$fp $30 Frame pointer (points to stack frame)
$ra $31 Return address (used by jal for function call)

10

Instruction Formats

«» All instructions are 32-bit wide, Three instruction formats:

+» Register (R-Type)
< Register-to-register instructions

<> Op: operation code specifies the format of the instruction

Op® Rs® Rt® Rd® sa® funct®

s Immediate (I-Type)

< 16-bit immediate constant is part in the instruction

Op® Rs® Rt® immediate®

s Jump (J-Type)

< Used by jump instructions

Op® immediate?®

Assembly Language Instructions

«» Assembly language instructions have the format:
[label:] mnemonic [operands] [#comment]
% Label: (optional)
<~ Marks the address of a memory location, must have a colon
< Typically appear in data and text segments
% Mnemonic
<~ Identifies the operation (e.g. add, sub, etc.)
¢ Operands
< Specify the data required by the operation

<~ Operands can be registers, memory variables, or constants
< Most instructions have three operands

L1: addiu $te, $te, 1 #increment $to

11

Assembly Language Statements

R

% Three types of statements in assembly language

< Typically, one statement should appear on a line

1. Executable Instructions
<> Generate machine code for the processor to execute at runtime
< Instructions tell the processor what to do

2. Pseudo-Instructions and Macros
< Translated by the assembler into real instructions
< Simplify the programmer task

3. Assembler Directives
< Provide information to the assembler while translating a program
< Used to define segments, allocate memory variables, etc.

< Non-executable: directives are not part of the instruction set

Comments

+ Single-line comment

< Begins with a hash symbol # and terminates at end of line
% Comments are very important!

<~ Explain the program's purpose

<~ When it was written, revised, and by whom

<~ Explain data used in the program, input, and output

<~ Explain instruction sequences and algorithms used

<~ Comments are also required at the beginning of every procedure
* Indicate input parameters and results of a procedure

» Describe what the procedure does

12

Memory Alignment
s Memory is viewed as an addressable array of bytes
“ Byte Addressing: address points to a byte in memory

% However, words occupy 4 consecutive bytes in memory

< MIPS instructions and integers occupy 4 bytes
Memory

% Memory Alignment:

address

< Address must be multiple of size

aligned word

[N
N
o
Q

< Word address should be a multiple of 4

<~ Double-word address should be a multiple of 8

Byte Ordering (Endianness)

% Processors can order bytes within a word in two ways
+» Little Endian Byte Ordering
< Memory address = Address of least significant byte

< Example: Intel 1A-32

MSB LSB address a at+l at+2 a+3
[Byes [Byte2 [Byte1 [Byeo| <> -.-[Bye0|Bytel|Byte2|Byte3]---
32-bit Register Memory

+¢ Big Endian Byte Ordering
< Memory address = Address of most significant byte

< Example: SPARC architecture

MSB LSB address a at+l at+2 a+3
[Byes [Byte2 [Byte1 [Byeo| <> ... [Bytes|Byte2]Byel|Byteo]---
32-bit Register Memory

% MIPS can operate with both byte orderings

13

Instruction Categories

+ Integer Arithmetic
< Arithmetic, logic, and shift instructions

+» Data Transfer
<~ Load and store instructions that access memory
< Data movement and conversions

¢ Jump and Branch

< Flow-control instructions that alter the sequential sequence

R-Type Instruction Format

Op® Rs® Rt° Rd> sa® funct®

+« Op: operation code (opcode)
< Specifies the operation of the instruction
< Also specifies the format of the instruction
+» funct: function code — extends the opcode
< Up to 26 = 64 functions can be defined for the same opcode
< MIPS uses opcode 0 to define many R-type instructions
+ Three Register Operands (common to many instructions)
< Rs, Rt: first and second source operands
< Rd: destination operand

< sa: the shift amount used by shift instructions

R-Type Integer Add and Subtract

Instruction Meaning op Rs | Rt | Rd | sa | func
add $t1, $t2, $t3 $t1 = $t2 + $t3 0 | $t2 | $t3 | $t1 | o | ox20
addu $t1, $t2, $t3 $t1 = $t2 + $t3 0 | $t2 | $t3 | $t1 | o | ex21
sub $t1, $t2, $t3 $t1 = $t2 - $t3 0 | $t2 | $t3 | $t1 | o | ex22
subu $t1, $t2, $t3 $t1 = $t2 - $t3 0 | $t2 | $t3 | $t1 | o | ex23

