Eastern Mediterranean University
Computer Engineering Department
CMSE 222 Introduction to Computer Organization– Lab. 6

[bookmark: _GoBack]
1.Introduction

QtSpim is software that will help you to simulate the execution of MIPS assembly programs. It does a context and syntax check while loading an assembly program. In addition, it adds in necessary overhead instructions as needed, and updates register and memory content as each instruction is executed

In the experiments, we will use a simulator instead of a workstation with a MIPS processor, because a simulator provides us miscellaneous features in understanding the instruction set as well as in debugging. Moreover, a MIPS simulator is available for almost any computer- and operating-system. Furthermore, the simulator can be updated to include the new features, instructions or pseudo-instructions developed in later versions of the processor for almost without any additional cost.

Note: you can find this IDE in https://sourceforge.net/projects/spimsimulator/files/ or on google as well.

2. MIPS ASSEMBLER SYNTAX

Comments in assembler files begin with a sharp sign " # ". Everything from the sharp sign to the end of the line is ignored.
Identifiers are a sequence of alphanumeric characters, underbars "_", and dots " . " that do not begin with a numbet Instruction opcodes are reserved words that cannot be used as identifiers. Labels are declared by putting them at the beginning of a line followed by a colon, for example:

[image:]

Numbers are base 10 by default. If they are preceded by 0x, they are interpreted as hexadecimal. Hence, 256 and 0x100 denote the same value. Strings are enclosed in doublequote "...". Special characters in strings follow the C convention: i.e., newline is \n; tab \t, and quote \" Some important SPIM (and also MIPS) assembler directives:

[image:]

3. QtSpim workspace:

The QtSpim simulator program has a pull-down menu appearance as shown below and also you can see different area in QtSPIM as follow:

[image:]

4. Main menu (green one):

1. File:

[image:]

2. Simulation: These items will be used more frequently

[image:]
And also, we can change some setting from “Setting” item:

[image:]

The Setting window is divided into two section as follow:

[image:]

3. Resister menu: in this sub menu we can determine the type of register contain such as binary, hex, decimal as follow:

[image:]

4. Text Segment menu: this section is about Text part of workstation where you can find your instructions as follow:

[image:]

5. Data Segment menu: This section is about Data part of workstation where you can find your Data, for example you can change the type of data (binary, decimal, hex) as follow:

[image:]

Note: And also, we have a useful tools menu which has some most frequently tools such as Run, Open, Save, and etc.

[image:]

5. First project (simulation):

Now, lets begin with first simulation, follow the steps one by one:

First of all, we should Set the Simulator:

In the first part of this experiment you will use SPIM to simulate
_ a bare MIPS machine,
_ without allowing pseudo-codes, and
_ no mapped I/O option.
_ without loading any trap-features.

In this mode, the assembler will not allow any pseudo-codes (i.e., li, mul, blt, ... etc. and also any long offset fields in the lw and sw instructions) to be used in your program. For the convenience in reading the register contents you may prefer to have hexadecimal readings in the display windows. In the second part, you will use SPIM in the more elaborated mode with the pseudo-code and trap-features loaded All of these settings can be set on the settings form that is accessed starting from the drop-down menu by simulator>settings.

Organization of a MIPS assembly program: The MIPS assembly programs are text files with the extension "-.s" or "- .asm" . SPIM has no built-in editor-program for writing the assembly source. You have to use your favorite, or any available text editor such as NOTEPAD.EXE. The Notepad program of Windows 95/98 or NT is located in:
Start > Programs > Accessories > Notepad

Type your MIPS assembly program (you have to leave an empty line at the end of the program) and save it by specifying a filename for your program. Note that the extension of the filename must be “.s” or ".asm". You should first click on the PCSpim for Windows icon to start the PCSpim main window. Then load your program by using the PCSpim’s menu File > Open. Use the opened browser to choose the path and the assembly source file that you want to open. If there is any syntax or structure error in your file, SPIM will give you a message indicating the line number and the reason of the rejected line. You have to clean your program from the syntax bugs and load it to SPIM.
After loading your assembly source, you are ready to run or trace it. Use Simulator > Go (F5-key) or Simulator > single step (F10-key) of the main menu. The starting address is automatically defined by the compiler according to the options your set-up on the settings window. You can watch the contents of the registers using window > Registers of the main menu. For an easy to observe page organization try the window > tile option.

