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MIPS floating-point arithmetic 

ƒ   Floating-point computations are vital for many applications, but correct 
implementation of floating-point hardware and software is very tricky. 

ƒ   Today we’ll study the IEEE 754 standard for floating-point arithmetic. 

— 

— 

— 

Floating-point number representations are complex, but limited. 

Addition and multiplication operations require several steps. 

The MIPS architecture includes support for floating-point arithmetic. 
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The history of floating-point computation 

ƒ   In the past, each machine had its own implementation of floating-point 
arithmetic hardware and/or software. 

— It was impossible to write portable programs that would produce the 

same results on different systems. 

— Many strange tricks were needed to get correct answers out of some 

machines, such as Crays or the IBM System 370. 

ƒ   It wasn’t until 1985 that the IEEE 754 standard was adopted. 

— 

— 

The standard is very complex and difficult to implement efficiently. 

But having a standard at least ensures that all compliant machines will 

produce the same outputs for the same program. 
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Floating-point hardware 

ƒ   Intel introduced the 8087 coprocessor around 1981. 

— 

— 

The main CPU would call the 8087 for floating-point operations. 

The 8087 had eight separate 80-bit floating-point registers that could 

be accessed in a stack-like fashion. 

Some of the IEEE standard is based on the 8087. — 

ƒ   Intel’s 80486, introduced in 1989, included floating-point support in the 
main processor itself. 

ƒ   The MIPS floating-point architecture and instruction set still reflect the 

old coprocessor days, with separate floating-point registers and special 

instructions for accessing those registers. 
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Floating-point representation 

ƒ   IEEE numbers are stored using a kind of scientific notation. 

2exponent 
± mantissa × 

ƒ   We can represent floating-point numbers with three binary fields: a sign 
bit s, an exponent field e, and a fraction field f. 

ƒ   The IEEE 754 standard defines several different precisions. 

— Single precision numbers include an 8-bit exponent field 

fraction, for a total of 32 bits. 
and a 23-bit 

— Double precision numbers have an 11-bit exponent field and a 52-bit 
fraction, for a total of 64 bits. 

ƒ There are also various extended precision formats. For example, 

Intel processors use an 80-bit format internally. 
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Sign 

ƒ   The sign bit is 0 for positive numbers and 1 for negative numbers. 

ƒ   But unlike integers, IEEE values are stored in signed magnitude format. 
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s e f 

Mantissa 

ƒ   The field f contains a binary fraction. 

ƒ   The actual mantissa of the floating-point value is (1 + f). 

— In other words, there is an implicit 1 to the left of the binary point. 

— For example, if f is 01101…, the mantissa would be 1.01101… 

ƒ There are many ways to write a number in scientific notation, but 

there is always a unique normalized representation, with exactly one non-

zero digit to the left of the point. 

0.232 × 103 = 23.2 × 101 = 2.32 × 102 = … 

ƒ   A side effect is that we get a little more precision: there are 24 bits in 
the mantissa, but we only need to store 23 of them. 
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Exponent 

ƒ   The e field represents the exponent as a biased number. 

— It contains the actual exponent plus 127 for single precision, or the 

actual exponent plus 1023 in double precision. 

— This converts all single-precision exponents from -127 to +127 into 

unsigned numbers from 0 to 255, and all double-precision exponents from 

-1024 to +1023 into unsigned numbers from 0 to 2047. 

ƒ   Two examples with single-precision numbers are shown below. 

— If the exponent is 4, the e field will be 4 + 127 = 131 (100000112). 

— If e contains 01011101 (9310), the actual exponent is 93 - 127 = -34. 
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Converting an IEEE 754 number to decimal 

ƒ   The decimal value of an IEEE number is given by the formula: 

2e-bias (1 - 2s) × (1 + f) × 

ƒ   Here, the s, f and e fields are assumed to be in decimal. 

— 

— 

— 

(1 - 2s) is 1 or -1, depending on whether the sign bit is 0 or 1. 

We add an implicit 1 to the fraction field f, as mentioned earlier. 

Again, the bias is either 127 or 1023, for single or double precision. 
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Example IEEE-decimal conversion 

ƒ   Let’s find the decimal value of the following IEEE number. 

1 01111100 11000000000000000000000 

ƒ   First convert each individual field to decimal. 