+ add, sub: arithmetic overflow causes an exception

< In case of overflow, result is not written to destination register
% addu, subu: arithmetic overflow is ignored
% addu, subu: compute the same result as add, sub

% Many programming languages ignore overflow
< The + operator is translated into addu

< The — operator is translated into subu

Using Add / Subtract Instructions

% Consider the translation of: f = (g+h)-(i+j)
s Programmer / Compiler allocates registers to variables
% Given that: $to=Ff, $t1l=g, $t2=h, $t3=i, and $t4=j
% Called temporary registers: $t0=$8, $t1=$9, ..
% Translation of: ¥ = (g+h)-(i+j)
addu $t5, $t1, $t2 # $t5 =g + h
addu $t6, $t3, $t4 # $t6 = i + j
subu $t0, $t5, $t6 # f = (g+h)-(i+j)
% Assembler translates addu $t5,$t1,$t2 into binary code

Op $t1 $t2 $t5 sa addu
| eooeee | @1001 | 01010 | 01101 | ceeee | 100001 |

15

Logic Bitwise Operations

¢ Logic bitwise operations: and, or, xor, nor
X|y|xandy X|y| xory X |y | Xxory X|y| xnory
0|0 0 0|0 0 0|0 0 0|0
01 0 0[1 1 0|1 1 0[1 0
1|0 0 1(0 1 1/0 1 1|0 0
11 1 1)1 1 1(1 0 1)1 0
+» AND instruction is used to clear bits: x and @ = 0
¢ OR instructionis used to set bits: x or 1 = 1
% XOR instruction is used to toggle bits: x xor 1 = not x
* NOT instruction is not needed, why?
not $tl1, $t2 is equivalentto: nor $t1, $t2, $t2
Logic Bitwise Instructions
Instruction Meaning Op Rs Rt Rd | sa | func
and $t1, $t2, $t3 $t1 = $t2 & $t3 @ |$t2|$t3|st1| o | ox24
or $ti, $t2, $t3 $t1 = $t2 | $t3 @ |$t2|$t3|$t1| o | x5
xor $t1, $t2, $t3 $t1 = $t2 ~ $t3 (] $t2 | $t3 | $t1 (%) ox26
nor $t1, $t2, $t3 $t1 = ~($t2|$t3) 0 | $t2 | $t3|st1| o | ox27

s Examples:

Given: $t1 = @xabcd1234 and $t2 = Oxffffo000

and $to, $t1, $t2
or $to, $t1, $t2
xor $t0, $t1, $t2
nor $to, $ti1, $t2

$t0 = Oxabcdoooo
$to = oxffff1234
$t0 = 0x54321234

$t0 = 0x0000edchb

16

Shift Operations

+ Shifting is to move the 32 bits of a number left or right
% s11 means shift left logical (insert zero from the right)
% srl means shift right logical (insert zero from the left)
“ sra means shift right arithmetic (insert sign-bit)

% The 5-bit shift amount field is used by these instructions

hiftowt T el shiftino
sino Gl o bl shitou

shift-in sign-bit m++++ -+ pbPP I shittout

Shift Instructions
Instruction Meaning op Rs | Rt | Rd | sa | func
s11 $t1,$t2,10 $t1 = $t2 << 10 0 $t2 | $t1 | 10]
srl $t1,$t2,10 $t1 = $t2 >>> 10] 0 | $t2 | $t1 | 1o 2
sra $t1,$t2,10 $t1 = $t2 >> 10 0 $t2 | $t1 | 10 3
sllv $t1,$t2,$t3 $t1 = $t2 << $t3] $t3 | $t2 | $t1 4
srlv $t1,$t2,$t3 $t1 = $t2 >>>$t3 0 $t3 | $t2 | $t1 6
srav $t1,$t2,$t3 $t1 = $t2 >> $t3 0 $t3 | $t2 | $t1 7

«sll, srl, sra: shift by a constant amount
< The shift amount (sa) field specifies a number between 0 and 31
% sllv, srlv, srav: shift by avariable amount
< A source register specifies the variable shift amount between 0 and 31