Experimental Work
A. Part-1
Following program multiplies two unsigned integers in the registers R8 by R9 and writes the 32-bit product to register R10. In order to understand the operation of your simulator program, type and execute the following MIPS assembly program in non-pseudo-instruction mode.
.data 0x10000000
.text 0x00400000
main:
addi $8,$0,6
addi $9,$0,12
multiplication of $8 * $9 -> $10
add $2,$0,$8
add $10,$0,$0
mulloop:
beq $2,$0,mulexit # if zero exit
addi $2,$2,-1
add $10,$10,$9
j mulloop
mulexit:
multiplication loop is over,
is the result in $10 correct?
sll $0,$0,0
syscall

1. You can put comments to the end of a line after a sharp sign (#).
2. You can start the single step execution applying the following items.

A. First set the PC (prog.counter) to the starting address of the program if SPIM is set correctly the starting address is 0x00400000. To set the value use the key-sequence alt-s,v (or menu simulator>set value) to open the register-value assignment dialog box. Enter PC and the starting address in hexadecimal format.
B. Next, use the fn10 key to execute one instruction at each key-press. You can also use the fn5 key to execute the complete progam at once. Correct the starting address to 0x00400000 before clicking the OK button.
3. After syscal stops the execution save the log file with the filename "exp1a.log". Open the log file by dragging it into the textpad and inspect the text segment. Fill in the following machine code table according to hexadecimal machine codes assigned by SPIM.

Reporting
Before the Lab-time is over, fill in the following report page as soon as you complete the laboratory work, and submit it to your assistant. Your report is important for your grading.

[image:]
The observed binary machine codes of the instructions are:
[image:]

Grading:
Lab Performance:
Asst. Observations:
11

image3.png
& Qtspim - O
e Sulator _Registers _Ted Segment_Data Segment _Window _Fielp)
g dg 2& »u EBN|
=
X Text
5500 Al Tser Text Segment (004000001 .. (004400001 ~
[00400000] ££220000 1w $4, 0(529) ; 183: Iv 320 0(Ssp) # arge
=0 [00400004] 27250004 addin §5, $29, 4 ; addiu Sai Sep 4 £ argv
o [00400008] 24260004 addin $6, §5, 4 : addiu $az $al 4 # envp
[0040000c] 00041080 s11 $2, $4, 2 ; 511 $v0 $a0 2

Precisio (004000101 00c23021 addu $6, $6, $2 ; addu Saz $az §v0

B [00400014] 0c000000 3al 0x00000000 [main] 7 188: jal main

o [00400018] 00000000 nop ; 129: nop

o [0040001c] 34020002 ori $2, $0, 10 ; 181: 1i 5v0 10

o [00400020] 0000000c syseall 7 192: syscall # syscall 10 (sxit)

S Kernel Text Segment [80000000] . . [80010000]

o [20000180] 00014821 adda $27, $0, $1 50: move Sk Sat # Save Sat

o [20000184] 32012000 lui $1, -28672 ; 92: sw $v0 51 # Not re-entrant and we cdn't

o eruss ssp

o (200001851 ac220200 sw $2, 512(51)

o [2000018c] 32019000 lui $1, -28672 v $a0 52 # But ve need to use thes

o r=gisters

o (200001501 ac20204 sw $4, 516(51)

o [20000194] 40126200 mfcO $26, $13 mfco $k0 §13 # Cause register

o [80000198] 00122082 srl §4, §26, 2 srl $a0 $k0 2 # Extract ExcCode Fiejd

2 (8000015c] 3084001 anai $4, $4, 31 andi $20 $a0 Ox1f

2 [800001a0] 34020004 ori $2, $0, 4 7 101: 1i $v0 4 # syscall 4 (print_str)

