
10/30/2019

1

MIPS floating-point arithmetic

ƒ Floating-point computations are vital for many applications, but correct
implementation of floating-point hardware and software is very tricky.

ƒ Today we’ll study the IEEE 754 standard for floating-point arithmetic.

—

—

—

Floating-point number representations are complex, but limited.

Addition and multiplication operations require several steps.

The MIPS architecture includes support for floating-point arithmetic.

1

The history of floating-point computation

ƒ In the past, each machine had its own implementation of floating-point
arithmetic hardware and/or software.

— It was impossible to write portable programs that would produce the

same results on different systems.

— Many strange tricks were needed to get correct answers out of some

machines, such as Crays or the IBM System 370.

ƒ It wasn’t until 1985 that the IEEE 754 standard was adopted.

—

—

The standard is very complex and difficult to implement efficiently.

But having a standard at least ensures that all compliant machines will

produce the same outputs for the same program.

19

10/30/2019

2

Floating-point hardware

ƒ Intel introduced the 8087 coprocessor around 1981.

—

—

The main CPU would call the 8087 for floating-point operations.

The 8087 had eight separate 80-bit floating-point registers that could

be accessed in a stack-like fashion.

Some of the IEEE standard is based on the 8087. —

ƒ Intel’s 80486, introduced in 1989, included floating-point support in the
main processor itself.

ƒ The MIPS floating-point architecture and instruction set still reflect the

old coprocessor days, with separate floating-point registers and special

instructions for accessing those registers.

20

Floating-point representation

ƒ IEEE numbers are stored using a kind of scientific notation.

2exponent
± mantissa ×

ƒ We can represent floating-point numbers with three binary fields: a sign
bit s, an exponent field e, and a fraction field f.

ƒ The IEEE 754 standard defines several different precisions.

— Single precision numbers include an 8-bit exponent field

fraction, for a total of 32 bits.
and a 23-bit

— Double precision numbers have an 11-bit exponent field and a 52-bit
fraction, for a total of 64 bits.

ƒ There are also various extended precision formats. For example,

Intel processors use an 80-bit format internally.

2

s e f

10/30/2019

3

Sign

ƒ The sign bit is 0 for positive numbers and 1 for negative numbers.

ƒ But unlike integers, IEEE values are stored in signed magnitude format.

3

s e f

Mantissa

ƒ The field f contains a binary fraction.

ƒ The actual mantissa of the floating-point value is (1 + f).

— In other words, there is an implicit 1 to the left of the binary point.

— For example, if f is 01101…, the mantissa would be 1.01101…

ƒ There are many ways to write a number in scientific notation, but

there is always a unique normalized representation, with exactly one non-

zero digit to the left of the point.

0.232 × 103 = 23.2 × 101 = 2.32 × 102 = …

ƒ A side effect is that we get a little more precision: there are 24 bits in
the mantissa, but we only need to store 23 of them.

4

s e f

10/30/2019

4

Exponent

ƒ The e field represents the exponent as a biased number.

— It contains the actual exponent plus 127 for single precision, or the

actual exponent plus 1023 in double precision.

— This converts all single-precision exponents from -127 to +127 into

unsigned numbers from 0 to 255, and all double-precision exponents from

-1024 to +1023 into unsigned numbers from 0 to 2047.

ƒ Two examples with single-precision numbers are shown below.

— If the exponent is 4, the e field will be 4 + 127 = 131 (100000112).

— If e contains 01011101 (9310), the actual exponent is 93 - 127 = -34.

5

s e f

Converting an IEEE 754 number to decimal

ƒ The decimal value of an IEEE number is given by the formula:

2e-bias (1 - 2s) × (1 + f) ×

ƒ Here, the s, f and e fields are assumed to be in decimal.

—

—

—

(1 - 2s) is 1 or -1, depending on whether the sign bit is 0 or 1.

We add an implicit 1 to the fraction field f, as mentioned earlier.

Again, the bias is either 127 or 1023, for single or double precision.

6

s e f

10/30/2019

5

Example IEEE-decimal conversion

ƒ Let’s find the decimal value of the following IEEE number.