< Only the lower 5 bits of the source register is used as the shift amount

Shift Instruction Examples

% Given that: $t2 = 0xabcd1234 and $t3 = 16

sl1 $t1, $t2, 8 $t1 = Oxcd123400
srl $t1, $t2, 4 $t1 = ox0@abcdi23
sra $t1, $t2, 4 $t1 = oxfabcdi23
srlv $t1, $t2, $t3 $t1 = ox@000abcd

@ Op Rs = $t3 Rt = $t2 Rd = $t1 sa srlv
000000 01011 01010 01001 00000 | 000110

Binary Multiplication

«+ Shift Left Instruction (s11) can perform multiplication

<> When the multiplier is a power of 2
¢ You can factor any binary number into powers of 2
«» Example: multiply $to by 36

$t0%*36 = $t0*(4 + 32) = $t0*4 + $t0*32

s11 $t1, $te, 2 # $t1 = $to * 4
s11 $t2, $to, 5 # $t2 = $to * 32
addu $t3, $t1, $t2 # $t3 = $to * 36

18

Your Turn. ..

Multiply $t@ by 26, using shift and add instructions
Hint: 26 =2 + 8 + 16

s11 $t1, $teo, 1 # $t1 = $to * 2
s11 $t2, $to, 3 # $t2 = $to * 8
sl11 $t3, $to, 4 # $t3 = $to * 16
addu $ta, $t1, $t2 # $t4 = $to * 10
addu $t5, $t4, $t3 # $t5 = $to0 * 26
Multiply $te by 31, Hint: 31 =32-1
s11 $t1, $te, 5 # $t1 = $to * 32
subu $t2, $t1, $te # $t2 = $to * 31

I-Type Instruction Format

+ Constants are used quite frequently in programs
< The R-type shift instructions have a 5-bit shift amount constant

<> What about other instructions that need a constant?

+ |-Type: Instructions with Immediate Operands

Op® Rs® Rt® immediate!6

% 16-bit immediate constant is stored inside the instruction
< Rs is the source register number
< Rtis now the destination register number (for R-type it was Rd)
% Examples of I-Type ALU Instructions:
< Add immediate: addi $t1, $t2, 5 # $t1
< OR immediate: ori $t1, $t2, 5 # $t1

$t2 + 5
$t2 | 5

19

I-Type ALU Instructions

Instruction Meaning Op Rs Rt Immediate
addi $t1, $t2, 25 $t1 = $t2 + 25 ox8 $t2 | $t1 25
addiu $t1, $t2, 25 $t1 = $t2 + 25 ox9 $t2 | $t1 25
andi $t1, $t2, 25 $t1 = $t2 & 25 oxc | $t2 | $t1 25
ori $ti1, $t2, 25 $t1 = $t2 | 25 oxd | $t2 | $t1 25
xori $ti1, $t2, 25 $t1 = $t2 ~ 25 oxe | $t2 | $t1 25
lui $t1, 25 $t1 = 25 << 16 oxf (2] $t1 25

+ addi: overflow causes an arithmetic exception

< In case of overflow, result is not written to destination register
% addiu: same operation as addi but overflow is ignored

+ Immediate constant for addi and addiu is signed

<> No need for subi or subiu instructions

+*» Immediate constant for andi, ori, xori is unsigned

Examples of I-Type ALU Instructions

% Given that registers $to, $t1, $t2 are used forA, B, C

Expression Equivalent MIPS Instruction

A =B + 5; addiu $to, $ti, 5

C=8B-1; addiu $t2, $t1, -1 —
A = B & oxf; andi $to, $t1, oxf

C = B | oxf; ori $t2, $t1, oxf

C =5; addiu $t2, $zero, 5

A = B; addiu $to, $ti, o

| Op=addiu | Rs = $t1 | Rt = $t2 | -1 = @b1111111111111111 |<

No need for subiu, because addiu has signed immediate

Register $zero has always the value @

20

32-bit Constants

“ |-Type instructions can have only 16-bit constants

Op®

Rs®

Rt®

immediatel®

s What if we want to load a 32-bit constant into a register?