] J e e i i DS "

image4.png
& atspim

RecentFils ,
5 Reinitlze and Load Fie
d

Save Log File

& Print

single Precision

le | Simulstor Registers TextSegment DataSegment Window Help

[@
Dpata Text
Text
User Text Segment [00400000].. [t
[00400000] 8£a40000 1w $4, 0($29) 7 183: 1w $a0
[00400004] 27250004 addiu §5, $29, 4 ; 184: addiu ¢
[00400008] 24260004 addiu §6, $5, 4 ; addiu ¢
[0040000c] 00041080 sl11 $2, §4, 2 ; 511 5w
[00400010] 00c23021 addu $6, $6, $2 ; addu $
[00400014] 0c000000 3jal 0x00000000 [main] ; jal mai
[00400018] 00000000 nop ; ‘nop.
[0040001c] 34020002 ori $2, $0, 10 ; 1i $vo
[00400020] 0000000c syscall ; syscall
Kernel Text Segment [80000000]..|
[80000180] 0001d821 addu $27, $0, §1 7 80: move $kI
[80000184] 3c01%000 lui $1, -28672 92: sw $vO0 =
trust $sp
[80000188] ac220200 sw §2, 512($1)
[8000018c] 3c01%000 lui $1, -28672 ; 93: sw $a0 =
registers
[80000190] ac240204 sw $4, 516($1)
[80000194] 401a6800 mfcD $26, §13 95: mfcO $kC

[80000198]

00122082

srl §4, §26, 2

96: srl $a0

image5.png
Registers Ted Segment Data Segment Window Help

1l SN

Run Parameters >

Run/Continue w5 < User Text Segment (0040000
Pause O¥b00] 8£a40000 1w $4, 0($29) 183: 1w

I
=

Settings

Stop 00004] 27250004 addim $5, $29, 4 ; 184: ad
00p03] 24260004 addiu $6, $5, 4 ; 185: ad
Single Step FI0 «fGog0c] Jooos10s0 s11 $2, $4, 2 : 1862 51
- 00010] 00c23021 addu $6, $6, $2 7 187: ad
LS 00014] 0c000000 jal 0x00000000 [main] ; 188: ja
00018] 00000000 nop ; 189: nc

0001c] 3202000a ori §2, $0, 10 181: 18

[00400020] 0000000c syscall 182: sy
Kernel Text Segment [800000C

[80000120] 0001ds21 addu §27, $0, $1 90: mov

[80000124] 3c019000 lui $1, -28672 52: 5w

trust $sp

[80000188] ac220200 sw §2, 512(S1)

[8000015c] 3c019000 lui $1, -28672 FREERE

registers
[80000190] ac240204 sw §4, 516(S1)
[80000194] 40126800 mfcO $26, §13

[80000198] 001a2082 srl $4, §26, 2
[8000019c] 3084001f andi $4, $4, 31

image6.png
Registers Text Segment

B # Reinitialze Simulator

FPRe, RunParameters

Data Segment

Window Help.

Run/Continue Fs

Pause

FR P
FCSE | 00000]
00004]
00008]
0000c]
00010]

00014]

e

[00400020]

Fi0

[80000180]
[80000184]
trust $sp
[80000188]
[8000018c]
registers
[80000120]
[80000124]
[80000198]
[8000013c]
200001a0]

8£a20000
27250008
24260004
00041080
0023021
02000000
00000000
32020008
0000000c

oo01ds21
32019000

ac220200
32019000

ac24020¢
20126800
001a2082
30840018
24020004

User Text Segment [00400000

1w §4, 0(529) :183: 1w
aadin $5, $29, 4 B ade
aadin $6, $5, 4 B ade
s11 82, 34, 2 B 51
aadu §6, $6, 52 B ade
3Jal 0x00000000 [main] : ja
nop B nox
ori §2, $0, 10 B 11
syscall B pe

Rernel Text Segment [800000OS
aadu $27, $0, §1 20: movs
lui §1, -28672 PR

sw $2, 512(81)

lui §1, -28672 23:

sw $4, 516(51)
mfeo $26, $13
st 84, $26, 2
andi §4, $4, 31
ori 8§92 S0 4

image7.png
User data
[10000000]

User Stack
[7££££96C]
[(7££££970]
[7££££980]
[7££££920]
[7££££920]
[7££££950]
[7££££900]
[7££££940]
[7££££920]
[7££££9£0]
[7££££200]
[7££££210]
[7££££220]
[7££££230]
[7££££240]
[7££££250]
[7££££260]
[7££££270]
[7££££280]
[7££££220]
al——

& QtSpim Settings

‘Simulator

T —

O Quiet

Font [coer][] cotr [raasst

Font [coer][] colr [zs00000

image8.png
& arspi

Fie Smustor | Regisers | Tot Seqment Dot Segment Window Help

& d

single Precision
Fao
Fo1
Fo2
Fos
Fo4
Fas
FG6 =0

User data segment [10000000]..[3
[10000000] . . [1003££££]