1 01111100 11000000000000000000000

ƒ First convert each individual field to decimal.

—

—

—

The

The

The

sign bit s is 1.

e field contains 01111100 = 12410.

mantissa is 0.11000… = 0.7510.

ƒ Then just plug these decimal values of s, e and f into our formula.

 2e-bias (1 - 2s) × (1 + f) ×

2124-127 2-3) ƒ This gives us (1 - 2) × (1 + 0.75) × = (-1.75 × = -0.21875.

7

Converting a decimal number to IEEE 754

ƒ What is the single-precision representation of 347.625?

1.

2.

First convert the number to binary: 347.625 = 101011011.1012.
Normalize the number by shifting
single 1 to the left:

the binary point until there is a

20 28 101011011.101 × = 1.01011011101 ×

3. The bits to the right of the binary
fractional field f.

point, 010110111012, comprise the

4. The number of times you shifted gives the exponent. In this case, the

field e should contain 8

The number is positive,

+ 127 = 135 = 100001112.
so the sign bit is 0. 5.

ƒ The final result is:

0 10000111 01011011101000000000000

8

10/30/2019

6

Special values

ƒ The smallest and largest possible exponents e=00000000 and e=11111111
(and their double precision counterparts) are reserved for special values.

ƒ If the mantissa is always (1 + f), then how is 0 represented?

—

—

—

The fraction field f should be 0000...0000.

The exponent field e contains the value 00000000.

With signed magnitude, there are two zeroes: +0.0 and -0.0.

ƒ There are representations of positive and negative infinity, which might
sometimes help with instances of overflow.

— The fraction f is 0000...0000.

— The exponent field e is set to 11111111.

ƒ Finally, there is a special “not a number” value, which can handle

some cases of errors or invalid operations such as 0.0⁄0.0.

— The fraction field f is set to any non-zero value.

— The exponent e will contain 11111111.

9

Limits of the IEEE representation

ƒ Even some integers cannot be represented in the IEEE format.

ƒ Some simple decimal numbers cannot be represented exactly in binary to

begin with.

0.1010 = 0.0001100110011...2

12

int x = 33554431;
float y = 33554431;
printf("%d\n", x);

printf("%f\n", y);

10/30/2019

7

0.10

ƒ During the Gulf War in 1991, a U.S. Patriot missile failed to intercept an
Iraqi Scud missile, and 28 Americans were killed.

ƒ A later study determined that the problem was caused by the

inaccuracy of the binary representation of 0.10.

— The Patriot incremented a counter once every 0.10 seconds.

— It multiplied the counter value by 0.10 to compute the actual time.

ƒ However, the (24-bit) binary representation of 0.10 actually

corresponds to 0.099999904632568359375, which is off by

0.000000095367431640625.

ƒ This doesn’t seem like much, but after 100 hours the time ends up

being off by 0.34 seconds—enough time for a Scud to travel 500 meters!

ƒ Professor Skeel wrote a short article about this.

Roundoff Error and the Patriot Missile. SIAM News, 25(4):11, July 1992.

13

Extreme errors

ƒ As we saw, rounding errors in addition can occur if one argument is much
smaller than the other, since we need to match the exponents.

ƒ An extreme example with 32-bit IEEE values is the following.

(1.5 × 1038) + (1.0 × 100) 1038 = 1.5 ×

The number 1.0 × 100 is much smaller than 1.5 × 1038, and it basically gets
rounded out of existence.

ƒ This has some nasty implications. The order in which you do additions
can affect the result, so (x + y) + z is not always the same as x + (y + z)!

17

float x = -1.5e38;
float y = 1.5e38;
printf(“%f\n”, (x + y) + 1.0);
printf(“%f\n”, x + (y + 1.0));

http://www.siam.org/siamnews/general/patriot.htm
http://www.siam.org/siamnews/general/patriot.htm
http://www.siam.org/siamnews/general/patriot.htm
http://www.siam.org/siamnews/general/patriot.htm
http://www.siam.org/siamnews/general/patriot.htm
http://www.siam.org/siamnews/general/patriot.htm
http://www.siam.org/siamnews/general/patriot.htm
http://www.siam.org/siamnews/general/patriot.htm

10/30/2019

8

MIPS floating-point architecture

ƒ MIPS includes a separate set of 32 floating-point registers, $f0-$f31.