% Can’t have a 32-bit constant in |I-Type instructions ®

< The sizes of all instructions are fixed to 32 bits

«» Solution: use two instructions instead of one ©

% Suppose we want: $t1 = 0xAC5165D9 (32-bit constant)

lui:

lui $t1, oxAC51
ori $t1, $t1, ©x65D9

load upper immediate

Upper Lower
16 bits 16 bits

$t1| OxAC51 | 0x0000

$t1| OXAC51 | ©x65D9

Pseudo-Instructions

+ Introduced by the assembler as if they were real instructions

+ Facilitate assembly language programming

Pseudo-Instruction

move $t1,
not $ti,
neg $ti,
1i $t1,
1i $t1,

$t2
$t2
$t2
-5

Oxabcd1234

Equivalent MIPS Instruction
addu $t1, $t2, $zero
nor $t1, $t2, $zero
sub $t1, $zero, $t2
addiu $t1, $zero, -5

lui $t1, oxabcd
ori $t1, $t1, ox1234

The MARS tool has a long list of pseudo-instructions

21

Control Flow

¢ High-level programming languages provide constructs:
<- To make decisions in a program: IF-ELSE

<~ To repeat the execution of a sequence of instructions: LOOP

+» The ability to make decisions and repeat a sequence of

instructions distinguishes a computer from a calculator
+ All computer architectures provide control flow instructions
+ Essential for making decisions and repetitions

+ These are the conditional branch and jump instructions

MIPS Conditional Branch Instructions

% MIPS compare and branch instructions:
beq Rs, Rt, label if (Rs == Rt) branch to label
bne Rs, Rt, label if(Rs != Rt) branch to label
% MIPS compare to zero & branch instructions:

Compare to zero is used frequently and implemented efficiently

bltz Rs, label if (Rs < @) branch to 1label
bgtz Rs, label if (Rs > @) branch to 1label
blez Rs, label if (Rs <= @) branch to 1label
bgez Rs, label if (Rs >= @) branch to 1label

% beqz and bnez are defined as pseudo-instructions.

22

Branch Instruction Format

+«+ Branch Instructions are of the I-type Format:

Op® Rs® Rt® 16-bit offset
Instruction [-Type Format
beq Rs, Rt, label Op=4| Rs Rt 16-bit Offset
bne Rs, Rt, label Op=5 Rs Rt 16-bit Offset
blez Rs, label Op=6 Rs 0 16-bit Offset
bgtz Rs, label Op=7| Rs 0 16-bit Offset
bltz Rs, label Op=1 Rs 0 16-bit Offset
bgez Rs, label Op=1 Rs 1 16-bit Offset

+ The branch instructions modify the PC register only
% PC-Relative addressing:

If (branch is taken) PC = PC + 4 + 4xoffset else PC = PC+4

Unconditional Jump Instruction

+« The unconditional Jump instruction has the following syntax:

j label # jump to label

label:
+« The jump instruction is always taken

+« The Jump instruction is of the J-type format:

Opé=2 26-bit address

¢ The jump instruction modifies the program counter PC:

PC* 26-bit address 00 _l
% The upper 4 bits of the PC are unchanged mlg']}ifle

23

Translating an IF Statement
+» Consider the following IF statement:
if (a==b) c=d + e; elsec =d - e;

Giventhat a, b, c, d, e are in $t0 .. $t4 respectively

+ How to translate the above IF statement?
bne $t0, $t1, else
addu $t2, $t3, $t4
Jj next

else: subu $t2, $t3, $t4

next:

Logical AND Expression

+» Programming languages use short-circuit evaluation

«» If first condition is false, second condition is skipped

if (($t1 > 0) && ($t2 < 0)) {$t3++;}

One Possible Translation ...

bgtz $ti1, L1 # first condition

Jj next # skip if false
L1: bltz $t2, L2 # second condition

Jj next # skip if false
L2: addiu $t3, $t3, 1 # both are true

next:

24

Better Translation of Logical AND

if (($t1 > 0) && ($t2 < 0)) {$t3++;}

Allow the program to fall through to second condition
1($t1 > @) is equivalentto ($t1 <= @)
1($t2 < @) is equivalentto ($t2 >= @)

Number of instructions is reduced from 5 to 3

Better Translation ...

blez $t1, next # 1t condition false?
bgez $t2, next # 2 condition false?
addiu $t3, $t3, 1 # both are true

next:

Logical OR Expression

% Short-circuit evaluation for logical OR

¢ If first condition is true, second condition is skipped

if (($t1 > @) || ($t2 < @)) {$t3++;}

% Use fall-through to keep the code as short as possible

bgtz $t1, L1 # 15t condition true?
bgez $t2, next # 2" condition false?