0000000¢

User Stack [7££££96c]..[8000000C

[7££££96C]
[7££££970]
[7££££980]
[7££££920]
[7££££920]
[(7££££950]
[7££££900]
[7££££940]
[TE£££920]

00000000
00000000
7erEEE6C
7££EECDd
7e£ERRS2
7e£EECED
7££EEC40
7££EEDEE
JEEEEROS

7eEEEER)
7erEEEAC
7EEEEDC
7eEEERS
7E£EECD:
7e£E£C2S
7££55D6C
Jffffate

image9.png
& atspim

Fie Simustor Registers | To Segment | DotoSegment Window Help

U=

[7££££d00]
[7££££dd0]
[7££££0e0]
[7££££A£0]
[7££££000]
[7££££010]
[7££££020]
[7££££030]
[7£5££040]
[7££££e50]
[TEFEE60]

single Precision
Fao
Fo1
Fo2
Fos
Fo4
—

Sosceser
73555038
74614470
eees36s
32433073
5c317073
269775
eressees
233d657¢
Gearscel
P
a£ac0032
apssasag

erez7ars
5c737265
eracscel
9575074
72606150
esessred
ece13233
22557377
73555038
e9722465
ars25058
s34eara7
Sacoarsa

2a37336e
76696273
Scecel63
776z646e
sce17265
ede9736c
ooedsses
Geaz00se
5c737265
22006576
53534543
25565245
2mdpasso

23303233
70415061
72636944
70704173
302e3331
es736158
57305348
e9722465
76696273
25424055
sasss2ar
scsc3as2
00424135

weo
woon

DRme de w0

o

"t oo

Ao a-

chdw

ERA

xomB a0y -

ol

o

Comb-uvow - ona

vEmna

BamE ey

moruwELAawo -0

image10.png
& Qrspim

File Simulator Registers TextSegment Window Help.

bd ds 2 #

3
o

3

[7£££2320] 32433673

[7£££24£0] 50317073

single Precision [(7££££200] Gee9TT5C

Fao
FGL

[7£££2e10] €£646e69
[7££££e20] 433d6576

erez7ars
5c737265
eracscel
9575074
72606150
esessred
ece13233
22557377
7355538

2a37336e
76696273
Scecel63
776z646e
sce17265
ede9736c
ooedsses
Geaz00se
5c737265

image11.png
& Qrspim
File Simulstor Registers TextSegment Data Segment Window Help

(@ Ee s v ve o)
Txt

FPRegs | IntReasfiéh | Dpata |

FPRess 8 x Data

FIR A|[(7£E2da01 sosceeer efes7a7e 2d37336= 43303233

FosR [7£££2db0] 73555c3a 5C737265 76696873 70415061

Focr [7£££2dc0] 74614470 6fécScel Scecelel 7263694d

FEXR [7£££2dd0] 666£736f 69575c74 776fedee 70704173
[7£££2de0] 32433673 746celSc 5c617265 30263331
[7£££2af0] 5317073 65e46fed 6de9736c 6573615%

single Precision [7££££e00] €e69775c 6c613233 0066SEr 573dS34f

image12.png
Name: Student Number:,
Submitted to (Asst.): Date:sammyy I/

EASTERN MEDITERRANEAN UNIVERSITY
COMPUTER ENGINEERING DEPARTMENT

2019 Fall

CMPE 324 -Computer Architecture and Organization
EXPERIMENT 1 - Reporting Sheet

image13.png
Instruction

ope

s

d

sa

fn

addi $8,$0, 6

addi $9, 50,12

add $2, 50, $8

add $10, 50, $0

beq $2, $0, mulexit

addi $2,$2,-1

add $10, 510, $9

3 mulloop

s11 $0, 50, $0

image1.png
item:

.data

.word 1

.text

.globl main # Must be global

main: 1w $t01,item # loads temp.reg. $t01 with item

image2.png
.byte bl,...,bn #storen specified values to the memory
.data <address> #set data segment address.
SPIM uses 0x10000000 as the beginning of the data segment. Set it to
0x10000000 to have correctly matching data labels to their addresses.
.globl sym # makes label globally accessable.
.space n #allocate n bytes of space in the current segment.
.text <address> #subsequent items are put in the user text segments,
The items in text segment may be only words, or instructions.
.word n # store the listed values of words into the memory.