— 

— 

— 

The 

The 

The 

sign bit s is 1. 

e field contains 01111100 = 12410.  

mantissa is 0.11000… = 0.7510. 

ƒ   Then just plug these decimal values of s, e and f into our formula. 

                                                        2e-bias (1 - 2s) × (1 + f) × 

2124-127 2-3) ƒ   This gives us (1 - 2) × (1 + 0.75) × = (-1.75 × = -0.21875. 
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Converting a decimal number to IEEE 754 

ƒ   What is the single-precision representation of 347.625? 

1. 

2. 

First convert the number to binary: 347.625 = 101011011.1012. 
Normalize the number by shifting 
single 1 to the left: 

the binary point until there is a 

20 28 101011011.101 × = 1.01011011101 × 

3. The bits to the right of the binary 
fractional field f. 

point, 010110111012, comprise the 

4. The number of times you shifted gives the exponent. In this case, the 

field e should contain 8 

The number is positive, 

+ 127 = 135 = 100001112. 
so the sign bit is 0. 5. 

ƒ   The final result is: 

0 10000111 01011011101000000000000 
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Special values 

ƒ   The smallest and largest possible exponents e=00000000 and e=11111111 
(and their double precision counterparts) are reserved for special values. 

ƒ   If the mantissa is always (1 + f), then how is 0 represented? 

— 

— 

— 

The fraction field f should be 0000...0000. 

The exponent field e contains the value 00000000. 

With signed magnitude, there are two zeroes: +0.0 and -0.0. 

ƒ   There are representations of positive and negative infinity, which might 
sometimes help with instances of overflow. 

— The fraction f is 0000...0000. 

— The exponent field e is set to 11111111. 

ƒ Finally, there is a special “not a number” value, which can handle 

some cases of errors or invalid operations such as 0.0⁄0.0. 

— The fraction field f is set to any non-zero value. 

— The exponent e will contain 11111111. 
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Limits of the IEEE representation 

ƒ   Even some integers cannot be represented in the IEEE format. 

ƒ   Some simple decimal numbers cannot be represented exactly in binary to 

begin with. 

0.1010 = 0.0001100110011...2 
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int x   = 33554431;  
float y = 33554431;  
printf( "%d\n", x );  

printf( "%f\n", y ); 
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0.10 

ƒ    During the Gulf War in 1991, a U.S. Patriot missile failed to intercept an 
Iraqi Scud missile, and 28 Americans were killed. 

ƒ A later study determined that the problem was caused by the 

inaccuracy of the binary representation of 0.10. 

— The Patriot incremented a counter once every 0.10 seconds. 

— It multiplied the counter value by 0.10 to compute the actual time. 

ƒ However, the (24-bit) binary representation of 0.10 actually 

corresponds to 0.099999904632568359375, which is off by 

0.000000095367431640625. 

ƒ This doesn’t seem like much, but after 100 hours the time ends up 

being off by 0.34 seconds—enough time for a Scud to travel 500 meters! 

ƒ    Professor Skeel wrote a short article about this. 

Roundoff Error and the Patriot Missile. SIAM News, 25(4):11, July 1992. 
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Extreme errors 

ƒ   As we saw, rounding errors in addition can occur if one argument is much 
smaller than the other, since we need to match the exponents. 

ƒ   An extreme example with 32-bit IEEE values is the following. 

(1.5 × 1038) + (1.0 × 100) 1038 = 1.5 × 

The number 1.0 × 100 is much smaller than 1.5 × 1038, and it basically gets 
rounded out of existence. 

ƒ   This has some nasty implications. The order in which you do additions 
can affect the result, so (x + y) + z is not always the same as x + (y + z)! 

17 

float x = -1.5e38; 
float y =  1.5e38; 
printf( “%f\n”, (x + y) + 1.0 ); 
printf( “%f\n”, x + (y + 1.0) ); 

http://www.siam.org/siamnews/general/patriot.htm
http://www.siam.org/siamnews/general/patriot.htm
http://www.siam.org/siamnews/general/patriot.htm
http://www.siam.org/siamnews/general/patriot.htm
http://www.siam.org/siamnews/general/patriot.htm
http://www.siam.org/siamnews/general/patriot.htm
http://www.siam.org/siamnews/general/patriot.htm
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MIPS floating-point architecture 

ƒ   MIPS includes a separate set of 32 floating-point registers, $f0-$f31. 