L1: addiu $t3, $t3, 1 # increment $t3

next:

25

Compare Instructions

% MIPS also provides set less than instructions

slt Rd, Rs,
sltu Rd, Rs,
slti Rt, Rs,
sltiu Rt, Rs,

Rt f(Rs<Rt)Rd=1else Rd=0
Rt unsigned <
imm if (Rs<imm)Rt=1else Rt=0
imm unsigned <

« Signed / Unsigned comparisons compute different results

Given that: $to

slt $t2, $to, $ti1
sltu $t2, $to, $t1

= 1and $t1

= -1 = Oxffffffff
computes $t2 =0

computes $t2 = 1

Compare Instruction Formats

Instruction

Meaning

Format

slt Rd, Rs, Rt

Rd=(Rs <, Rt)?1:0

Op=0 Rs Rt Rd 0 ox2a

sltu Rd, Rs, Rt

Rd=(Rs <, Rt)?1:0

Op=0 Rs Rt Rd 0 ox2b

slti Rt, Rs, im

Rt=(Rs <, im)?1:0

oxa Rs Rt | 16-bit immediate

sltiu Rt, Rs, im

Rt=(Rs <, im)?1:0

oxb Rs Rt 16-bit immediate

¢ The other comparisons are defined as pseudo-instructions:
seq, sne, sgt, sgtu, sle, sleu, sge, sgeu

Pseudo-Ins

truction

sgt $t2, $to, $t1

seq $t2, $to, $t1

Equivalent MIPS Instructions
slt $t2, $t1, $te

subu $t2, $to, $t1
sltiu $t2, $t2, 1

26

Pseudo-Branch Instructions

< MIPS hardware

blt, bltu
ble, bleu
bgt, bgtu
bge, bgeu

does NOT provide the following instructions:

branch if less than (signed / unsigned)
branch if less or equal (signed / unsigned)
branch if greater than (signed / unsigned)
branch if greater or equal (signed / unsigned)

+ MIPS assembler defines them as pseudo-instructions:

Pseudo-Instruction Equivalent MIPS Instructions

blt $to, $tl1, label

ble $to, $ti1, label

slt $at, $to, $t1
bne $at, $zero, label

slt $at, $t1, $to
beq $at, $zero, label

$at ($1) is the assembler temporary register

Using Pseudo-Branch Instructions

+ Translate the IF statement to assembly language

% $t1 and $t2 values are unsigned

if($t1 <= $t2) { bgtu $t1, $t2, L1
$t3 = $t4; move $t3, $t4
} L1:
s $t3, $t4, and $t5 values are signed
if (($t3 <= $t4) && bgt $t3, $t4, L1
($t4 >= $t5)) { blt $t4, $t5, L1
$t3 = $t4 + $t5; addu $t3, $t4, $t5
} L1:

27

Conditional Move Instructions

Instruction Meaning R-Type Format

movz Rd, Rs, Rt if (Rt==0) Rd=Rs Op=9 Rs Rt Rd 0 oxa

movn Rd, Rs, Rt if (Rt!=0) Rd=Rs Op=9 Rs Rt Rd 0 oxb

if ($t0 == 0) {$t1=$t2+$t3;} else {$t1=$t2-$t3;}

bne $to, $0, L1 addu $t1, $t2, $t3
addu $t1, $t2, $t3 subu $t4, $t2, $t3
j L2 movn $t1, $t4, $te
L1: subu $t1, $t2, $t3
L2: . . .

+«+ Conditional move can eliminate branch & jump instructions

Arrays

+ In a high-level programming language, an array is a
homogeneous data structure with the following properties:

< All array elements are of the same type and size

< Once an array is allocated, its size cannot be modified

<> The base address is the address of the first array element
<~ The array elements can be indexed

<> The address of any array element can be computed
+ In assembly language, an array is just a block of memory
+ In fact, all objects are simply blocks of memory

+ The memory block can be allocated statically or dynamically

Load and Store Instructions

+¢ Instructions that transfer data between memory & registers

« Programs include variables such as arrays and objects

+ These variables are stored in memory
+« Load Instruction:
< Transfers data from memory to a register

«+ Store Instruction:

< Transfers data from a register to memory

load

Registers

Memory

store

“ Memory address must be specified by load and store

Load and Store Word

¢ Load Word Instruction (Word = 4 bytes in MIPS)

1w Rt, imm(Rs) # Rt € MEMORY[Rs+imm]