—

—

Each register is 32 bits long and can hold a single-precision value.

Two registers can be combined to store a double-precision number.

You can have up to 16 double-precision values in registers $f0-$f1,
$f2-$f3, ..., $f30-$f31.

$f0 is not hardwired to the value 0.0! —

ƒ There are also separate instructions for floating-point arithmetic. The
operands must be floating-point registers, and not immediate values.

add.s

$f1, $f2, $f3

Single-precision $f1

=

$f2

+

$f3

ƒ There are other basic operations as you would expect.

—

—

—

sub.s for subtraction

mul.s for multiplication

div.s for division

21

Floating-point register transfers

ƒ mov.s and mov.d copy data between floating-point registers.

ƒ Use mtc1 and mfc1 to transfer data between the integer registers

$0-$31 and the floating-point registers $f0-$f31.

— Be careful with the order of the operands in these instructions.

mtc1
mfc1

$t0, $f0
$t0, $f0

$f0
$t0

=
=

$t0
$f0

ƒ There are also special loads and stores for transferring data between the

floating-point registers and memory.
integer register.)

(The base address is still given in an

lwc1
swc1

$f2, 0($a0)
$f4, 4($sp)

$f2 = M[$a0]
M[$sp+4] = $f4

ƒ The “c1” in the instruction names stands for “coprocessor 1.”

22

10/30/2019

9

Floating-point functions

ƒ There are conventions for passing data to and from functions.

— Floating-point arguments are placed in $f12-$f15.

— Floating-point return values go into $f0-$f1.

ƒ We also split the register-saving chores, just like earlier.

— $f0-$f19 are caller-saved.

— $f20-$f31 are callee-saved.

ƒ These are the same basic ideas as before because we still have the same

problems to solve—now it’s just with different registers.

24

Floating-point constants

ƒ MIPS does not support immediate floating-point arithmetic instructions,
so you must load constant values into a floating-point register first.

ƒ ƒ Newer versions of MIPS simulators support the li.s and li.d pseudo-

instructions,

li.s $f6, 0.55555 # $f6 = 0.55555

25

10/30/2019

10

Type conversions

ƒ You can also cast integers to floating-point values using the MIPS type

conversion instructions.

Type to
convert to

Floating-point
destination

cvt.s.w $f4, $f2

Type to
convert
from

Floating-point
source register

ƒ Possible types for conversions are integers (w), single-precision
double-precision (d) floating-point.

(s) and

26

li $t0, 32 # $t0 = 32
mtc1 $t0, $f2 # $f2 = 32

cvt.s.w $f4, $f2 # $f4 = 32.0

A complete example

ƒ Here is a slightly different version of the textbook example of converting
single-precision temperatures from Fahrenheit to Celsius.

celsius = (fahrenheit - 32.0) × 5.0 ⁄ 9.0

ƒ This example demonstrates a couple of things.

—

—

—

The argument is passed in $f12, and the return value is placed in $f0.

We use two different ways of loading floating-point constants.

We used only caller-saved floating-point registers.

27

celsius:
li $t0, 32
mtc1 $t0, $f4

cvt.s.w $f4, $f4 # $f4 = 32.0
li.s $f6, 0.55555 # $f6 = 5.0 / 9.0
sub.s $f0, $f12, $f4 # $f0 = $f12 - 32.0
mul.s $f0, $f0, $f6 # $f0 = $f0 * 5.0/9.0
jr $ra

10/30/2019

11

Summary

ƒ The IEEE 754 standard defines number representations and operations for
floating-point arithmetic.

ƒ Having a finite number of bits means we can’t represent all possible

real numbers, and errors will occur from approximations.

ƒ MIPS processors implement the IEEE 754 standard.

—

—

There is a separate set of floating-point registers, $f0-$f31.

New instructions handle basic floating-point operations, comparisons

and branches. There is also support for transferring data between the

floating-point registers, main memory and the integer registers.

— We still have to deal with issues of argument and result passing, and

register saving and restoring in function calls.

28