— 

— 

Each register is 32 bits long and can hold a single-precision value. 

Two registers can be combined to store a double-precision number. 

You can have up to 16 double-precision values in registers $f0-$f1, 
$f2-$f3, ..., $f30-$f31. 

$f0 is not hardwired to the value 0.0! — 

ƒ   There are also separate instructions for floating-point arithmetic. The 
operands must be floating-point registers, and not immediate values. 

add.s 
 

$f1, $f2, $f3 
 

# Single-precision $f1 
 

= 
 

$f2 
 

+ 
 

$f3 
 

ƒ   There are other basic operations as you would expect. 

— 

— 

— 

sub.s for subtraction 

mul.s for multiplication  

div.s for division 

21 

Floating-point register transfers 

ƒ   mov.s and mov.d copy data between floating-point registers. 

ƒ Use mtc1 and mfc1 to transfer data between the integer registers 

$0-$31 and the floating-point registers $f0-$f31. 

— Be careful with the order of the operands in these instructions. 

mtc1 
mfc1 

$t0, $f0 
$t0, $f0 

# $f0 
# $t0 

= 
= 

$t0 
$f0 

ƒ   There are also special loads and stores for transferring data between the 

floating-point registers and memory. 
integer register.) 

(The base address is still given in an 

lwc1 
swc1 

$f2, 0($a0) 
$f4, 4($sp) 

# $f2 = M[$a0] 
# M[$sp+4] = $f4 

ƒ   The “c1” in the instruction names stands for “coprocessor 1.” 

22 
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Floating-point functions 

ƒ   There are conventions for passing data to and from functions. 

— Floating-point arguments are placed in $f12-$f15. 

— Floating-point return values go into $f0-$f1. 

ƒ   We also split the register-saving chores, just like earlier. 

— $f0-$f19 are caller-saved. 

— $f20-$f31 are callee-saved. 

ƒ   These are the same basic ideas as before because we still have the same 

problems to solve—now it’s just with different registers. 
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Floating-point constants 

ƒ   MIPS does not support immediate floating-point arithmetic instructions, 
so you must load constant values into a floating-point register first. 

 

ƒ   ƒ   Newer versions of MIPS simulators support the li.s and li.d pseudo-

instructions, 

 

li.s $f6, 0.55555  # $f6 = 0.55555 

 

 

 

25 
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Type conversions 

ƒ   You can also cast integers to floating-point values using the MIPS type 

conversion instructions. 

Type to 
convert to 

Floating-point 
destination 

cvt.s.w $f4, $f2 

Type to 
convert 
from 

Floating-point 
source register 

ƒ   Possible types for conversions are integers (w), single-precision 
double-precision (d) floating-point. 

(s) and 
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li       $t0, 32      # $t0 = 32  
mtc1     $t0, $f2     # $f2 = 32  

cvt.s.w  $f4, $f2     # $f4 = 32.0 

A complete example 

ƒ   Here is a slightly different version of the textbook example of converting 
single-precision temperatures from Fahrenheit to Celsius. 

celsius = (fahrenheit - 32.0) × 5.0 ⁄ 9.0 

ƒ   This example demonstrates a couple of things. 

— 

— 

— 

The argument is passed in $f12, and the return value is placed in $f0. 

We use two different ways of loading floating-point constants. 

We used only caller-saved floating-point registers. 

27 

 

celsius: 
li      $t0, 32  
mtc1    $t0, $f4 

cvt.s.w $f4, $f4         # $f4 = 32.0 
li.s    $f6, 0.55555     # $f6 = 5.0 / 9.0  
sub.s   $f0, $f12, $f4   # $f0 = $f12 - 32.0  
mul.s   $f0, $f0, $f6    # $f0 = $f0 * 5.0/9.0  
jr      $ra 
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Summary 

ƒ   The IEEE 754 standard defines number representations and operations for 
floating-point arithmetic. 

ƒ Having a finite number of bits means we can’t represent all possible 

real numbers, and errors will occur from approximations. 

ƒ   MIPS processors implement the IEEE 754 standard. 

— 

— 

There is a separate set of floating-point registers, $f0-$f31. 

New instructions handle basic floating-point operations, comparisons 

and branches. There is also support for transferring data between the 

floating-point registers, main memory and the integer registers. 

— We still have to deal with issues of argument and result passing, and 

register saving and restoring in function calls. 
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