«» Store Word Instruction

sw Rt, imm(Rs) # Rt = MEMORY[Rs+imm]

% Base / Displacement addressing is used

<- Memory Address = Rs (base) + Immediate (displacement)

< Immediatel® is sign-extended to have a signed displacement

Base or Displacement Addressing

Memory Word

| Op® | Rs® | Rt | immediate?6
| Base address

29

Example on Load & Store
s Translate: A[1] = A[2] + 5 (Ais an array of words)

% Given that the address of array A is stored in register $t0

1w $t1, 8($t9) # $t1 = A[2]
addiu $t2, $t1, 5 # $t2 = A[2] + 5
sw $t2, 4(%t0) # A[1] = $t2
¢ Index of A[2] and A[1] should be multiplied by 4. Why?
Registers Memory
$to &A 1w A[3] &A + 12
$t1 A[2] A[2] &A + 8
$t2 A[2] + 5 Al1] &A + 4
s Ale] &A

Addressing Modes

% Where are the operands?
% How memory addresses are computed?

Immediate Addressing
| opt | Rss | Res | 16-bitimmediate |——— One Operand is a constant

Register Addressing
| Op® | Rs® | Rt® | Rd® | sa® |funct6|
[I

Operands are in registers

I Register

Base / Displacement Addressing Memory Addressing (load/store)

| Op® | Rs5| Rt° | 16-bit immediate H

l Byte Halfword | Word
| Register = Base address

Branch / Jump Addressing Modes

Used by branch (beq, bne, ...)

PC-Relative Addressing
| Op* | Rs5| Rt® | 16-bit Offset H

Word = Target Instruction
| pPC30 |oo| \
I

Branch Target Address |
PC =PC + 4 x (1 + Offset)

PC?30 + Offset?6 + 1 |oo|

Pseudo-direct Addressing Used by jump instruction

| Op* | 26-bit address l_l

O Word = Target Instruction
| pC¥ i \
|

Jump Target Address | PC4| 26-hit address |oo|

Integer Multiplication in MIPS

+ Multiply instructions
< mult Rs, Rt Signed multiplication
<- multu Rs, Rt Unsigned multiplication

%+ 32-bit multiplication produces a 64-bit Product

$0
$1

¢+ Separate pair of 32-bit registers

< HI = high-order 32-bit of product s
I

< LO =low-order 32-bit of product Multiply

Divide

“ MIPS also has a special mul instruction

< mul Rd, Rs, Rt Rd = Rs x Rt
<~ Copy LO into destination register Rd

< Useful when the product is small (32 bits) and HI is not needed

Integer Division in MIPS

++ Divide instructions

+ Division produces quotient and remainder

< div Rs, Rt

< divu Rs, Rt

Signed division

Unsigned division

% Separate pair of 32-bit registers

% Moving data from HI, LO to MIPS registers

<> HI = 32-bit remainder

< LO = 32-bit quotient

< If divisor is O then result is unpredictable

< mfhi Rd (Rd = HI)

< mflo Rd (Rd =LO)

$0

$1

$31

Multiply
Divide

Integer Multiply and Divide Instructions

Instruction Meaning Format

mult Rs, Rt HI, LO =Rs x, Rt Op=0| Rs Rt 0 ox18
multu Rs, Rt HI, LO =Rs x, Rt Op=0 Rs Rt 7] 0x19
mul Rd, Rs, Rt Rd = Rs x, Rt Ox1c Rs Rt Rd 0 2

div Rs, Rt HI, LO=Rs / Rt Op=0 Rs Rt 0 oxla
divu Rs, Rt HI, LO=Rs /,Rt Op=90 Rs Rt 0 ox1b
mfhi Rd Rd = HI Op=0 0 Rd 0 ox10
mflo Rd Rd = LO Op=90 0 Rd 0 ox12
mthi Rs HI = Rs Op=0| Rs 0 0 ox11
mtlo Rs LO = Rs Op=90 Rs 0 0 ox13

x, = Signed multiplication,

/< = Signed division,

x, = Unsigned multiplication

/, = Unsigned division

32

Summary of RISC Design

¢ All instructions are of the same size
+« Few instruction formats
¢ All arithmetic and logic operations are register to register

<> Operands are read from registers

< Result is stored in a register
++ General purpose registers for data and memory addresses
+ Memory access only via load and store instructions

< Load and store: bytes, half words, and words

% Few simple addressing modes

33

